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Beyond the Child–Langmuir law: A review of recent results
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Space-charge-limited~SCL! flows in diodes have been an area of active research since the
pioneering work of Child and Langmuir in the early part of the last century. Indeed, the scaling of
current density with the voltage to the 3/2’s power is one of the best-known limits in the fields of
non-neutral plasma physics, accelerator physics, sheath physics, vacuum electronics, and high
power microwaves. In the past five years, there has been renewed interest in the physics and
characteristics of SCL emission in physically realizable configurations. This research has focused on
characterizing the current and current density enhancement possible from two- and
three-dimensional geometries, such as field-emitting arrays. In 1996, computational efforts led to the
development of a scaling law that described the increased current drawn due to two-dimensional
effects. Recently, this scaling has been analytically derived from first principles. In parallel efforts,
computational work has characterized the edge enhancement of the current density, leading to a
better understanding of the physics of explosive emission cathodes. In this paper, the analytic and
computational extensions to the one-dimensional Child–Langmuir law will be reviewed, the
accuracy of SCL emission algorithms will be assessed, and the experimental implications of
multidimensional SCL flows will be discussed. ©2002 American Institute of Physics.
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I. INTRODUCTION

Space-charge-limited~SCL! flows in diodes have bee
an area of active research since the pioneering work of C
and Langmuir1,2 in the early part of the last century. Indee
the scaling of current density with the voltage to the 3/
power is one of the best-known limits in the fields of no
neutral plasma physics, accelerator physics, sheath phy
vacuum electronics, and high power microwaves. Refi
ments to the basic scaling of current density to voltage
gap spacing, such as finite initial velocity,3 relativistic ap-
plied voltage,4 and quantum mechanical effects5 have further
increased the scope of the theory. The physics of SCL flo
and emission appear throughout the literature of plas
physics. These theories, however, focus typically on S
flows in one-dimension only. This paper reviews recent
tempts to extend the description to two dimensions.6–10 We
note that analytic descriptions of two-dimensional~2-D!
beam transport are available11 as are investigations into th
effect of 2-D geometrical cathode surface features,12 but the

a!Paper KI2 2, Bull. Am. Phys. Soc.46, 175 ~2001!.
b!Invited speaker. Present address: SAIC, Albuquerque, NM.
c!Present address: The Naval Postgraduate School, Monterey, CA.
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seemingly simple problem of 2-D planar SCL emission
mains unsolved. We focus on classic SCL emission, wh
the normal component of the electric field is forced to zero
the cathode due to a large reservoir of free electrons at
emitter surface. While other models of emission for whi
this condition is not a requirement do exist, we do not co
sider them explicitly here. Furthermore, this paper conc
trates only on electrostatic, single species behavior. We st
that the relatively simple formulation of electrostatic mul
dimensional SCL flows belies the rich physics present in t
ubiquitous phenomena.

The work presented herein is motivated by two distin
but related goals. First, these models are useful for accura
simulating a wide variety of high voltage devices. Emissi
algorithms are critical to this process, and a wide variety
models have been developed for this work13,14 and imple-
mented in multidimensional codes. To assess how well s
algorithms work, a theoretical prediction of SCL behavior
needed.14 The second goal focuses on the practical design
experimental cathodes in vacuum electronics, high po
microwave devices, and spacecraft thrusters. The large
rents~from tens of amperes to tens of kiloamperes! and cur-
rent densities~up to 1 kA/cm2! place harsh requirements o
1 © 2002 American Institute of Physics
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the cathode design and material present in high voltage
vices. Advanced cathode designs are proving crucial to l
iting damage and plasma formation15 as well as providing
high brightness, uniform beams16 for the next generations o
rf devices, accelerators, and spacecraft thrusters.

The classical, one-dimensional, nonrelativistic theory
SCL emission starts by combining energy conservation w
both continuity and Poisson’s equation in one dimension
give the following equation in MKS units:

d2f

dy2 5
J

«0

1

A2e

m
f~y!

~1!

with boundary conditions that the voltage dropV exists be-
tween the cathode (y50) and the anode (y5d) and the
electric field on the cathodeE(y50) is zero. This last con-
dition assumes that the SCL current density is reached w
the self-electric fields of the electrons shield out the app
voltage. The quantitiesf(y) and J are the electrostatic po
tential and the current density, respectively. Furthermore,
quantities2e andm are the electron charge and mass wh
e0 is the free space permitivity. Equation~1! yields the fa-
miliar Child–Langmuir result

J5JCL5
4

9
«0A2e

m

V3/2

d2 ~2!

