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A formalism is presented to study interband tunneling which involves a direct, numerical 
solution of the time-dependent Schrodinger equation, employing the tight-binding 
representation for electronic states with an eight-element (sp3> basis. Using this explicitly 
t ime-dependent formalism, one can study the dynamics of interband tunneling in the presence of 
complicated space- and time-dependent electric field profiles encountered in many devices. This 
technique is well suited to study interband tunneling in heterostructures since the tight-binding 
method describes their band structure adequately. In conjunction with deformation potential 
theory, it can be applied to strained systems as well. The technique is applied to the important 
semiconductor system of InXGal+As. 

Zener tunneling is the important phenomenon respon- 
sible for the anomalous current-voltage characteristics of 
Esaki diodes under forward and reverse bias. The negative 
differential resistance exhibited under forward bias is ex- 
ploited in microwave devices, such as oscillators and mix- 
ers. Zener tunneling can be an important limiting factor in 
semiconductor devices for high power applications. In nar- 
row band gap semiconductor alloys, such as In,Gai&s, 
the band gap can range from 1.5 to 0.4 eV as the In content 
increases and interband tunneling can dominate the break- 
down process. 

The theory of Zener tunneling in a uniform electric 
field, as well as its adaptation to the p-n junction geometry, 
has been formulated by several authors (see Refs. 1 and 2 
for reviews). The diode current density J( V) at a dc bias V 
is conventionally calculated from the following formula: 
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The energy E and parallel wave vector kll are con- 
served in direct tunneling. f(E) is the Fermi-Dirac func- 
tion. All formulations of Zener tunneling yield a tunneling 
probability, T(E, kll ), of the general form (Ref. 1, Sec. 
6~): 

T(E,kll >-To exp 

E,, sfi2(k,, -b,, )2/2m*. 

Here, El1 is a measure of the reduction in tunneling 
probability due to parallel momentum. El, is the energy of 
transverse motion and k, is the point of band extrema. The 
probability To for zero parallel momentum is independent 
of energy for the constant field case. It is given by 

To = Do exp [ - co (m* ) 1’2E3G/2/jiF] , (3) 
where Do and co are numerical coefficients of the order of 
unity whose exact value depends on the theoretical formu- 
lation. The constant field F is usually taken to be the max- 
imum value of the field at the junction. EG denotes the 

band gap and m* is related to the effective masses of the 
conduction and valence bands in a two-band model. 

Derivations leading to these formulas”d rely on the 
two-band kg p model of the band extremum, which ac- 
counts only for the coupling between the light-hole valence 
band and the conduction band. They cannot be extended in 
any straightforward manner to take complete account of 
valence band degeneracy.2 They are valid, moreover, only 
for moderate values of the electric field in which the per- 
turbation treatment of interband coupling terms can be 
expected to hold. Another source of error lies in the use of 
uniform field analyses to calculate tunneling current in p-n 
junctions, since the junction field could change appreciably 
over short distances. 

These formulations are also based on the time- 
dependent Schrijdinger equation and are not well suited to 
study the dynamics of the tunneling process. We have de- 
veloped a time-dependent technique to investigate inter- 
band tunneling in the presence of complicated space- and 
time-dependent electric field profiles, devoid of the limita- 
tions of existing models mentioned earlier. If the procedure 
is implemented in the tight-binding representation, inter- 
actions between bands and interband coupling are retained 
accurately in the tight-binding Hamiltonian. This tech- 
nique is appropriate for studying Zener tunneling in het- 
erostructures, since the tight-binding method describes 
their band structure adequately. In conjunction with de- 
formation potential theory, it can be applied to strained 
systems as well. The dependence of the tunneling proba- 
bility on parallel momentum can be investigated accurately 
without the assumption of an isotropic effective mass that 
leads to Eq. (2). 

The basic idea is to construct a wave packet out of 
Bloch functions confined’to a single band and then to study 
its propagation across the band gap. The transmitted and 
reflected components of this wave packet yield the inter- 
band tunneling probabilities. Although the technique is ap- 
plicable to arbitrary electric field profiles, we have chosen 
the uniform field profile shown schematically in Pig. 1 to 
facilitate the comparison with existing theory. We con- 
struct a wave packet out of Bloch states from the conduc- 
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FIG. 1. Deformed band diagram of ap-n junction under uniform electric 
field for interband tunneling calculations. 

tion band localized initially in the field-free region on the n 
side of the junction and constructed so as to propagate 
towards the junction. Thus, the wave packet may be ex- 
pressed as 

$(r,O) = 
s 

dK A(kM,(k,r) (4) 

in terms of the conduction band Bloch states q5,(k,r) of the 
unperturbed crystal. The envelope A(k) has a narrow 
spread in k space around a mean value b. Such a wave 
packet moves in the field-free region with a group velocity 
given by 

1 &(k) 
ug=z --&-- 9 

where e,(k) is the band energy function. 
The tight-binding form of the wave packet is obtained 

by using the bulk tight-binding eigenstates’ for the Bloch 
functions in Eq. (4): 

$(r,O) = s AA(k) c b,,(k) 7 erk.(R~frv) 
Y 

xL;[r- (R~+cJl, (5) 
where: I indexes Bravais lattice sites of the crystal, RI being 
the corresponding lattice translation, Y indexes distinct 
atomic orbitals in the tight-binding basis, r,, being the rel- 
ative position of the corresponding ion within the primitive 
cell, &,(r -r,> are the atomic orbitals, and b,,(k) are the 
expansion coefficients. 

