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Energy dissipation in a shear layer with suction
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The rate of viscous energy dissipation in a shear layer of incompressible Newtonian fluid with
injection and suction is studied by means of exact solutions, nonlinear and linearized stability
theory, and rigorous upper bounds. The injection and suction rates are maintained constant and
equal and this leads to solutions with constant throughput. For strong enough suction, expressed in
terms of the entry angle between the injection velocity and the boundaries, a steady laminar flow is
nonlinearly stable for all Reynolds numbers. For a narrow range of small but nonzero angles, the
laminar flow is linearly unstable at high Reynolds numbers. The upper bound on the energy
dissipation rate—valid even for turbulent solutions of the Navier—Stokes equations—scales with
viscosity in the same way as the laminar dissipation in the vanishing viscosity limit. For both the
laminar and turbulent flows, the energy dissipation rate becomes independent of the viscosity for
high Reynolds numbers. Hence the laminar energy dissipation rate and the largest possible turbulent
energy dissipation rate for flows in this geometry differ by only a prefactor that depends only on the
angle of entry. ©2000 American Institute of Physids$$1070-663(00)02108-5

I. INTRODUCTION Naturally, there has been a considerable experimental effort
aimed at testing the validity of such general conclusions but,
Fluid problems involving sources and sinks appear inin such experiments, the influence of walls is sometimes per-
many disciplines and applications ranging from biological tovasive.
physical. By way of illustration we mention two well-studied For many cases of turbulent shear flows between very
physical examples. Suction is used as a device to reduce dragooth walls, the empirical friction latf (a.k.a. the law of
on an air foit because it is believed that suction delaysthe wal) implies that the turbulent dissipation at large
boundary layer separation and so reduces drag. The secoRenyolds numbers is like R&logReY.>® On the other
example is accretion flow in astrophysiés which matter in hand, when the walls are rough, the results are different as is
disks is sucked into black holes or onto other condenseghown, for example, by some recent experiments on Couette
objects, including stars in formation. This flow becomes tur-flow’ with textured walls. In the latter experiments, at least,
bulent and the resulting dissipation is important in determinit appears that breaking up the boundary layer changes its
ing the luminosities of the disks. Though in this work we role in determining the total dissipation and leads to a Kol-
shall be studying an example that is far from being astromogorov type of scaling with finite, viscosity independent
physically realistic, there is an aspect of the astrophysicafotal dissipation.
models that relates to an interesting theoretical problem of ~While it is rather difficult to model the effects of rough-
turbulence. ness of the walls in a theoretical study, especially one that is
In Kolmogorov’s theory of homogenous isotropic turbu- analytic in large part, there is another way to modify the
lence, it is assumed that as the viscosity tends to zero, tHeontribution of the boundary layer to the total dissipation.
dissipation rate becomes independent of viscosity. In otheYVe may take a lesson from the drag reduction method and
words, when measured in units of the typical velocity andSuck the boundary layer out to let the main body of the fluid
length scales in the systems, the dissipatjoer unit mass ~ @ssert itself more strongly. Accordingly, in this paper, we
goes like R& where Re is a Reynolds number such as theStudy the fluid dynamics of a simple flow with suction and
one to be defined in the next section. In the same way, mod;ompute its rate of dissipation. Indeed, we study this flow in
eling of astrophysical disks leads to estimates on the dissipa/@rous ways.

tion rate that is likewise independent of molecular viscosity. ~ e use the energy stability r_netr?odhich,_ as we shall
explain, leads us into considerations of obtaining bounds on

_— _ , _ _ _ the dissipation rates in the flow considered. Thus, even
'llj'irr\tlidzz;per is dedicated to Robert Kraichnan on the occasion of his 72n?hough some of the quantities of interest in flows with suc-

aAuthor to whom correspondence should be addressed; electronic maifion cannot be computed In detail when the flows are turbu-
doering@math.Isa.umich.edu lent, we may hope to obtain bounds on them by exact math-
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ematical analysis and these will be valid for turbulent flows

as well as for any laminar ones, steady or unsteady. 1 e oo

The procedures for bounding such quantities as turbulent u=it"-jv’ SO
dissipation have developed considerably in recent years with — ST 19
much of the work in this subject proceeding along one of two
similar looking approaches. Both of these start by splitting u=-jv -
the flow fields into two components, a background field and 0 v v ¥ v ¥ Vo "

a fluctuating field, with the main distinction being in the
nature of the background fields and their roles in the extremgg, 1. Sketch of the boundaries and boundary conditions for the flows
izing procedures. One of the methods uses a mean field iimder consideration.
the manner of the Reynolds decompositias the back-
ground field. It was first formulated by Malkdsteformu-
lated and carried out successfully by How&td! and ap- _

; : : u=—jVv* at y=0, (2.1
plied widely and effectively by Buss&.The other approach
adopts a device qf Hopt to _Iet. the background fielc_i play a u=iU*—jV* at y=h, 2.2)
more central role in the variational procedures. This method,
developed by one of us with Constantthhas ties to the as illustrated in Fig. 1.
energy stability theofyand it too has been applied to a num- The velocity field and the pressure fighgx,t) are gov-
ber of fluid problems, in Refs. 15-20, for example. erned by the Navier—Stokes equations
Kerswelf! has elucidated a formal mathematical connection
between these approaches. — +u-Vu+Vp=rAu, (2.3