showing the strong bond between current density and
boundary data. Equation~1! has no solution for a curren
density greater than that specified by Eq.~2!. Since the prob-
lem explicitly assumes no time dependence, the Chi
Langmuir current can be regarded as the largest current
can be emitted without time-dependent behavior manifes
itself. Now consider the following two-dimensional proble
where we have parallel plate geometry with gap separatiod,
but only a strip of widthw emits on a cathode of lengthL
~see Fig. 1!. The description of this problem can be form
lated in a similar manner by combining energy conservati
continuity, and the Poisson equation with an assumption
the electron motion is restricted in they direction by an in-
finite magnetic field.7 This last assumption simplifies th
mathematics so that the following system of equations can
written down:

FIG. 1. Configuration of the finite-width beam in parallel-plate geome
Note that the problems coordinate system corresponds to the boundary
ditions listed in Eq.~4!.
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¹2f~x,y!50; uxu.w/2,
~3!

¹2f~x,y!5
1

«0

J~x!

A2e

m
f~x,y!

, uxu<w/2

with boundary conditions that the voltage dropV exists be-
tween cathode and anode and the cathode surface ele
field due to the space charge at the limiting current is ze
Finally, we close Eq.~3! with the assumption that the electr
field on the transverse boundaries is the vacuum field.
other option for these boundaries is a Neumann bound
condition, although this does not significantly modify th
solution if the transverse boundaries are spatially remo
from the beam region. These boundaries conditions are g
mathematically by

f~x,y!50, y50, uxu,L/2, ~4a!

f~x,y!5V, y5d, uxu,L/2, ~4b!

]f~x,y!

]y
50, y50; uxu,w/2, ~4c!

f~x,y!5VS y

dD , uxu5L/2. ~4d!

So, the two-dimensional problem under consideration is
electrostatic, elliptical, steady state problem with para
plate geometry and motion restricted to one dimension b
strong magnetic field. This isolates the fundamental, sin
species, SCL emission value without geometrica12

electromagnetic,17 or transient effects.10

The rest of the paper is organized as follows. Section
looks at the solution of Eqs.~3! and~4! under the assumption
of spatially constant current density. Section III relaxes t
assumption, and thereby describes the mechanism for
ducing large current density enhancements near the edg
the emitter. Section IV assesses the experimental impac
these high current density regions, especially on the stan
description of explosive emission, and Sec. V offers conc
sions and avenues for future research.

II. SPATIALLY CONSTANT CURRENT DENSITY STRIP

We start our study of Eqs.~3! and ~4! by assuming that
the current density in Eq.~3! is constant@i.e., J(x)5J0#.
Recent particle-in-cell~PIC! calculations6 have shown that
the true limiting current for this case can exceed the o
dimensional limiting current by a significant degree. The
calculations used an emission method called ‘‘ov
injection.’’ A current density, that is constant over the ent
strip w, is emitted into the diode. This current densityJ is
progressively increased until a virtual cathode is observed
other words, the calculations are repeated until the grea
current is found that allows the beam to propagate with
reflected particles. This current is then interpreted as the
iting current as it satisfies the original expectations of Ch
and Langmuir, namely the largest current with lamin
steady-state flow. We should stress that this case does
solve the full set of 2-D boundary conditions as no attemp

.
on-
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made to satisfy Eq.~4c! everywhere along the emitting strip
However, this case does have relevance to various phy
emission mechanisms, such as thermionic and photoe
sion, where the maximum emitted current density is speci
by conditions other than the applied voltage~i.e., when not
running completely space charge limited!.

The enhancement in constant current density that ca
injected over a finite strip on the cathode without virtu
cathode formation can be synthesized from the PIC dat
the following empirical scaling law:6

JCL~2-D!

JCL~1-D!
511

0.3145

w/d
1

0.0004

~w/d!2 ~5!

for w/d as small as 0.1. Equation~5! clearly recovers the
Child–Langmuir result in the one-dimensional limit asw/d
goes to infinity. Lau recently derived a similar result fro
first principles for the case ofw/d on the order of one or
greater where the last term in Eq.~5! is negligible.9 For a
planar strip, he foundJCL(2-D)/JCL(1-D)511(d/wp).
The agreement with Eq.~5! is excellent. Furthermore, h
extended the theory to describe other geometries, the m
important being a circular patch of radiusR. In this case, the
scaling becomesJCL(2-D)/JCL(1-D)511(d/4R). PIC cal-
culations similar to Ref. 6 verified this scaling forR/d on the
order of one and greater. Equation~5! and the analytic results
presented herein given valuable rules of thumb for the on
of virtual cathode formation in two-dimensional flows.

