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A new decomposition has been developed in which turbulent processes in shear flows may be 
represented as a combination of organized and more random turbulent motions. Each 
component is modeled as a summation of its characteristic eddies, of strength that varies in time 
and space as a function of the entire process. The contribution of all turbulent eddies of the more 
random component are estimated with an adaptive turbulence filter, which recognizes this 
component as the orthogonal partner to organized motion, with a power density spectrum of 
appropriate shape. The decomposition recovers organized motion from time and space series of 
data in a physically meaningful way, and can be used to characterize interaction between 
coherent and more random motions. It also provides an estimate for the turbulence in shear 
flows that are too complex for a meaningful average motion to be identified. 

I. INTRODUCTION 

The desire to examine turbulent variables fi (x,t) as 
deviations from a class or ensemble average (fj( x,t) ), gov- 
erned by equations of motion expressed in the same way, 
has led to numerous proposals for decomposition of turbu- 
lent fields, beginning with that of Osborne Reynolds.’ Ex- 
tensions to this original decomposition include the phase 
average, which has found usage in flows with wave motion 
(i.e., the works of Phillips”) and in nonlinear acoustic 
flows (see, for example, Beyer3) as well as in turbulent 
flows with forced repeated periodic unsteadiness.4 Ensem- 
ble averages conditioned on the occurrence of specific 
events, such as quadrant analysis,’ have also been pro- 
posed. Turbulence has also been studied by more advanced 
decompositions of time and space series of data ,into or- 
thogonal modes. Methods such as the Karhunen-Loeve 
expansion have been used to characterize the most ener- 
getic turbulent features of near-wall pipe flows as counter- 
rotating streamwise eddy pairs,6 and to identify the most 
energetic coherent motions of an axisymmetric jet.7 Moin 
and Moser’ have also examined the most energetic modes 
of a Karhunen-Loeve decomposition as the characteristic 
eddies of turbulent channel flow. Stochastic estimation 
techniques were used by Adrian and Moin’ to identify the 
large-scale organized “conditional eddies” present in ho- 
mogeneous turbulent shear flows, whereas Hussain” has 
demonstrated how coherent motions may be recognized by 
measuring the degree of coherence in turbulence structures 
according to the strength of spatial phase correlations in 
their vorticity. 

Techniques for the characterization of turbulence by 
decomposition of signals into wavelet basis functions have 
also undergone recent developments, leading to analysis 
tools, such as the wavelet packet.” More recently, the idea 
of a class average has been broadened to include averaging 
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within delineated regions of phase space, in the hope that 
more meaningful information on turbulent motions might 
be retained by this exercise.12 

The characterizations described above typically rely on 
some a priori information if they are to yield faithful tur- 
bulent decompositions. Reynolds decompositions and 
quadrant analyses require a knowledge of the stationarity 
of the mean flow if deviatoric components are to be clas- 
sified as turbulent. Unsteady-flow phase averages necessi- 
tate additional information on the reference positions at 
which ensembles begin, as well as a guarantee of repeat- 
ability in organized motion from ensemble to ensemble. 
While proper orthogonal decompositions organize the 
greatest proportion of the energy of turbulence data into 
the fewest number of modes, additional prescriptions may 
be necessary to identify modes (singly or grouped) that 
characterize individual physical structures. In flows that 
feature nonstationarity in time, organization that lacks re- 
peatability, and inhomogeneity in space with many differ- 
ent structures of comparable energy, which may be termed 
complex flows, the utility of existing methods for improved 
understanding of turbulence may be small. In such cases, 
approximation techniques are of value for estimating the 
turbulent and organized components of complex flow fields 
and studying their characteristics. 

The approximation techniques described and applied 
in this paper are based on the premise that projections of 
the turbulent contribution of time and space series of data 
have distinctive mean square representations that may be 
recognized and isolated from those of residual organized 
(temporally or spatially) motions. This approach is in con- 
trast to the traditional one of treating turbulence as devi- 
atoric from an organized field, which may be identified by 
a prescribed averaging procedure. It treats complex flows 
as though the character of turbulent motions may be iden- 
tified more readily than that of organized ones. The de- 
composition technique is presented in the form of an adap- 
tive characteristic eddy function or turbulence filter, 
together with applications that demonstrate cycle-by-cycle 
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decompositions of turbulence in forced unsteady boundary 
layers and reveal the momentary spatial organization in a 
turbulent jet. 

II. ORGANIZATION IN TURBULENT FLOW 

There is considerable evidence that turbulent flows 
have organized features, 13-17 but no unambiguous means of 
identification that is of general applicability to all turbulent 
flows. For example, the numerous techniques for identify- 
ing coherent patterns of events in near-wall turbulence do 
not necessarily detect organized motions in other flows- 
the link between the organization and its identification has 
had to be established by careful study of that particular 
flow. The effectiveness of identification techniques, and the 
organized motion they define, depends on the information 
available. Motions readily detectable in a three- 
dimensional space series may make no more than smeared 
footprints or kinks in a plane or line through the same 
domain. Thus, a one-dimensional data series of velocity 
measurements away from the wall in a boundary layer 
might give no indication of organization in fluid motion, 
yet a space series in the x-y plane through the same point 
might reveal eddying motions of obviously organized form. 