Our interest here is in the specific fluid problem men- at

tioned and we shall explain details of the procedures as V.u=0 2.4
needed in the course of their use. In Sec. Il we formulate the ' '
problem to be studied, a plane Couette flow with suction orThe incompressibility condition together with the boundary
one wall and injection on the other. In Sec. Ill we apply conditions leads to the supplementary boundary condition
various stability concepts, both linear and nonlinear, to the
laminar solutions to determine when they are physically rel- %:0 at y=0,h (2.5
evant and when turbulence is possible and/or likely. A rig- 9y n '
orous implementation of those ideas via tlsecondl back-

round field method is presented in Sec. IV where we derive In this work, we restrict our attention to periodic bound-
9 p ' ary conditions on all dependent variables in the horizontal

explicit rigorous upper bounds on the energy dissipation rat%lirections with periodd, andL,. The horizontal area of
as a function of the system parameters. In the concludin%ne cell in the layer isA; LL,. Zln addition. we define the

Sec. V we summarize and discuss these results in view .
. . . Yo control parameters of this problem, the Reynolds num-
recent analysis and experiments for shear driven turbulenc%.er

hu*
Il. FORMULATION OF THE PROBLEM Re= 2.6
A. Boundary conditions and equations and the entry angleq, given by
To investigate the influence of suction on shear flows, .
we consider a layer of an incompressiflmit density New- tang= — . 2.7
*

tonian fluid with (constant kinematic viscosityr confined
between parallel rigid planes separated by distamc&he
bottom plate, aty=0, is stationary and the top one, wat
=h, moves with speetl* in the x direction. In referring to
top and bottom plates we establish the convention thaythe
direction is vertical, though there is no gravity in the prob-

We shall explore the stability characteristics and energy dis-
sipation rates of various states in the-Re plane.

B. Energy dissipation

lem. The third direction has coordinat@nd the unit vectors Our focus throughout this paper is on the rate of energy
are i,j,k. The velocity field is designated as(x)=iu,  dissipation per unit mass as a function ofv, h, U*, and
+juy+ku,. V*. We shall derive an upper bound erand compare it to

In addition to the shearing motion imposed by thethe value associated with the laminar flow that we present in
boundaries, there is a uniform injection of fluid into the layerthe next subsection. As we shall see, both the bound on
with speed(flux) V* on the top plane. We seek solutions and its laminar value are nonvanishing and independent of
with constant throughput by imposing the same exit speed dsnematic viscosityr as Re—«, and they are both finite and
fluid is removed uniformly on the bottom plan@lore gen-  independent of viscosity in the limit of a semiinfinite fluid
erally, it would be of interest to let the rate of outflow vary layer.
with t, X, andz) The conditions at the rigid boundaries are As the dissipation rate is a bulk property in the turbulent
thus case, it is helpful in defining it to introduce the notation
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Ly h L, 172 (@
||f||=(f dxf dyf dZIf(X,y,Z)Iz) : (2.8 —_—
0 0 0 ¥
R
which is the so-called., norm, and o : : . ; : : .
11 x/h
(fy=limsup=[ f(t)dt, (2.9
T—o T 0
1 ®
the largest possible value of the long time averagé of y
The evolution equation for the kinetic energy in the fluid #
layer is % 1I | I x;h J |
d1

1
i 2/ lUP= AV U*?
dt 2 2 o

I E—

1
NA
h
0
0

x/h

_ 2
3 V| |Vu|| ! FIG. 2. Streamlines for the steady laminar flow at several parameter values.
y=h (a) Plane Couette flow, Re100 andd=0. (b) Re=99.99 and¥=0.9°, with

LX I‘Z
*
#v [ e aatply- ply-o]
0 0
Ly L, (9UX
+vU* | dx|[ dz—
0 o dy
(2.10 laminar boundary layer thicknes$, ~0.6h. (c) Re=98.77 and§=9°,
with laminar boundary layer thicknegs ~0.064.

which follows from the Navier—Stokes equations with the
help of the boundary conditions. The presence of a total de-
rivative with respect to time instead of a partial derivative
serves to emphasize that while the norm does depend on tingsal values of the injection anglé,
it is a constant in space. The terms on the right hand side of When §—0 (V*—0) the laminar solution reduces to
this equation are, in order, the net flux of kinetic into theplane Couette flow withu,=iU*y/h. This limit does not
layer, the rate of work performed by the injection and suctiondepend on the viscosity at all and retains its structure as
processes, the power expended shearing the fluid layer, and 0. But for §+0 andy>0, the vanishing viscosity limit is
finally, the power removed by viscous dissipation in thethe constant flow field
fluid. The instantaneous rate of viscous energy dissipation is
thus identified as/||Vul|2.

We concentrate on the largest possible value of the long
time average of this last term, the viscous energy dissipatioifhis limiting velocity field has constant parallel flow in the

limu,=iU*—jV* (6%0). (2.19

rate per unit mass bulk, is continuous at the injection boundary butdiscon-
. tinuousat the suction boundary becausg(0)=0 for all v
s=—<||Vu||2>. (2.1 >0. The singularity is the result of,—0 as Re-x for
hA fixed ## 0 andh; in general the limit$Y—0 and Re-c do
For the semi-infinite layeri(— ), we will consider instead Not commute as regards the velocity vector field.
the energy dissipation rate per unit area The energy dissipation rate in the laminar solution is
-V vull2 21 _th auxzd
&= (lIvull?). @12 e )] Ay
U*2v* 1

C. Laminar solution

. ) _ 2h  tanh((1/2)Re tarv)
A simple exact steady solution of the problem is the

laminar flowu,=U (y)i—V*j with U tané .16
1— e Vyiv h 2tani(1l/2)Retard)’ ’
— *
U Ay)=U 1— e Retany’ (2.13 Not unexpectedly, this expression reduces to the energy dis-

sipation rate in planar Couette flow as -R6& or 6—0,
For nonzero entry angles and values of Re not too smalhamely