Expressing the time-dependent wave function in the 
form 

$(r,t> = 5 F c,(R~+r,QXr- @+cJl, (6) 

we define “envelope functions” c,( R/t-r&), one for each 
distinct orbital in the basis. 

We have recently established a general numerical pro- 
cedure’-” to study the dynamical evolution of a quantum 
system, which involves successive solution of the equation 

(l+Z&/2fi) I$(t+f%))=(l-iHW2fi) I+(r)), (7) 

where His the Hamiltonian of the system and 1 $(t)) the 
time-dependent state vector. In the tight-binding represen- 
tation, we substitute form 6 for the wave function, so that 
this equation becomes 
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FIG. 2. Transmission and reflection of an electron in an Iq,WGa,,20As 
p-n junction with a uniform junction field of 10’ kV/cm. The transmitted 
part consists of two distinct wave packets arising from the split-off valence 
band and the light-hole band. 

(1 +iH&/2fii) c c c,(R~+r,t+Gt)~Jr- (RI+r,) I 
Y 1 

=( 1 -iH&/2fi) c 2 c,(&+qA5,[+ (Rl+r,) I. Y I 
(8) 

Taking the scalar product in this equation successively 
with distinct orbitals yields simultaneous equations for the 
coefficients at time t+St in terms of their values at t and 
the known tight-binding parameters of the bulk material.” 

As illustrative examples, we have applied the wave 
packet technique to calculate interband tunneling proba- 
bilities over a range of electric field strengths in p-n junc- 
tions of bulk Ino,,3G%,,As and Ino,soG~,20As. Figures 2 
and 3 depict the propagation of an electron wave packet 
across the Ino~80Gao,20As p-n junction, when the junction 
field is lo3 kV/cm. The envelope functions are identilied 
with their orbitals in the legend to the figures, with sub- 
scripts 0 and 1 denoting cation and anion, respectively. 
Spin-orbit coupling has been included in these simula- 
tions.12 The wave packet was constructed with mean wave 
vector k,=O, ky=O, and k,= -0.12 (units A-‘). It prop- 
agates initially in the field-free region at a velocity of 10 
A/fs, which coincides with the group velocity computed 
from the band structure. The transmitted part consists of 
two distinct wave packets which propagate at different ve- 
locities. It was ascertained from the composition and group 
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FIG. 3. Transmission and reflection of an electron in an In,,,,,Gaez,,As 
p-n junction, continued. 

velocities of these wave packets that the faster one arises 
from the split-off band and the slower one from the light- 
mass band. 

Tunneling probabilities are plotted in Fig. 4 against the 
inverse of the electric field strength. The linearity of the 
plots suggests that the functional form 3 is valid over the 
range of field strengths depicted. As noted earlier, this for- 
mula is derived on the basis of a two-band model. Since we 
can explicitly perceive tunneling from the conduction band 
into the light-hole band and into the split-off band, the 
two-band model is not appropriate. We may still fit the 
computed tunneling probabilities to the functional form 3, 
but treat m* in the exponent as the free-electron mass. 

In conclusion, we have established a viable, time- 
dependent technique to investigate interband tunneling in 
semiconductor heterostructures, which is well suited to 
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FIG. 4. Uniform-field interband tunneling probabilities in In,Ga, -As 
p-n junctions plotted as a function of inverse field strength. The solid line 
is for Ines,Gac4,As while the dashed line is for Inc,GassAs. 

study the dynamics of the tunneling process in the presence 
of space- and time-dependent electric field profiles. The 
procedure may be implemented in the tight-binding repre- 
sentation, where interactions between bands and interband 
coupling are fully retained in the tight-binding Hamil- 
tonian. The effect of strain can be incorporated and the 
dependence of tunneling probability on parallel momen- 
tum can be investigated accurately. The feasibility of the 
method was demonstrated by calculating interband tunnel- 
ing probabilities in In,s3 G%& and I%.8@%.2& p-n 
junctions. 

This work was supported by the U. S. Army Research 
O ffice under the URI program (Grant No. DAAL03-92- 
G-0109). 

’ C. B. Duke, in Solid State Physics, edited by F. Seitz, D. Turnbull, and 
H. Ehrenreich (Academic, New York, 1969), Chap. Supp. 10. 

’ P. J. Price, Electron Tunneling in Semiconductors, Research Report RC 
17634 (No. 77579) (IBM Research Division, T. J. Watson Research 
Center, Yorktown Heights, NY, 1992). 

‘C. Zener, Proc. R. Sot. London Ser. A 145, 523 (1934). 
4E. 0. Kane, J. Phys. Chem. Solids 12, 181 ( 1959). 
*E. 0. Kane, J. Appl. Phys. 32, 83 (1961). 
OP. N. Argyres, Phys. Rev. 126, 1386 (1962). 
‘5. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954). 
sV. Sankaran and J. Singh, Appl. Phys. Lett. 58, 1509 (1991). 
9V. Sankaran and J. Singh, Phys. Rev. B 44, 3175 ( 1991). 

“V. Sankaran and I. Singh, Appl. Phys. Lett. 59, 1963 (1991). 
“V. Sankaran, Ph.D. thesis, University of Michigan, Ann Arbor, MI 

481092122 (1992). 
“M. D. Jaffe and J. Singh, Solid State Commun. 62, 339 (1987). 

851 Appl. Phys. Lett., Vol. 62, No. 8, 22 February 1993 V. Sankaran and J. Singh 851 