The technique described in this paper is a new, general, 
first-order approximation method that can extract the most 
significant organized motions revealed by a data series 
from turbulent shear flows. The technique has no restric- 
tion to any class of turbulent flow, providing the data series 
are well resolved. It defines organized motion as the or- 
thogonal partner to the “background” turbulent part of the 
data series, which has a power spectrum of the same shape 
as in stationary turbulent shear flow. Thus motions that 
(momentarily) cause significant deviation from the ex- 
pected data-adaptive shape of the background turbulence 
spectrum are termed organized. These can be the largest 
naturally organized motions that span entire domains, as in 
the large-scale coherent structures of jets and wakes, or 
flow structures that differ from background motion 
through effects of initial and boundary conditions, or mo- 
tions that follow external organized forcing. The generality 
of this approach does not allow distinction between these 
effects, though other techniques have been developed for 
these purposes in particular flows. Instead, it gives a first- 
order description of the most organized motions made vis- 
ible by the information provided. The technique is de- 
scribed in terms of a turbulence filter below. 

HI. A TURBULENCE FILTER 

The characterization of turbulence with a filter is 
equivalent to representing turbulence as a sum of many 
characteristic eddies, whose strength varies in time or 
space as another process. Lumley’8 pioneered this idea in 
the form u’ = $*g, where u’ is a member of an ensemble 
of characteristic eddies, g represents the strength of eddies 
as a random process, 4 is the characteristic eddy function, 
and * is the convolution operator. This approach may be 
extended to the characterization of complex (unsteady, 
spatially varying) turbulent flows from which the 

temporal/spatial mean has been removed, in the form of a 
decomposition of organized (in space or time) and turbu- 
lent components. In the approach described here, the 
summed effects of organized motion and background tur- 
bulence in a data series u are given, respectively, by the 
decomposition: u = E+ u’. 

For a series of measured data u from which the mean 
has been removed, its turbulent component may be ex- 
pressed as 

d=+W, (1) 

if an estimate of the characteristic turbulence function 4 of 
all turbulent eddies is provided. The nonturbulent or or- 
ganized part is then 

ii=u--u’ or G=[S( )-$]*a, (2) 

where the argument of S, the Dirac delta function, is either 
time or position, depending on the kind of series of data. In 
a time series of velocity data measured in an unsteady 
turbulent flow, u(t) might represent the organized un- 
steady motion deviatoric from the long-time mean (such as 
oscillation); in a space series, such as a velocity field de- 
duced from a planar particle-image-velocimetry measure- 
ment, Z(x,y) could describe the organized spatial deviation 
from the spatial mean, such as swirl and inhomogeneity in 
the mean flow. One may also propose functions 4, which 
describe subclasses of turbulent eddies with particular at- 
tributes, allowing successive decompositions of u’ into sub- 
components. If no organized motion is extracted, one such 
function for subclasses of turbulent eddies isolates the most 
energetic mode of a Karhunen-Loeve decomposition- 
motions described by this mode are commonly known as 
those of the characteristic eddy. 

Since complete information is unavailable to guide the 
choice of which parts of a data series in a complex flow are 
locally turbulent and that are not, the determination of the 
characteristic turbulence function is posed as an estimation 
problem. Considering, for simplicity, a time series of data 
u(t), we wish to choose a function $J( t) that minimizes the 
discrepancy between u’ It) and z&,(t), where 

t&(t)=qS(t)su(t), in which case 

Uest@) = tat) -90) l*W. (3) 

Since z&(t) and u(t) must be real, $(t) must be a real 
function, though its Fourier transform Q(f ) may, in gen- 
eral, be complex. 

It is convenient for the decomposed components to be 
orthogonal, in the sense that 

Zest(t)u~t(t+~) =0, at 7===0, (4) 

where the overbar denotes an average over all t. Under this 
condition, the triple-decomposed forms of the Navier- 
Stokes equations (Hussain and Reynolds4) apply directly 
to the decomposed variables. The constraint that the 
summed energy of the decomposed quantities cannot ex- 
ceed that of the total data series at any frequency requires 
the filter 4(t) to be bounded, in the frequency domain, as 
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O<J~(f>l<l. (5) 
Suppose the true value of the turbulent component 

were known a priori (for example, as measured in a flow 
with no mean, such as decaying isotropic turbulence in a 
box). An estimate of the turbulent component using (3) 
would be considered optimal if the mean square error E 
between the estimated and the true turbulent components 
could be minimized. By writing the filtered decomposition 
of (3) in the Fourier domain as 

q&f > =@(f > Wf 1, (6) 

and using Rayleigh’s theorem, the minimization of the 
mean square error E is expressed as 

&l 2~ 
s 

: jUi,,(f )--U’(f >I” df=minimum. 
co 

(7) 

Since U:,,(f) = @ (f >U(f ), then 

E=& 
s 

m I@>(f )U(f >-U’(f >j’df 
-co 

=minimum. (8) 

If u’(t) and u(t) are jointly wide-sense stationary pro- 
cesses and have zero means, then the optimum filter func- 
tion that minimizes this integral can be found (see, for 
example, Peebleslg) as 

SuzP(f 1 1 

s 
- 

e&f )=S,,(f ) , with E=~,R 
S*w(f bLJ(f I- jS,,,(f ) jZdf --oo 

Susf 1 
(9) 

Here S,,(f ) is the energy density spectrum of u(t) and S,I,I (f > is used to recover estimates of E and u’ from the 
S,,r (f ) is the energy density cross-spectrum of u(t) and 
u’(t). In general, Qopt( f ) and S,,I( f ) are complex. One 

measured data series u. However, the development of the 
optimal filter is unchanged and still leads to (9) and hence 

can reexpress the filter of (9) in the form (13). 