(Retard>1) the flow has a boundary layer at the suction

plane,y=0. There the velocity deviates from a nearly con- _ u*2
stant bulk flow only in a layer of thickness lim &,=v—0r-. (2.1
Re tand—0 h
v h S ) _
5/=V—*= Retand" (2.19 This dissipation rate vanishes as-»0, while for ##0, the

discontinuity in the flow at the suction boundary results in a
Figure 2 shows streamlines for such laminar flows for sevsesidual dissipation in the limit of small viscosity
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, tand U*3 V.v=0. (2.25
lime,=———— (6#0). (2.18 _ o . _
»—0 2 h The evolution of the kinetic energy in the fluctuation

Dimensional analysis implies thatis the cube of the veloc- field v is obtained by dotting into Eq.(2.24) and integrating
over the volume of a cell. Let

ity scale divided by a length scale in the system. This is the
content of Eq(2.18 with the prefactor depending on details Lx h L,
of the geometry of the flow. We are familiar with scaling in L)dQ: L dxfo dyfo dz
which the energy dissipation remains finite and nonvanishin%_ ) _ ) _ _
in the limit of high Reynolds number from Kolmogorov's hen on performlng some integrations by parts and invoking
theory of energy cascade in turbulence. This flow is an exthe boundary conditions we obtain
ample of steady laminar flows in which the dissipation is q 1
finite in the zero viscosity limit because as the norm of theg; §||V||2+ deQU,(y)Uny_V* deQU'(Y)vx
gradient goes up, the volume in which dissipation occurs
goes down. Ay
One of the main aims of this paper is to compare the :—V||VV||2_VJ dQU’(Y)a—, (2.27)
. N . Q y
high Re energy dissipation rate to an upper limit on the en-
ergy dissipation rate valid foany solutions of the Navier— whereU’ is the derivative olU.
Stokes equations, including turbulent solutions. One case
whgre the Re_ynold; number become; large !s for fixed V€| STABILITY AND INSTABILITY
locities and viscosity as the layer thickness increases. The
semi-infinite layer is not a very interesting limit fé=0 at The stability or instability of the steady laminar flow in
fixed U* because the rate of strain in Couette flow vanishes(2.13 determines its realizability. Here we consider various
whereas, foil9# 0, the laminar solution for a deep layer with aspects of the stability of our basic flow, both linear and
suction on the boundary has the structure nonlinear. From energy stability theSrye shall see that the
. . VT laminar flow is absolutely stable for sufficiently low Rey-
r!'jlu/_'u (1= =V (6+0). (219 nolds number or sufficiently large injection angles. On the
other hand, we shall find that the laminar flow is unstable at
The energy dissipation rageer unit horizontal areaof the  high Reynolds numbers for sufficiently smétut nonzerd

(2.26

suction boundary is then injection angles, thus merging into plane Couette flow,
R h( gu, 2 U*2v*  tang which is not linearly unstable at any Reynolds number,
e,= lim Vfo (W) dy=—5—= TU*"‘, (2.20  though it is nonlinearly unstable at large Reynolds nuniber.
h—o
independent of viscosity. A. Energy stability
N For the general study of stability theory we let the back-
D. A useful decomposition ground flow be the laminar solution, that is(y)=U ,(y).

A device that we shall use throughout this paper is tolhen the fluctuation equatioi2.24 simplifies to
decompose the velocity field into a steady background ﬂo"\(/tJrv-Vv+iqu’/(y)+[U/(y)(9x—V* d,Jv+Vp=vAv.

and a time dependent field (3.1)
u(x,t) =iu(y) —jV* +v(xt), (2.2 The evolution equation of the kinetic energy in the fluc-
where the base horizontal flow profilé(y) is as yet arbi- tuation can now be written as
trary except that it satisfies the boundary conditionsugn d1
That is ar 51 VIP==H{v}, (32
dt 2
U(0)=0 and U(h)=U". (222 \yhere the functional
The meaning ol will vary according to how we defing&
but in all cases it satisfies the homogeneous boundary con- H{v}sf [V]VVI2+UL(Y)vyy], (3.3
ditions a
v=0 at y=0 is a homogeneous quadratic formvithat for any basic flow,
' 2.23 U, associates a real number to each perturbation flow field.
v=0 at y=h, ' Equation (3.2, with (3.3), is known as the Reynolds—Orr

energy equatio”®

Energy stability theory rests on the observation that if
the base flow is such th&t is a positive quadratic form, then
the kinetic energy in the fluctuation decays exponentially in
time ast— oo, uniformly in the initial condition. Positivity of
Vit Vv-Vv+iv U'(y) +[U(y)dx—V*dyJv=iV*U'(y)+Vp  H means that there is a numbet-0 such that

=vAv+ivU"(y), (2.249 H{VY= pl|V]|%, (3.9

together with periodicity in the horizontal.

Leaving aside the specification bf for the present, we
introduce the decompositiof2.21) into (3.1) and (3.2) to
obtain
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for any divergence-free vector fieldx) satisfying the fluc- 10’ T .
tuation’s boundary conditions. Whe(3.4) is fulfilled, the | Vo430
kinetic energy satisfies the differential inequality ol i}
d , , Rew(®)
— =||v(- =< — ul|v||“ .
5 51V DIP= =kl (35
According to Gronwall's inequalitysee Appendix A this
implies that the root-mean square fluctuation decays monc o
tonically and exponentially: e
[Iv(- OII<[Iv(-,0[le”*. (3.9 ol
The domain of thed— Re plane in whictH is nonnega- Res®
tive is bounded by a curve of marginal energy stability. The L 8208 Y °
location of this curve in the plane is determined by the level = TG Fex(®
setu(6,Re)=0 where
10'F
v}
n(6,Re=inf > (3.7
[IvI] K . . . . .
e . . . 10° 10° 10" 10° 10? 10" 10° 10'
the infimum being taken over divergence-free vector fields
C . L, . tané
satisfying the fluctuation’s homogeneous boundary condi-
tions. FIG. 3. Stability and instability boundaries in tife- Re plane. Rg(6) and
Re,( ) are the rigorous energy stability boundaries derived in the[thet
B. Absolute stability steady laminar flow is absolutely stable below; @ and to the right of