III. SPATIALLY NONUNIFORM
CURRENT DENSITY STRIP

The issue with these approaches is that they do not a
the current density to be nonuniform. As noted previous
this has the consequence that, unlike the one-dimensi
equivalent, the constant current density problem does
require the cathode electric field to be zero everywhere
the emitting surface.7 This is clearly at odds with our intu

FIG. 2. Cathode electric field for different uniform current density profil
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ition for space-charge-limited flow. Consider the elect
field on the cathode when solving the constant current d
sity case as shown in Fig. 2. The electric field is reduced
the center of the flow in keeping with the space-charge ef
being maximized at this location. We note that when virtu
cathodes form for this case, the initial reflection also occ
at the center of the beam while the edge flow continues to
anode without reflection.6 Experimental evidence of this i
also seen in photoemission experiments when the laser in
sity is sufficient to provide over-injection at the center of t
beam while the edges of the beam continue to fl
unreflected.10

These issues motivate the solution to Eqs.~3! and ~4!
with the full spatial nonuniformity in the emitted curren
densityJ(x) retained.7 Equations~3! and~4!, however, have
a number of mathematical and numerical difficulties. T
most obvious impediment to analytic progress is the non
earity in Eq.~3!. A less obvious difficulty is the current den
sity is not specified. As in the one-dimensional case sol
by Child and Langmuir, the current density must be stron
associated with the boundary data on the cathode in the b
region. While an analytic solution for a spatially nonunifor
current density strip remains to be found, a numerical te
nique has been developed that simultaneously determine
current density and the electrostatic potential consistent w
the boundary conditions. This numerical method is descri
here.

The solution technique is made of two separate iterat
loops.7 In the first part, we solve for the electrostatic pote
tial consistent with a specified current densityJ(x). In this
iteration, we only apply the Dirichlet boundary conditio
~i.e., the voltage! on the cathode in the beam region. We u
a standard numerical technique by discretizing the comp
tional domain with a rectangular grid. The grid spacing ne
not be the same in the longitudinal direction as the tra
verse. Poisson’s equation is then solved iteratively in fin
difference form on a typical five-point stencil.

The second part of the technique occurs after the s
tion to the electrostatic potential is obtained. In this loop,
numerically implement the second cathode boundary co
tion where the normal electric field in the beam region
forced to zero. We force the Neumann condition by solvi
iteratively for a current densityJ(x) that drives the surface
field to zero. We do this on a cell-by-cell basis where we u
the cathode surface electric field information to derive a c
rent density that will drive the cell in question to zero. Th
algorithm for this is similar to using the one-dimension
solution to Eq.~1! to find the surface electric field for a give
J,18 and using a secant method to extrapolate to the cur
density that drives the field to zero.

Numerically, the procedure starts with a uniform curre
density with the Child–Langmuir value as an initial gues
We then solve the restricted Poisson problem where we
tain the potential for the givenJ(x) where we only apply the
Dirichlet boundary condition for the cathode in the bea
region. This can be thought of as the inner iteration. We th
perform an outer iteration to modifyJ(x) to drive the surface
electric field to zero in the cathode beam region. Hence,
Neumann boundary condition is satisfied in an evolution

.
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FIG. 3. Evolution of the cathode electric field and current density profile through iterative numerical solution to the 2-D SCL emission proble
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sense, where successive results from the inner calculatio
used to build the current density profile that drives the n
mal electric field to zero due to the presence of the be
The reader is referred to Ref. 7 for the full details of t
method.

The evolution of the cathode electric field and the c
rent density profile builds an interesting picture, shown
Fig. 3. The current density, assumed to be uniform initia
grows pronounced peaks or ‘‘wings’’ on either side while t
electric field, which is initially nonuniform and nonzero
quickly evolves to a small value along the entire catho
surface. The convergence criterion used for the numer
scheme is that the surface electric field is less than 5% of
vacuum value (V/d) everywhere in the cathode beam regio
Stricter tolerances do not significantly change the curr
density amplitudes or profiles.7,18

IV. RESULTS

In Fig. 3, the current density profile for the converg
solution has a universal shape when we normalize the cur
density by the Child–Langmuir value and we normalize
position by the gap separationd.7,8 Qualitatively similar
wing structures have been observed experimentally in
Naval Research Laboratory’s Electra diode.19 In general,
when the beam width to gap ratiow/d is on the order of one
are
r-
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.
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or greater, we see a wing structure on either end while
intervening regions have approximately the same value
the one-dimensional solution. Whenw/d is less than one,
however, the peak current density in the wing increases
does the value of the current density between the wing7,8

We interpret this phenomenon as follows: the intense sp
charge in the wing structure compensates for the absenc
charge beyond the emitter edge. In essence, the wing ca
thought of as mimicking the space charge necessary to s
late the one-dimensional condition. When we go to sm
w/d, however, there is simply not enough space charge
the wing to force the surface electric field to zero. Thus,
current density over the entire strip must increase.