@0,&f 1 = I qJf > I eiLQopt(f), 

where the modulus of this optimal filter is 

(10) 
Substitution of ( 13) into (9) and further manipulation 

allows its mean-square error to be expressed as 

E=-L 
I 

m S~,&,,(f wu;tu;t(f 1 

2T -* &u(f 1 

-S,,(f )[@(f I-@‘(f )12df. (14) 

It is small when either process is narrow band or at fre- 
quencies when the spectral energy density of one compo- 
nent greatly exceeds that of the other. This filter has been 
shown to be iterative (Brereton and Koda12’) in the fol- 
lowing sense: when S,,(f ) is measured from the data 
series u(t), an estimate of S,f,p(f > allows recovery of 
z&(t) as $(t) *u (t), and assures the spectral density of 
z&,(t) matches its original estimate. Thus, iteration 
through trial estimates of S,f,t (f ) can guide minimization 
of functions of the estimated data series u&(t) and G”,t(t). 

1 q?,.Jf ) I = y-,‘) *‘yu~wfgGCf ))l’Z, 

(11) 

and its phase is 

L*& f ) =arctan 
WU’(f >+Yf >I 

Re[U’(f )fi*(f )l+lU’(f >j2’ 
(12) 

where * denotes a complex conjugate. To specify this op- 
timal filter, estimates of S,~,~ (f ) and S,l,( f ) are re- 
quired. If the cross-spectral energy density of organized 
and turbulent motion is assumed to be small, the second 
term on the right-hand side of ( 11) approaches unity; if it 
is an even function, and so equal to its cospectrum, the 
filter phase is zero. Under these assumptions, the turbu- 
lence filter is then 

Wf ),(y;;;)‘“. (13) 

Thus the optimal filter for extracting Eand u’ from u can 
deduced from the measured spectrum S,, (f ) , and an es- 
timate of the spectrum of the turbulent component 
S,I,I( f ), with no knowledge of urequired. For the exam- 
ple of decaying isotropic turbulence in a box, where u’ = u, 
S,t,t (f ) would be estimated as S,,( f ), so that Q (f ) = 1 
and a perfect recovery of the true turbulent component 
would be achieved by the filter. In general, the “true” tur- 
bulent component is not known, and so an estimate of 
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The adaptive-filter approach to decomposition is then 
to measure S,,( f ) and make an initial estimate of 
Su~ut (f ) as the part of S,,,( f ) with the expected shape of 
a shear-flow turbulence spectrum. One may then iterate on 
Q(f) over all f until @(f IV(f) and [l-@(f >]U(f) 
yield estimates of U’ (f ) and 6( f ), whose time-domain 
counterparts are orthogonal, as required by (4), under the 
realizability constraint (9, and with a smooth 
background-turbulence spectrum Sunup (f > (see Sec. 
IV B). The departure of ~&(t)E,,~(f> from orthogonality 
is then the quantity that is minimized. Two- and three- 
dimensional space series may be decomposed in the same 
way using straightforward extensions to these results. Since 
this filter was deduced from considerations of minimiza- 
tion of the square of the error between the estimate and the 
“true” value of a component of the data series, the accu- 
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racy of estimates is of second order with respect to the 
accuracy with which the filter is determined. 

IV. FILTER lMPLEMENTATlON 

A. Estimation of the background turbulence 
spectrum 

Decomposition by a filter of this kind presupposes that 
a reasonable initial estimate of the contribution of one of 
the decomposed fields to the energy spectrum of the data 
series can be made. While temporally or spatially orga- 
nized motions in complex flow lack any general spectral 
prescription, the shapes of turbulent energy spectra in 
shear flows are well known and distinctive. Even for 
Ren 6 300 (where ,l. is the Taylor microscale), it is quite 
usual for energy spectra to feature an extended range of 
algebraic decay in the form S( f ) a f-“, where $<n~2.~l 
This smoothness may be exploited through spectral de- 
scriptions given by simple analytical models. Time-series 
spectra of single component velocity measurements typi- 
cally feature a flat low-frequency shape, consistent with the 
form of one-dimensional von K&man spectra. The flat 
low-frequency behavior and decaying high-frequency be- 
havior is also well modeled as a low-order autoregressive 
process.“” In situations in which one has access to all com- 
ponents of the velocity field, it can be useful to approxi- 
mate turbulent power spectra by models such as the three- 
dimensional von KQrmdn energy spectrum: 

(where p > 1, k = dw@ is the wave number, and L 
is a characteristic length scale), in which the resolved low- 
frequency region of the spectrum tends to zero with de- 
creasing frequency. Smoothly blended versions of the 
k2- k-5’3 model proposed by Reynolds23 for initial fields 
in turbulence simulations can also approximate measured 
turbulence spectra well. Integrated forms of these models 
can be fitted to spectra of individual components of veloc- 
ity, which frequently share similarities in shape to the spec- 
trum of the total energy. This observation may be made 
from the results of Rogallo24 for computations of homoge- 
neous shear turbulence, and can be inferred from aliased 
time-series spectra from the data of Perry et aZ.25 

Use of the characteristic spectral shapes of stationary 
shear flows as initial estimates of S,I,I in complex flows is 
lent justification by some recent results from studies of 
periodic unsteady turbulent tlow. In these studies, when 
the organized disturbance was perfectly repeatable from 
cycle to cycle, and the use of a phase-average decomposi- 
tion justified, energy spectra of the turbulent component of 
streamwise velocity were of almost identical shape to en- 
ergy spectra measured in steady flow under comparable 
mean conditions.26 A series of energy spectra of u(f), mea- 
sured in turbulent pipe flow at frequencies as high as four 
times the mean flow burst frequency, are shown in Fig. 1 
with the companion decomposed u’(t) spectra in Fig. 2. 
For the narrow-band sinusoidal forcing of these 
experiments,27 it is clear that there is, on average, no ap- 

lo-’ 

lo-’ 
10-1 10-l 100 10’ 10’ 