) ) o Re,(6)]. Rey(6) is the numerically computed energy stability boundary; its
Without actually solving the variational problem for the horizontal asymptote is, as indicatedy2708~82.66, the well known en-
curve of marginal energy stability, we may derive rigorousergy stability limit for planar Couette flow. Its vertical asymptote is at a

bounds on its location in several ways by analyzing the quagritical injection angle of about 3°. The discrete points in the upper left
dratic form directly. First we note that for any vector field Nand corner lie on Rg0), the numerically computed curve of marginal

h ish - dv=h. Poi L lity i linear stability. The steady laminar flow is unstable abovg(Rewhich has
that vanishes ay=0 andy=h, Poincare’s inequality im- a vertical asymptote at the critical injection anglig%arctan%a

; 2 2112 2 P, ; ;
plies _that”VV_” = (m*/h?) || v]|%. ThIS is explained in AP' ~0.001°, the value for the semi-infinite layer computed by Hocking
pendix A, as is the fact that for divergence-free vector fieldgRef. 24.

this estimate may be improved to

2

2T 2
[V 2SF”VH ’ (38 stable. The curve from this estimate, shown ag(Rein Fig.

3, decreases from an absolute stability estimate for plane
where the valus=3.757 - is obtained from the lowest ei- Couette flow, Rg0)=74.16--. This proves that the lami-
genvalue of the Stokes operator in a slab. Bounds on thgar flow is absolutely stable if the Reynolds number is small
indefinite term in may be found by using various of the enough.
inequalities given in Appendix A, and we find A complementary bound on the location of the curve of
1U* Retand marginal energy stability may be (_jerived by focusir)g instead
—— ——— v (3.9 onthe behavior o near the suction boundary. Using stan-
2 h 31— Retand dard analysis, we show, in Appendix B, tHHtis certainly
positive if Re andd satisfy

=

‘ f(ldQUf/(y)vxvy

where we used the fact that

U* Retand vU* Re tange ™~ Retan’
' -_ - 1- 1- >0. 31
sup|U/(Y)I=F T rewn (3.10 22 tang {— o Retany (313
Combining these estimates we observe that This condition corresponds to the line K86) in Fig. 3, be-
5 . low and to the right of the corresponding curve, the steady
Hiv)= b 1U" Retand INE (3.19) laminar solution is absolutely stable. The curve,@ has a
h2 2 h 1_g Retand ' ' vertical asymptote at taf=3\/2. This proves that the lami-

nar flow is absolutely stable if the injection angie
>arctanky2)~19.5° no matter how high the Reynolds
Re tand ) number.
m< 2sme=74.16--. (3.12 ~ The precise curve of marginal energy stability is deter-
mined by the solution of the variational problem(B7). We
This condition corresponds to a curve,R@) in the —Re  find it by deriving and solving the Euler—Lagrange equations
plane below which the steady laminar solution is absolutelyof that problem. These are

so thatH is certainly positive if
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pv=—vAV+Va+ SUL(Y) (ivy+joy), (3.14 Hence the three-dimensional .incom.pressi'bility conditi.o'n. in
Eqg. (3.2) becomes a two-dimensional incompressibility
0=V-v, (3.15  condition
whereq is the Lagrange multiplier from the incompressibil- i v+ Dv,=0. (3.29

ity constraint and/ satisfies the homogeneous boundary con-r, ., adding togetherx (3.18 and 8 (3.20 and divid-
ditions. The critical Reynolds number of energy stability is. ’ ' '

determined, for a given injection angle by the smallest ing by a we observe that

value of Re for whichu=0. o a _ _ a 5
These equations permit single Fourier modes inxhe —Avyt+ial= U(y)|vx—V*Duy+i|= U(y)|vyt+iap
and z directions. From the variational statement, it can be @ «

shown that down-stream rollg(=0) are local extrema and _ 2_ TN

. . L ; . =v(D—a)vy. (3.25
numerical investigations confirm this. Such results may be _
obtained by using the numerical methods we shall describBecalling Eq.(2.13, we see that Eq3.24 and (3.29 to-
in the following discussion of the linear problem. In that gether with the transformed equation
way, solutions were found for these equations. They deter-

. e . ~| ~
mine the absplutg stability boundary JRé) in the 6—Re —\vytia|= Uy)|vy—V*Du,+ Dp:V(DZ_QZ)vy,
plane shown in Fig. 3. a
(3.26
C. Linear theory are the two-dimensional equations with the substitution
To address the issue of instability, we consider the lin- w
earized flow equations for(x,t) |U*|—|=U*| <|U*|. (3.27
o
v v N _ _
EJFU/(y)a_x_V* (9—+|U’/(y)vy+Vp= vAv, (3.16 Thus, on takingB=0=v, in (3.18—(3.21), we can
y eliminate v, and p to produce a fourth order Orr—
V.v=0. (3.17  Sommerfeld-type equation for the normal veloaity
For ane Mel(®+52) dependence om,x and z for all the {vL2+ia[UN(y)+U(y)L]-V*DLivy=\Lvy,
variables, the problem reduces to the following ordinary dif- (328
ferential equations for functions,(y),v,(y),v,(y), and  where
p(2): L=—-D2+a?, (3.29
Nox—iaU (y)vx+V*Duy— U (y)vy—iap and with boundary conditiony,=0=Duv, [because of
— v(—D2+a2+ BZ)UX! (318) (324)] at the walls. . . .
A standard Chebyshev collocation techniqueyinvas
Avy—iaU (y)vy+V*Dvy,—Dp=v(— D2+ a2+,82)vy, employed to produce a matrix generalized eigenvalue prob-