Despite this highly peaked structure in thecurrent den-
sity, the totalcurrent for all these calculations compares we
with the scaling presented in Eq.~5! for w/d on the order of
one.7 This is due to the fact that current carried in the wi
structure is negligible compared to the current carried in
bulk of the beam. The 2-D peak current density, howev
can exceed the Child–Langmuir current density by ove
factor of 3.7,8 This feature can cause considerable proble
in experiments as the amount of damage increases due t
enhancedJ. Furthermore, the peak current density sho
greater variation and does not appear to be a simple func
of w and d. Indeed, the numerical methods~which show
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weakly divergent results for very small emitting strips!, in
addition to the analytic results presented earlier, all br
down for smallw/d ~!1!, and this remains an area of activ
research.9 It is critical to establish the asymptotic limits asw
goes to zero, especially when one considers the sharp fi
emitting tips and velvet tufts currently in use in many ca
odes today.

We stress that unlike the planar structures that we h
discussed to this point, multidimensional effects in arrays
small w/d emitters, with highly peaked wing structures, c
significantly affect the total current drawn. To illustrate ho
these increased current density wings might affect total c
rent, we suppress emission from some portion of the cath
in two different fashions and monitor changes in the to
current.8 In the first method, we divide a baseline four-cm
wide emission region into 40 separate, equal-length su
gions. As we systematically decrease the portion of each
region that is allowed to emit, little effect is seen on the to
current emitted until nearly all of the cathode emission a
has been turned off. Almost 80% of the full emission ar
current can be supplied by a mere 20% of the emitting ca
ode area due to the ability of the enhanced current den
wings to compensate for the paucity of emission area.8 In the
second method, this effect was further examined by s
pressing emission from only a central portion of the catho
The nonemitting portion was gradually increased in size
the total current was monitored. The two sets of win
present at the edges of the nonemitting portion cannot c
pensate for the nonemitting area nearly as well as the 40
of wings available in the discrete patches case. Such an
fect has direct relevance to understanding space-cha
limited emission from explosive emission cathodes, plas
cathodes, ferroelectric cathodes, photocathodes, and
thermionic cathodes ~if operating well above the
temperature-limited regime!. Many small portions of the
emission surface may be completely inactive before a sig
cant change is detected in observed total current. If the emis-
sion is being provided by numerous microsites, many s
sites could be turning off and on multiple times during t
life of a given cathode with little or no effect on the observ
total current.8

One goal of this research was the development of a
problem for emission algorithms implemented in other so
ware. Because our numerical routine solves the 2-D S
emission problem in a robust and well-understood man
we used these solutions as benchmarks for evaluation of
particle-in-cell and gun code emission algorithms. The agr
ment with PIC time domain dual cell emission algorithms14

and steady state, ray tracing, finite element emission20 is ex-
cellent if the wing structure is sufficiently resolved by th
grid in question. Therefore, we can relax our planar geo
etry assumption and study the effects of multidimensio
emission in physically relevant structures using the 2-D c
TRAK.8,20 One important point that comes out of this analy
is that small Pierce focusing electrodes, on the order
1/100th of the gap spacing, can greatly reduce the w
structure by compensating for the ‘‘missing’’ space charge
the beam edge. This occurs by reducing the vacuum ele
field at the cathode edge relative to the vacuum electric fi
k
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at the central portion of the cathode,8 thereby reducing the
local emitted current density. This addresses our pract
goal of advanced cathode design as these mini-Pierce s
tures can greatly reduce nonuniformity in current dens
profile for SCL flows, minimizing damage and plasma fo
mation while easing the task of matching into beam opt
for advanced high voltage devices and applications.

V. CONCLUSION

Multidimensional space-charge-limited emission is im
portant in many areas of plasma physics. Recently, m
theoretical and computational effort has been spent on
tending the well-known one-dimensional Child–Langmu
law to higher dimensions. From simple scaling laws throu
numerical solutions to the governing equations, multidime
sional emission is becoming better characterized. Severa
teresting features emerge from this analysis. First, mult
mensional effects can enhance both the global current
the local current density over traditional Child–Langmu
flows. The dominant physical quantity driving this enhanc
ment can be shown to be the local vacuum electric field. D
to the importance of the vacuum electric field, Pierce-li
cathode structures, even on the order of 1/100th of the
spacing, can significantly repress these multidimensional
fects. Furthermore, because of these enhancements, si
cant portions of the total current can be drawn with only
fraction of the cathode emitting. This results in a situati
where the experimental area needed to infer the current
sity from the measured current for a given cathode is vir
ally unknown unless direct measurement ofJ is possible.
Finally, despite the advances detailed in this paper, the a
lytic solution to the multidimensional problem is still ou
standing. This especially impacts our understanding of sm
w/d emitting structures. Clearly, the asymptotic behavior
w/d becomes small is of critical importance since real ca
odes are dominated by extremely small cathode featu
~e.g., field-emitting tips!.
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