I W 

FIG. 1. Energy spectral densities of U(T) measured in turbulent pipe flow 
(ReD= 12 Ooo, yf =75) undergoing forced sinusoidal oscillation about its 
mean. The frequency range is from 0.2 to 4 Hz, with a mean flow burst 
frequency of around 1 Hz. 

preciable modification of the energy content of u’, and so 
turbulence energy spectra from stationary flows provide 
useful estimates of turbulence energy spectra in periodic 
unsteady flows. Further support for the idea that shear 
flows retain the same general spectral shape when under- 
going deformation is provided by the rapid-distortion- 
theory results of Hunt and Carruthers.“’ In their calcula- 
tions of homogeneous shear turbulence, their computed 
spectra retain the same shape over wide ranges of applied 
strain. More recent support has been lent by the work of 
Aubry,“8J2g who has demonstrated how the related 
biorthogonal decomposition establishes spectral scaling 

FIG. 2. Energy spectral densities of u’(i) deduced from the data of Fig. 
1 by phase averaging. Each spectrum is plotted with the same line as in 
Fig. 1. 
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laws for inhomogeneous flows, through dilation symme- 
tries of the turbulent Navier-Stokes equations. 

each f, such that if (Pinit > 0.5 it is constrained to remain 
above 0.5, whereas if ainitCO.5 it must remain below 0.5. 

B. Discretization in frequency space 

The procedure for optimizing the turbulence filter is to 
make an initial estimate of S,t,f (f ), discretized into fre- 
quency intervals in logarithmic space, and then iterate on 
the value of S,f,t (f ) a each interval, and hence the esti- t 
mates of uand u’, until 1 C’t(t)uk,(t) 1 is minimized. The 
estimated turbulent contribution to the energy spectrum is 
chosen as either a low-order autoregressive model or a 
wave number model, which passes through the extreme 
frequencies of the energy spectrum of the data series. It is 
assumed that the data series is of sufficient size and accu- 
racy to allow a converged energy spectrum for S,,(f ) to 
be estimated by standard techniques (i.e., by discrete Fou- 
rier transform). It is also assumed that the data sampling 
frequency and its duration are sufficient to resolve the 
highest and lowest frequencies in the energy spectrum as 
turbulent motions. 

Discretization of the energy spectrum is necessary to 
keep the minimization problem to manageable proportions. 
To assure that the character of the energy spectrum is 
retained with reasonable fidelity, the maximum frequency 
interval for discretization is chosen as one in which the 
energy absorbed by eddies in that interval from all larger 
scales is expected to be an order of magnitude smaller than 
the amount of energy transfer to eddies smaller in scale by 
one frequency interval. In this way, the smoothing of 
,!?,I,,, (f ) from discretization over each interval is an order 
of magnitude less significant than the total energy transfer 
from eddies in that frequency interval, and so should not 
impair spectral representation of the energy cascade signif- 
icantly. Isotropic models of energy spectra in the inertial 
subrange [of the order of the steepest gradients of S,,,, (f ) 
in typical experiments] may then be coupled with energy 
cascade arguments (Tennekes and Lumley3’) to estimate 
the frequency interval over which energy transfer to 
smaller scales exceeds energy absorption by about ten 
times. This analysis suggests intervals of central frequency 
f, of bandwidth A f + + A f -, equispaced along a logarith- 
mic axis described by 

with Af++Af- 1 
f ‘lo* (16) 

In addition to discretization, estimates of S,P,I (f > are 
replaced by smoothed versions [a piecewise cubic curve 
fitted through four adjacent values of S,,,I( f >] at each 
stage of iteration. This constraint imposes additional 
smoothing, justified by the well-known characterization of 
steady turbulent shear flows as comprising a continuous 
range of scales that produce a smooth energy spectrum. 
Finally, the initial estimate of S,~,I( f ) and the corre- 
sponding @(f ) are used to bound the minimization at 

C. Minimization procedure 

The constrained problem of minimizing 
1 U,,(t) ub,( t) 1 by variation of Ca( f > over all values of 

discretized f space is solved using quasi-Newton or conju- 
gate gradient methods. Dependence of the solution on the 
initial estimate of S,I,I, and the choice of convergence tol- 
erance for the minimization algorithm is reduced by sys- 
tematic variation of both (usually over a small range) until 
the minimum minimorum is achieved. In practical appli- 
cations, multiple local minima may be found, bringing into 
question the uniqueness of a decomposition by an approx- 
imation technique. Since turbulence is a phenomenon of 
high dimension, which can be decomposed in many ways 
into multiple orthogonal modes, then, provided the most 
energetic ones are resolved within their respective fields, 
uncertainty over the allocation of a small number of low- 
energy modes will have a minimal effect on most statistical 
measures. For the data series studied to date, the proximity 
of these minima was so close that statistical descriptions of 
data decomposed about different local minima were indis- 
tinguishable. Thus, the resultant turbulence filter appor- 
tions each frequency component of a data series into tur- 
bulent and organized parts of the series, guided by an 
initial estimate of the expected energy spectrum of the tur- 
bulence component. In this way, motions more pro- 
nounced in amplitude than expected turbulence levels, or 
of behavior better suited to fits of Fourier expansions than 
turbulence, will be recognized as organized motion, as the 
orthogonal partner to turbulent motion. 