(3.19 lem for A which was then solved numerically. The numeri-
r " P S SR cally determined linear instability boundary RRé€) is also
Mz—ial (Y)o Vi Do —iBp=v(=D "+ a’+ B )lé'zo) shown in Fig. 3. The laminar flow is unstable if the Reynolds
' number is high enough and the injection angle is small
iavy+Dvy+ipv,=0, (3.2)  enough. The linearized instability boundary in the-Re
plane has a vertical asymptote that agrees with the analysis

where differentiation with respect is denoted byD. of Hocking? for the semi-infinite layer. This correspondence

Linear instability occurs in th&/—Re plane wherever o< as a check on the computation.
the real part of an eigenvalue pffor some horizontal wave The laminar flow is linearly unstable at high Reynolds
vectoria+Kkp is negative. The search for the boundary of humber for angles € 6< 6.=tan 1(1/54 370)=0.001°
R . .

this region, the co_ndition of mgrgina_l stability, ‘may be re- The gaps in both angle and Reynolds number between the
duced to the equivalent two-dimensional stability problemy,,,nqaries of absolute stability and linear instability, are

with v,=0 r%nd B=0 Dby (a version of Squire’s .qndistent with Hocking’s conclusion that the bifurcation in
transformatiort” For any eigenvalueX, of the three- o camicinfinite layer ab, is subcritical.

dimensional problem at given values bf*,V* h, v, and
wave numberia+kp, there is a lowerabsolute value of
U* with the same eigenvalug for the two-dimensional

~ . . IV. BOUNDS ON ENERGY DISSIPATION
problem at another wave numbier. To see this, define

e TR Let us first sketch an intuitive derivation of the kind of
a=ya't+p (3.22 result to be anticipated. At high Reynolds numbers, we ex-
and pect the dissipation to be dominated by the shear in a thin

L laminar sublayer. Let the Reynolds number of this boundary
avy=avyt Bu,. (3.23 layer be Rg=U* &/v and suppose that it takes on a constant
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value,r, so thaté=rh/Re. If the dissipation takes place in V*
the approximate volumés=(5/h)(Ah), we can estimate Wi=——-U", (4.6)
that the mean dissipation rate is

that is, if we choose

)
8%1}—2 XH V* y h y
d W(y)=— Hfo U(y")dy'~ fo U(y")dy’ (4.7
(U*2+V*2)U* 1 U*3
= h 4.1 With the introduction ofw into (4.3), we obtain
r r cog 0
Modulo the geometric prefactor, this is the same as the eng h||v||2 ||Vu||2

ergy dissipation in the laminar solution. As an estimaterfor d
we may use the value of Re for marginal energy stability in v 2
the spirit of the proposal of Malkdsto use the value for f u’ (y)zdy— I{W}
marginal linear stability. “h

V*Z

A. Upper bounds + ”

1(h 1 2
hf U(y)%dy— ( fU(y)dyH (4.8

Now we turn to the derivation of upper bounds on the
long-time averaged energy dissipation rate doy solution ~ where
of the Navier—Stokes equations. We recall the decomposi-
tion of the velocity field described in Sec. Il D but this time I{W}EI dQ[KHVWHZ-FU’(y)WXW ] (4.9
the background field is not specified in advance, as in stabil- Q 2 Y
ity theory, for instance. Instead, it is the method itself that
leads to a determination @f(y). In this, we are helped by
the identity

In effect, we have just completed the square in the integral in
last term on the right hand side of E@.3. 7 is the same
functional asH of stability theory, withv replaced byv/2
v , L v ) andU’ instead ofU,.
S1IVull*=5 Afo U’ (y)"dy+ 5[ | V]| Here is the essence of the bounding procedure: if the
background profile may be chosen so thad a non-negative
, Ux quadratic form for divergence free vector fields satisfying the
andﬂu (V)W' (4.2 fluctuations’ boundary conditions—as does the fieldde-
fined in Egs.(4.4) and (4.7—then theZ term in Eq.(4.8)
which follows directly from the decompositio(®.21). As  may be dropped at the expense of the equality sign. That is
before,v satisfies the homogeneous conditig@23 and it

varies according t42.24) and (2.25. The evolution of the d 2 5
[v]|*+ h [[Vull

kinetic energy in the fluctuations is agdi®.27). dt Ah
We add Egs(2.27) and(4.2), multiply through by 2 and A
rearrange slightly, to obtain < Zf 1 ()2
) h =g, Yy
Gl lvulP=ra [ Uty y2ay- sl v V2 TINE
+ —f U(y)?dy— —f U(y)dy| | (410
14 h 0 h 0
— *
ZJ dQU (Y)v,wy=V JUx]. The right-hand side 0f4.10 does not depend on time
4.3 and the time average of this equation is
2
In this formula the last term is linear im, which is not i ”VH J |Vu “2 dt
desirable in the procedure. We may remove it by the transAh T Ah T
formation
< ZJh "(v)2d
—iW(y), (4.4 =g, Yy
wherew=iw,+jw,+kw, satisfies the fluctuation’s homog- V*z 1 rh 2
enous boundary conditions. This substitution gives [ U(y)zdy (hf U(y)dy) }
0
Vv||2=||Vw 2—2f dQ (a,w vv'+fdn w2, 1
IvviP=l1vwli2=2 | do (o + | A_||| w1
(4.5 =0

Then, on integration by parts of the middle term on the right,The first term on the left-hand side is manifestly non-
we see that it will cancel the unwanted last term4rg) if negative and so may be dropped respecting the inequality,
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¢ f 4OU’ _ U* o[ | awy 2 owy[? [ owy?
h Q (y)wwy| < 42| dy ay X
W2 [ ow,]|? || ow,|?
Jz X 0z
5t 4 — UG
0 U* u*s
=—=||Vw||*. (4.14
FIG. 4. Sketch of the background flow profile in E4.16). 4\/5
Now it is clear that the choice
and the last term o'n.the. 'ri.ght-han.d side vanishe§a§>o 5=2\2 v (.15
(since we assume finite initial kinetic enejgidence, taking u*

the long time limit, we deduce that . . . .
g ensures thaf is non-negative. This choice makes sense for

v (h S=<h, that is, for Reynolds numbers R&2. As we saw in
IS ﬁj U’(y)%dy the last section, the laminar flow is absolutely stable for val-
0 ues Re<2+/2 where upper bounds are not of use. What re-
2 mains now is to evaluate the upper bound in the parameter
}- (412 regime Re=2,2.
Returning to Eq.(4.12 and adopting the background
profile (4.13 with boundary layer thicknes$ as in Eq.

V*2[1 rh 1(h
- 24v—| =
hfou(y) dy (hfou(y)dy

This is an upper bound anin terms of the background flow

J’_

profile. In order to express as an explicit function of the (4.19, we find

system parametefld*,V*,v andh, we need to construct a 1 U*3 22 vr2u* ( 32 v )

background flow profiléJ (y) satisfying the constraint that e<gg= + — )

iS non-negative. 2y2 h s h 2 U*h
Since the quadratic for is, apart from the change of (4.16

into »/2, the same as the quadratic form of energy stabilityThis explicit upper bound on the energy dissipation rate is
theory in Eq.(3.3), the constraint thal be non-negative is valid for any solution of the Navier—Stokes equations with
equivalent to the condition thal(y) be marginally energy these boundary conditions. In terms of the velocity stile
stable at viscosity/2, as ifit were a steady solution. Hence, and the injection angl®, the upper bound is

if U(y) were a steady, marginally energy stable profile for

viscosity /2, it would lead to an upper bound on the largest 1 | §tar? ol 1— ﬂ i) u*s 4.17)
possible energy dissipation rates according to the formula in B 22 3 2 Re/| h”’ '
Eq. (4.12), even for fully turbulent solutions of the Navier— ] ]
Stokes equations. which, at high Reynolds numbers, becomes

On examining Eq(4.11), we observe thaf would be 1 8 *3
positive if U’(y) were to vanish, that is, itJ(y) was a (‘;B~—(1+—tan2 0] — as Resc, (4.18
constant across the layer. But that would be inconsistent with 2\/E 3 h

th‘T rt()aquir(;ament thglt the backg_round gmﬁr']e iatiffy the physigote also that the upper bound on the energy dissipation rate
cal boundary conditionsl)(0)=0 and U(h)=U". How- per unit horizontal area of the suction boundarQyB

ever, a choice wherdl(y) is constant over most of the gap _ ;. = .y is finite in the limit of a semi-infinite fluid
and varies only near the boundaries may work. This is be;

causew, andw, must vanish at the boundaries so that thelayer.

_on_ly way the producU’(y)V\_/XWy can be large in magnitude B. Lower bounds
is if |Vw|? is also large. This leads to a successful strategy:

Choose a background profile with a piecewise constant slope We may also derive a lower limit to the energy dissipa-
of the form tion as a function of the system parameters. However, the
best rigorous estimate we can produce at this stage is well
below the exact laminar dissipation rate, or indeed any esti-
mates or bounds on the turbulent dissipation rate in the pres-
Uly)= ' (4.13 ence of suction at high Reynolds numbers. This issue raises

U* for é<y=<h questions with regard to lower bounds that center on the

difficulty of imposing the Navier—Stokes equations as a con-

with an adjustable boundary layer thicknessas illustrated straint on the variational fields, as opposed to simpler func-
in Fig. 4. tional constraints. For parameter values where the laminar
To show that a small enough choice éfensures the solution is absolutely stable, it is clear that its dissipation rate
non-negativity ofZ we may apply the analysis described in represents the absolute minimum long time averaged dissi-
Appendix B to prove that pation rate among solutions of the Navier—Stokes equations.

U*(XS for Osy=<é
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So the interesting parameter regime to study is that in which Flv}= V||Vu||2— v||Vu,| |2
the exact laminar solution is not absolutely stable, that is,

small # and large Re. , wUr eV

Consider first the dissipation functiona)|Vul|? mini- _f v[VV[*+2 52 1_efh/5/vx—2qV-v
mized over all divergence free vector fields—regardless of ’
whether or not they are solutions of the Navier—Stokes +2W-[(U(y)dx=V* dy)v+U L (y)ij -V
equations—satisfying incompressibility and the boundary
conditions. The Euler—Lagrange equations for this varia- FV-Vy— VAV]]dQ. (4.24
tional problem are just the steady Stokes equations with so-
lution

The Euler—Lagrange equations are the constraints 0
oy = 0F16q and 0= 6F/ éw together with
uStokes:|U*ﬁ_JV*- (4.19
1 6F vu* e Vs

Then it is easy to see that this solution realizes the global 25 vAvEvar 62 1—e Mos
minimum of »||VU||2. Indeed, letv be the difference be- N -
tween an arbitrary vector field and the steady Stokes flow ~(UAY) = VEdy WU Y)Wy

so thatu(x) =iU* (y/h) —jV* +v(x). Then use the homo- — (VW) -v—V-Vw— vAW. (4.25

geneous boundary conditions @rto find ) o )
The steady laminar solution is an extremum of the dis-

*2 sipation functional ifv=0 solves these Euler—Lagrange
X LihL,+v|[VV]|2. (4.20  equations. This does indeed solve the Euler—Lagrange equa-
tions when we choose the Lagrange multipliers according to

This expression shows explicitly that the dissipation rate inV(X) =1W(y) andq(x)=q(y) with

v||Vul|?=v 2

the Stokes flow is an absolute minimum to the dissipation 1 u* e Y
rate for any flow. That is, ") — — W' (V)= — — ]

y W= W= (4.26

U*2 /
&= Egpokes™ V?- (4.2 and
q'(y)=—U (y)W(y). (4.27

. Npte that this Stokes lower bound is @ndepgndent.of_ thel-he solution forW is
injection anglgindependent of/*) and vanishes in the limit
of zero viscosity. The exact laminar solution matches this W(y) = E cosh(y—h/2)/5,]—coshh/25 ) .28

dissipation only ford=0 or in the Re~0 limit. The draw-
back of this lower bound is that Stokes flow is not a solution
of the Navier—Stokes equation for nonvanishihgnd Re, so

it is not realized by solutions, laminar or turbulent, of the
Navier—Stokes equations.