D. Nonstationarity and localization 

Since orthogonality between components of decom- 
posed velocity fields is a desirable property (i.e., in Rey- 
nolds and triple decompositions, where it is enforced), it is 
useful to consider how it might be achieved by a filtered 
decomposition. For a stationary series of real data, the 
condition that C(~(t>u’(t) = 0 may be expressed in Fourier 
space by the power theorem to yield 

s m i?*(f ) U’(f )df =O. 
--m 

(17) 

If U( f ) and U’ (f ) are replaced by estimates made by a 
real filter, the orthogonality condition is expressed as 

f 
m IWf )I%Wf >-@(f Ildf-0, (18) 

--co 

the approximate equality indicating that estimates are now 
employed. For the case of a stationary data series, orthog- 
onality can only be achieved by a real titer @(f ) that is 
equal to 0 or 1 at any frequency. If the estimated turbu- 
lence spectrum is to be continuous, a filter decomposition 
could only then achieve orthogonality for the degenerate 
cases of either u=u’ or u=G. For an inhomogeneous or 
nonstationary data series, or complex filters, these restric- 
tions on <a( f > do not apply. However, when data series 
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approach stationarity or homogeneity, orthogonality is 
likely to be achieved with Cp (f ) close to 0 or 1. In such 
cases, the enforced smoothness of the spectrum of the es- 
timated turbulent component S,t,, (f ) (see Sec. IV B) 
can strongly influence iteration toward the filter, which 
minimizes the departure from orthogonality. 

Localization of spectral estimates in time/space is 
achieved by time-frequency analysis techniques. Of these, 
the instantaneous power spectrum3’ has the desirable prop- 
erties of an unambiguous definition of a time-varying spec- 
trum and relative insensitivity to nonoptimal choices of a 
window function that are well suited to this application. 
When nonstationarity or inhomogeneity is significant, the 
turbulence filter may be constructed in the form Q, (f ,t) to 
make a time/space adaptive split of the localized Fourier 
transform of u into its organized and background turbulent 
contributions. 

V. APPLICATIONS TO ONE-DIMENSIONAL DATA 

Time series of a single component of velocity may be 
characterized with a one-dimensional version of the filter 
described in Sec. III. The data considered were a time 
series of the streamwise component of velocity measured at 
a single point in a flat plate turbulent boundary 
(Re,=3200, y+ =400), with and without forced oscilla- 
tion of the free stream about its mean. These measurements 
were made in a water tunnel, in which the RMS free- 
stream disturbance level was measured at approximately 
0.2% of u, .32 As a test of the fidelity of the filter in 
distinguishing between turbulent and organized unsteady 
motions, its performance was considered first in a station- 
ary flat-plate boundary layer. 

A. Time series of u in a stationary turbulent flow 

The coherent turbulent motions of the boundary layer 
are spatiotemporally complex, and are short-lived in their 
most organized states (“sudden oscillation, bursting, and 
ejection” accounting for 80% of the turbulence production 
in 20% of the boundary layer33). Consequently, they re- 
veal little of their organization in an energy spectra of 
stationary time series of data measured at a single point. A 
turbulence filter decomposition should identify almost the 
entire data series as turbulent. In this test application, a 
time series of 16 384 data was considered, of duration ap- 
proximately 500 large-eddy time scales, sampled at about 
twice the estimated Kolmogorov frequency. The frequency 
extremes of the energy spectrum therefore correspond to 
small-scale turbulence and aliased large-scale turbulent 
motion. The energy spectrum S,,(f ) was estimated and 
discretized into 50 adjacent frequency bands following the 
procedure of Sec. IV. The energy spectrum of a first-order 
autoregressive process was fitted through the highest and 
lowest frequencies of the discretized spectrum to serve as 
Su;,,u;t(f ), shown in Fig. 3, together with S,,(f ). After 
applying the constraints and discretization of Sec. IV, the 
minimization of the cross-correlation of u’(t) and u(t) 

FIG. 3. Measured energy spectral densities of u(t) and estimated energy 
spectral densities of F(t) and u’(t) in a steady flat-plate boundary layer 
(Ree=3200, yf=4CHJ), according to the turbulence filter 
decomposition;-, the spectrum of u(t);---, the initial estimate of the 
21’ (t) spectrum;. . . , the decomposed u’(t) spectrum;-- -, the decom- 
posed u”(r) spectrum. 

was carried out in 50 space. For this data set, the optimal 
filter yielded a cross-correlation coefficient between &St and 
z& of the order of 10e9. 

The energy spectra of the decomposed data series are 
also included in Fig. 3. The minimization converges to- 
ward a( f ) = 1 over most of the spectrum, identifying the 
flow as one with little apparent organization, from the per- 
spective of a single-point time series. Statistics of the fil- 
tered turbulence field were almost indistinguishable from 
those of the measured data series. Of particular interest 
were the peaks in 5’zatzst, some of which were attributed to 
(organized) vibration of the LDV measurement system 
relative to the water tunnel, and had previously passed 
undetected. The proportion of energy contained in motions 
estimated to be organized was approximately 2% of the 
total; this percentage may be taken as the order of uncer- 
tainty that arises through discretization of the spectrum, 
numerical rounding errors, and enforcement of constraints, 
which prevent convergence to the degenerate solution: 
a,( f ) = 1; u(t) =u’ (t). That a cross-correlation coeffi- 
cient of 10m9 can be reached with (9( f )#l is consistent 
with the results of other statistical tests, which indicated 
that this data set did not completely satisfy the require- 
ments of strict stationarity, which are almost impossible to 
attain in laboratory experiments. An accuracy of about 2% 
in energy for an estimation technique of this kind instills 
confidence in the method and its application. 

B. Time series of u in forced unsteady turbulent flow 

A more interesting decomposition problem is that of 
boundary-layer turbulence subjected to forced sinusoidal 
oscillation of the free stream about its mean. In the case 
studied, the forcing period was about eight large-eddy time 

1780 Phys. Fluids, Vol. 6, No. 5, May 1994 G. J. Brereton and A. Kodal 



10-a 

10-a 

lo-‘ 

4 

lo-’ I 
‘b’\ 

’ r\ 
Y  

10-e ‘.,A 
\ 

lo-’ 
10-Z 10-l 100 IO’ 10’ 

f w 

FIG. 4. Measured energy spectra of u(t) and estimated energy spectra 
F(t) and u’(t) in a flat-plate boundary layer undergoing forced sinusoidal 
free-stream oscillation, according to the turbulence tilter 
decomposition;-, the spectrum of u(t);---, initial estimate of the u’(t) 
spectrum; * . * , the decomposed u’(t) spectrum;- --, the decomposed 
U”((t) spectrum. 

scales of the parent boundary layer-too rapid to allow a 
quasisteady response, yet too slow to “freeze” the turbu- 
lence at its mean value everywhere except near the 
wa1134-and so a nonstationary turbulence field was antic- 
ipated in response to the continually changing shear field. 
Experimental details are described by Brereton et al.“’ Es- 
timates of S&f ), S;=,;;,,(f ), and SUktUkt(f ) obtained 
with the stationary-flow minimization approach of Sec. 
IV A are shown in Fig. 4. The cross-correlation coefficient 
between i& and U’ 

“d 
achieved in this minimization was also 

of the order of IO- . Of particular interest were the energy 
contents of the organized and turbulent components close 
to the forcing frequency, which may be thought of as or- 
ganized and somewhat random in phase, respectively. The 
constraints on the smoothness of the turbulence spectrum 
guide the minimization toward a very realistic decomposi- 
tion, compared to phase-averaged decomposit ions in simi- 
lar flows, shown in Figs. 1  and 2. 

Turbulence filter decomposit ions localized around in- 
dividual points in a data series have also been carried out 
using an instantaneous power spectrum (IPS) estimation 
technique, with a Gaussian window chosen to attenuate 
information distant from the location of interest. A typical 
cycle decomposed with a window centered around at 
= 180” is shown in Fig. 5, together with a phase-averaged 
estimate of the organized motion. The contamination of 
the phase average with information from other cycles, 
which do not identically reproduce the organized compo- 
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FIG. 5. A cycle of data from the time series used for Fig. 4, together with 
the organized motion deduced: (i) by turbulence filter decomposit ion 
localized by an instantaneous power spectrum and a Gaussian window 
tapering to 1% two cycles away (in the upper plot); and (ii) by phase 
averaging (in the lower plot). The scaling of the ordinate is chosen for 
convenience. 

nent of motion accounts for discrepancies. Localized time 
series decomposit ions have obvious advantages in flows 
with cycle-to-cycle variation in organized motion.” They 
can also allow realistic estimates to be made of temporal 
turbulence behavior such as integral scales of time, which 
are rarely possible with phase-averaged decomposit ions. 
Since the turbulence filter decomposit ion relies only on 
average descriptions of the turbulence energy spectrum to 
establish estimates of organized and turbulent motion, no 
specification of a  period of organized unsteadiness is nec- 
essary. The decomposit ion is then an attractive one for 
complex shear flows of a distinct spectral signature, with 
organized motion that cannot be specified. In such cases, 
the turbulent motion identified by a turbulence filter de- 
composit ion may serve as a definition for complex shear- 
flow turbulence, in the absence of more precise information 
on organized motion. 

While time series of streamwise velocity provide good 
test cases against which to qualify the turbulence filter de- 
composition, this perspective reveals little about the natu- 
ral organization of turbulent motions. In the following sec- 
tion, space series of data, which reveal such motions 
clearly, are decomposed by the turbulence filter. 

VI. APPLlCATlONS TO TWO-DIMENSIONAL DATA- 
SPACE SERIES 

Characterization of turbulence in a space series of mul- 
tiple components of velocity may be carried out using two- 
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FIG. 8. Measured energy spectral density of u(x$) from the data SC 
of Fig. 6, after subtraction of the spatial mean. 
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FIG. 6. Vector plot of the u(x$) and u(xg) components of the velocity 
field, after subtraction of their means, in a plane through the axis of a 
round jet (Rea=6100), measured by particle image velocimetry. The 
mean velocity is 8 m/s in the x direction. 

or three-dimensional turbulence filter functions: @  (f, ,x) , 
where f, are the spatial frequencies in the direction of the 
spatial position vector x. The data we consider were ob- 
tained from planar PIV images of the velocity field in a 
premixed flame of 4% propane in air, issuing as a round jet 
from a pipe at ReD=6100, seeded with TiOZ particles. The 
measurement technique entailed double pulsing a 532 nm 
beam from a Nd:YAG laser, with 20-40 ~LS pulse separa- 
tion and a 20 ns individual pulse duration, to produce a 
laser sheet of 15 m m  width and 300 pm thickness.35 The 
images were interrogated following the procedure of 
Adrian36 to produce planar vector fields of the kind shown 
in Fig. 6-a 32X32 section from the center of a 128X 128 
region positioned, as shown in Fig. 7. This figure shows the 
momentary values of velocity vectors throughout the field, 
after removal of their mean; they are essentially small vari- 

ations about an almost uniform flow. The axis of the jet 
was along the center of the interrogation region, which 
spanned 90% of the pipe diameter and extended 1.4 diam 
along the axis in a region that comprised predominantly 
unburnt gas. Since the coherent motions of jets are known 
to persist for many diameters and can be captured almost 
in their entirety by PIV images of the lateral scale of the 
flow, a turbulence filter would be expected to isolate them 
as organized motion. Moreover, within a diameter or so of 
the pipe exit plane, there is little opportunity for complex 
interaction with other large-scale motions, and so one 
might expect large-scale motions to be highly coherent. 