We may investigate the minimization of|Vu||? over
solutions of the Navier—Stokes equations by imposing thos
equations as constraints in a variational analysis. To illustrate ) ,
the challenges that this endeavor presents, we consider just J1V/= JQ[V|VV| —2W'(Y)v,wy]dQ. (4.29
the stationary Navier—Stokes equations. Let us write the ar-
bitrary solution of the steady Navier—Stokes equations as th&his functional is similar in structure to the quadratic form of

2 sinh(h/26,) '

andq(y) follows by direct integration. Henae, is a critical
point of the dissipation; it is a local minimum, a local maxi-
mum, or a saddle point.

With these choices for the Lagrange multipliers, the ex-
gess dissipation functional becomes

steady laminar solution plus a variation energy stability theory. In fact the coefficient of the indefi-
nite term, proportional toN’(y), has a similar boundary
u=u,+v, (4.22 layer structure for smalb,, now with boundary layers at

- e both the injection and the suction boundaries. When the
wherev is divergence free, satisfies homogeneous boundarp/ange of 7, defined on the restricted domain wisatisfying

conditions, and satisfies the transformed Navier—Stoke§, . transformed Navier—Stokes equations, is the set of non-

equations negative real numbers, then is indeed the absolute mini-

_ o\ S _ mum dissipation solution of thdsteady Navier—Stokes

0=(U Y= VIdVHIUAY)vy - Vv Vp (ZAZVS') equations. But it is difficult to check the signature Bfon
' that restricted functional domain. On the other hand it is

We denote the Lagrange multiplier enforcing the divergencestraightforward to studyF defined on the broader field of
free constraint by-2q(x), and the Lagrange multiplier en- divergence-frees satisfying homogeneous boundary condi-
forcing the Navier—Stokes equations by the divergence fretons, as in the context of energy stability theory Afis a
field 2w(x) satisfying homogeneous boundary conditions.non-negative quadratic form on this extended domain then
Then the functional to be minimized is the excess dissipationve may conclude that, is the absolute minimum dissipa-
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bility informs us only thatF is non-negative for sufficiently 10°
small Reynolds number or sufficiently steep injection angles.
That is, the analysis on the extended functional domain re-
mains silent precisely in the dynamically interesting portion
of the 6— Re plane wherei, is not absolutely stable. 3 E
This difficulty cannot be avoided by enlarging consider-
ation to solutions of the time-dependent Navier-Stokes equa-
tions, u(x,t) =u(x) +v(x,t). In that situation we introduce
time-dependent Lagrange multipliers and an additional time
integration. Presuming that we may neglect boundary terms
from the time integrals, the variational problem is again
solved byv=0 and the same time independent Lagrange o
multiplier fields. The nature of the critical point still remains
in question in the dynamically interesting region of the

tion solution. However, an analysis like that for energy sta- \J

—Re plane. J

It seems reasonable to expect thiatis the minimum 10°}
dissipation solution of the Navier—Stokes equations. We are ‘ , , , ‘
unable to prove this conjecture with the mathematical tech- 10° 10° 10° 10° 10’
nology at hand, but we may offer some more precise physi- tang

cal reasoning tO_ _that eﬁeCt' Assummg that time a.verageEIG. 5. Summary of the stability portrait in the Re& plane. The steady
() _Of_bU|k quantities existthe usual kind of assur_nptlo_n_ N |aminar flow is absolutely stableaccording to the energy method for Re
statistical turbulence theorywe may deduce two identities <82 or 6>3°(with tar¥~0.05). The steady laminar flow imearly un-

from taking the space—time average of the streamwise angfable in the indicated region in the upper left hand corner whére

vertical components of the momentum equation <0.001°(with tand~0.0002) and Re 700 000. The dotted line is a sketch
of the conjectured nonlinear stability boundary for the steady laminar flow.

Thot— Ttop+ U*V* (43@
and solutions, steady, unsteady or turbulent, of the Navier—
Stokes equations with shear, injection and suction boundary
< pdxdy> =<f pdxdy>, (4.3  conditions.
bot top

where bot and top refer to the planeszat0 andz=h, and V. SUMMARY AND DISCUSSION
7 is the wall shear stress felt by the plates. Specific

is the force per unit area in thei exerted by the fluid on the
top plate, andr,, is the force per unit area in thei direc-
tion felt by the bottom plate. Combined with the time aver-
aged energy balance from E(.10, we see that for any
statistically stationary flow

Suction is generally regarded as a stabilizing influence
on flows as measured by the standards of parallel flows with
similar looking boundary layer profilés.But in the linear
version of our problem we see a minor exception to this
general rule. Plane Couette flow, which may be thought of as
the limit of the suction flow for zero suction velocity, that is,