Prior to computing the minimization problem, an ini- 
tial estimate of the instantaneous background turbulence 
field was made from the two-dimensional component en- 
ergy spectra: S,,( f x ,j>) and S,,( f x, f,,) , shown in Figs. 8 
and 9. Smooth two-dimensional von Karm6n models of the 
estimated turbulence spectra were fitted through high- and 
intermediate-frequency spectral densities in each of 
S,,(f,,f,,> andS,,(f,,f,,) togeneratetheinitialcondition 
on S,I,I(~,,~,) and S,r,t(f,,f,> for the minimization 
problem. The models were fitted over these regions of the 
frequency domain because of the smoothness of 
S,~,t(f,,f,,) and S,l,t(f,,f,,) there, and the more com- 
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FIG. 7. Location of the interrogation region with respect to the exit plane FIG. 9. Measured energy spectral density of v(xy) from the data series 
of the jet. of Fig. 6, after subtraction of the spatial mean. 
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FIG. 10. Vector plot of the %.T,JJ) and ~$x,JJ) components of the orga- 
nized velocity field, estimated by turbulence filter decomposition. 

plex topology (indicative of organized motion) at low fre- 
quencies. Orthogonality between each background turbu- 
lence and organized field was sought through iteration on 
+(cf,,f,) to minimize the zero displacement cross- 
correlation coefficient sum: I %i,,pgt I + I q.g& I 
+ I ~&&,I + I q&, I over the domain. Estimates of the 
decomposed organized and background turbulence fields 
from this single realization are shown in Figs. 9 and 10 for 
the central 32 X 32 region of a 64 x 64 field. These estimates 
scarcely changed during systematic variation about the ini- 
tial conditions on S,t,t(f,,f,,) and Sutut(fx,fy), indicat- 
ing a strong local minimum in the cross-correlation sum. 

Since the natural coherent motions of the jet are more 
broadband in character than forced motions in the time 
series of Sec. V, the estimation uncertainty is greater and 
the orthogonality between estimates of the organized and 
background-turbulent fields weaker, reaching a con- 
strained minimum with all cross-correlation coefficients 
less than 2%. The organized field is shown in Fig. 10 [after 
subtraction of the spatial mean flow) and displays numer- 
ous features associated with coherent motions and orga- 
nized inhomogeneous flow. Among these are the gentle 
curvature of the momentary pipe exit profile at the extreme 
left of the domain, the large-scale clockwise sweeping mo- 
tion, and the saddle point toward the lower left corner of 
the domain (see Cantwell’ for a discussion of the signifi- 
cance of this feature). Decompositions of other realizations 
of the same flow revealed information that was character- 
ized by visually similar features and was statistically equiv- 
alent. With the exception of edge effects, these decomposed 
fields showed minimal sensitivity to doubling ( 128 X 128) 
or halving (32~ 32) the size of the interrogation region 
and so a localized filter was not considered necessary for 
these data. 

The companion background turbulence field is shown 
in Fig. 11. At first sight, it has the appearance of vector 
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FIG. 11. Vector plot of the u’(x,v) and u’(x,v) components of the tur- 
bulent velocity field, estimated by turbulence filter decomposition. 

fields from full simulations of stationary turbulent flow 
(i.e., Fig. 9 in the homogeneous shear-flow simulation of 
Rogers and Moin37). That it appears turbulent and not 
random or noisy may be demonstrated by computing the 
cross-correlation of U’ and v’ within the regions of the 
strongest organized shear strain f(&i,,@+&7&) at the 
moment of interrogation. A graph of this variation is 
shown in Fig. 12, in which the increasingly negative cor- 
relation in regions of increasingly organized shear is con- 
sistent with knowledge of well-understood stationary flows, 
when turbulence is deduced from a Reynolds decomposi- 
tion. In the filter decomposition, contamination of the tur- 
bulence field with local organized motion might be ex- 
pected to upset this trend, though it is not evident in these 
data. 

A rough check on the fidelity of the decomposition was 
possible through knowledge of isotropic relations of turbu- 
lence scales as functions of the local turbulent Reynolds 
number.28 By calculating the integral scale I of the decom- 
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FIG. 12. Dimensionless Reynolds stress-u’u’ as a function of the relative 
size of the organized shear strain. Averages are conditioned on the local 
organized shear exceeding the abscissa value. 
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posed turbulence field (taken as the average of the four 
almost equal integral scales of velocity) and the turbulence 
intensity u’, the turbulent Reynolds number Rel was esti- 
mated. The isotropic turbulence relation: 

- 
A. 15 

c - - Re; I (19) 

then leads to an estimate of the Taylor microscale ;1. The 
reciprocal time scale z//I should be approximately equal 
to the RMS rate of strain of the turbulence field. Using the 
decomposed turbulence field of Fig. 11, the RMS rates of 

turbulent extensional strain: A,/= and 

F (au /a~) took values of -2140 s-l, which differed 
from the reciprocal turbulent time scale (z//A -2360 s-l) 
by only about 10%. The comparability of these estimates is 
thought to be as good as the validity of the isotropic rela- 
tions used to form them, which are believed to scale in 
proportion to a constant of order unity. This result is note- 
worthy because ad hoc techniques for interrogating the 
turbulent structure of PIV fields, such as Gaussian spatial 
filtering with arbitrarily determined widths, might well re- 
cover organized velocity fields similar to those in Fig. 10. 
However, they are known to yield artificial integral scales 
dependent on filter width, and are unlikely to simulta- 
neously recover background turbulence fields with statis- 
tics comparable to those of Fig. 1 l.35 

The streamwise velocity derivative (before decomposi- 
tion) had a negative skewness, defined as 

- (du’/dx)3 
s= 

[ (wf3x)2]3’2’ 
(20) 

which took a value of 0.5, consistent with many other de- 
veloped turbulent flows over a wide range of turbulent 
Reynolds numbers.38 When the velocity derivative skew- 
ness of the decomposed organized and background- 
turbulence components were averaged in regions that did 
not suffer from edge effects, negative skewnesses (S-0.5) 
were also found. Since negative skewness is associated with 
the production of mean-square vorticity through vortex 
stretching,39 this result implied that production of mean- 
square vorticity was significant in both organized and 
background-turbulent motions of the jet. The most orderly 
momentary correlation found between the momentary co- 
herent field and structural features of the background tur- 
bulence field was a gentle trend toward more negative 
skewness in the velocity derivative of the streamwise back- 
ground turbulence, in regions in which the coherent veloc- 
ity vector was more normally aligned to the jet axis. This 
variation of - (&&/&) 3/[ (&&,/&) 2]3’2 with 
I ;rl/ ji?+ii’ is shown in Fig. 13. The weak dependence of 

S on the alignment of the momentary coherent velocity 
vector is synonymous with the excellent collapse of this 
parameter with turbulent Reynolds number, regardless of 
whether it is in duct flows, atmospheric flows, or isotropic 
or homogeneous flo~s,~* all of which feature very different 
coherent motions. 
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FIG. 13. Velocity derivative skewness as a function of the relative mag- 
nitude of the organized velocity vector, normal to the jet axis. Averages 
are conditioned on the local organized velocity vector exceeding the ab- 
scissa value. 

These findings are significant insofar as they illustrate 
that the turbulence filter decomposition is one that distin- 
guishes between organized and background turbulent mo- 
tions in a physically appealing way. They also allow the 
momentary coupling between organized and more random 
motion to be examined for the purposes of characterizing 
turbulence. Temporal sequences of such realizations allow 
study of the evolution of component field interactions, 
which would then offer an experimental means of examin- 
ing how realistically structural models of background tur- 
bulence might be related to large-scale coherent motions. 

VII. DISCUSSION AND CONCLUDING REMARKS 

A turbulence filter has been demonstrated for first- 
order estimations of organized fluid motion, as revealed by 
the energy spectra of data series from turbulent shear 
flows. As a decomposition procedure, it has the physical 
appeal of describing turbulence as the sum of its more 
organized and its background motions, allowing examina- 
tion of these individual decomposed fields and their cou- 
pling. 

The effectiveness of any technique for identifying or- 
ganized motion depends on the information available. 
While single-point time series can reveal little but bulk 
organized unsteadiness, space series of turbulent data yield 
realistic decompositions of both organized and turbulent 
motion, whose coupling and statistics appear to be quite 
plausible. While these decompositions have achieved rea- 
sonable results with the simpler real filter, a fully complex 
implementation offers potentially greater accuracy, at the 
cost of providing information on the cross-spectrum of or- 
ganized and background-turbulent components. Tuning of 
this kind would require knowledge of specific organized 
motions, in particular turbulent flows, though it might of- 
fer significant improvement when there is broadband over- 
lapping of organized and turbulent energy spectra. A com- 
plex filter could also be more effective in identifying 
particular kinds of organization for which it might be 
tuned, in single-point time series. Other restrictions on fil- 
ter performance include nonstationarities that are too 
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severe for time/space-frequency techniques. Each type of 
nonstationary behavior must be treated as an individual 
case, and it remains to be established whether there are 
recognizable subclasses of nonstationarity in turbulent 
flows. It also remains to be demonstrated from first prin- 
ciples that organized motions naturally make the shapes of 
spectra dissimilar to the smoothly varying ones expected 
for background turbulent motions. This challenge may 
amount to finding a formal field decomposition, for each 
component of which the desired spectral properties may be 
demonstrated rigorously from solutions of Navier-Stokes 
equations. 

Extension of the decomposition procedure to three- 
dimensional flows is straightforward, notwithstanding the 
increased dimensionality of the minimization problem. In 
the case of incompressible flow, the orthogonal decom- 
posed fields must also satisfy a continuity equation; a sum- 
mation of I &Y/&il + I LJ’uf/&ciI over the domain may be 
added to the cross-correlation sum to be minimized. The 
decomposition can be applied to scalar fields or fields of 
any other turbulent tensor quantity, provided the energy 
spectrum of the turbulent part of that measure has an iden- 
tifiable shape, which distinguishes it from organized con- 
tributions. For this reason it is particularly well suited to 
the velocity field in well-developed turbulent shear flows 
with organized temporal or spatial complexity. 

The ability of this decomposition to naturally separate 
shear-flow turbulence into organized and more random 
components has some interesting implications for the mod- 
eling of turbulence. Rather than trying to devise models for 
unresolved scales, as in large eddy simulations, it suggests 
modeling of all background turbulent motions through 
their interaction with large-scale coherent motions, shifting 
the modeling emphasis to the interaction between coherent 
and background turbulent motion. These ideas share sim- 
ilarities with those of Townsend4’ on shear-flow turbu- 
lence, as comprising large eddies that respond to the orga- 
nized strain of the mean flow and smaller eddies that are 
strained more randomly and form a roughly isotropic 
background turbulence field. The turbulence filter decom- 
position also shows promise for applications in complex 
flows in which the organized motions are not sufficiently 
predictable to allow other averaging techniques to be used. 
In such cases, this characterization can provide a definition 
of turbulence, as the orthogonal partner to organized mo- 
tion, with an energy spectrum of comparable shape to its 
stationary-flow counterpart. As such, it represents a useful 
new approach to understanding the complexities of turbu- 
lent shear flow. 
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