1 V*  U* 0—0, is linearly stable. However, in the— Re planegrepro-
= EU*zT + 5 Ttop: (432  duced in Fig. 5 for the purposes of this discusgiove found
that the marginal curve for linear instability has a minimum
The first term on the right-hand side above is the net flux ofat the large but finite value Re700 000. As the entry angle
kinetic energy into the system; the injection-suction boundtends to zero, the curve of marginal stability turns upward
ary conditions input more kinetic energy than they extractand reaches Rex at #=0 in agreement with standard re-
The second term on the right hand side is the power exsults for plane Couette flow. The critical Reynolds number
pended by the agent enforcing the slip boundary condition omlso grows large a8 increases from the minimum point, in
the top; it is the work done by the top plate sliding on thekeeping with earlier stability studies for the semi-infinite
fluid. Note that the first term from the kinetic energy flux is laye”®%* for which the stability criterion is measured in
precisely the high Reynolds number limit of the dissipationterms of Rg=U* §,/v=tand. We may regard this band of
in the exact steady laminar solution. Hence the only way thatinstable input angles as a linear instability inflicted on Cou-
a turbulent energy dissipation rate could be less than the higétte flow by suction.
Reynolds number limit of the laminar solution isf,,<0. As to the nonlinear theory, we found that the flow is
That would mean that, on average, the turbulent flow wasbsolutely stable for Re less than a value close to 82 and for
conspiring topushthe top plate along, rather than provide 6 greater than about 3°. This defines the narrow, semi-
any resistance to the shearing motion. This observation pradnfinite strip in the#—Re plane seen in Fig. 5. In the rela-
vides some more motivation for the study of this lowertively small region of the strip above the parabolic-looking
bound problem. We shall not pursue the issue further heregurve in the upper left hand corner of Fig. 5, we find linear
leaving open the question of the minimum dissipation amongnstability. The question raised then is: in how much of the
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bound is plotted as a function of the Reynolds numbers for
several small values of the injection angle. The dissipation
factor bound in(5.2) is so insensitive t@ as 6—0 that the
points are not separated by more than the size of a dot.

In the #— 0 limit of planar Couette flow boundary con-
ditions, the dissipation factor bound i%.2) is Bg(Re,0)
~0.354, a much cruder bound than may be obtained by more
delicate variational estimates. The best bound known to date
6=.1° for turbulent planar Couette flow is the result of an optimi-

zation procedure whose high Re asymptotic valé is

6= or° Be(Re,0~0.011, (5.3

10°

also indicated in Fig. 6. Without doubt there is room for

7 g=.00v quantitative improvement in the bound ({6.2), and it re-

mains to be seen how an optimized bound will depend.on

10° ‘ e It is not unlikely, however, that thé=0 bound in(5.3) is

accurate for very small angles and high Re where the bounds
Re are relevant.

FIC. 6. The dissipation factg6 =z h/U** vs Reynolds number Re. The dataAfS(;rvlien;igtrli(\)/gidtua:éltflleen(c:): Eiettﬁeeglsélgzg g:‘hs-l\jvca:iuon are

discrete data-(-) at the top are the rigorous upper bousg(Re,0) in Eq. . ; ;

(5.2 for injection angles#=1°,0.1°,0.01°, and 0.001¢here is very little reasonably well fit by Prandtl’s logarithmic law of the wall

sensitivity of the bound to changes at small angles The dashed line  for which®
segment- - -) is the best known high Re bound for turbulent Couette flow,

Be(Re,0~=0.01087(from Ref. 2. The crosses X) show the fit in Eq. 1
(5.4) to experimental data. The solid linés-) are, from top to bottom, the ,8F>K%O.O4><—2 as Re-x, (5.4
dissipation factor in Eq(5.6) for injection angles#=1°,0.1°,0.01°, and (InRe)

0.001°. The lower envelope to the curves is the dissipation factor for planel_ . . . L . .
Couette flow, the only rigorous lower bound available for the dissipation | NS empirical re_lat'on is indicated in Fig. 6, FOO- In the
factor for arbitrary injection angles. absence of suction, the upper bound analysis apparently

yields the correct leading order scaling+ Re”) while fail-
ing to produce the logarithmic corrections.

rest of this strip is the flow actually nonlinearly unstable? At Planar Couette flow with dissipation factor

0=0, nonlinear instability comes in at a Reynolds number
(as measured heref about 4000°> We may expect that the B,(Re,0=Re *, (5.5

onset of nonllnegr instability occurs as one Crosses LIpv"‘"‘rﬁealizes the absolute lower bound for the energy dissipation
through a curve in thé—Re plane extending from theon- 16 apsence of suction. This dissipation factor also mini-
linean marginal result for)=0. It is natural to imagine that i, o5 the dissipation functional over all divergence free vec-
this curve would go upward a is increased from zero in -y fie|4s satisfying the physical boundary conditions, as we
agreement with the usual notion that suction is stabilizing¢, 4 in Sec. IVB. This rigorous lower bound is the lower

Above this conjectured curve of nonlinear stability sketchedenvelOpe of the curves in Fig. 5, a full factor of Re below the
as the discrete points in Fig. 5—the precise location of whicl]Jpper bound at high Re. o

remains to be computed—we expect to find nonlinear solu-
tions that are the extension of the nonlinear instability of
Couette flow.

The results on the bounds on dissipation also raise some tané
intriguing issues. It is helpful to express the results in terms B(Re0)= 2 tani{(1/2)Re tand)
of the dimensionless dissipation factor

The dissipation factor for the steady laminar solution of
the Navier—Stokes equations is

(5.6

This is plotted for several injection angles in Fig. 6. It con-
verges to the lower bound Ré& as Re~0 or #—0 and, in
U*3’ (5.1) contrast to the behavior in the absence of suction, it has a

residual dissipation in the limit Rec~ when §+0
The bound ore derived in Sec. IV corresponds to the rigor-

B(Re,f)=e X

. tan 1
ous upper limit B,(Re,0)~ 5 >_Re as Re-x, (5.7
Re,0 ! 1+8 6|1 3vz2 1 While the steady lami fl i t soluti f
= = — — - —
B=pBg(Re,0H) 2\/5 3ta > Rel I ile the steady laminar flow remains an exact solution o

the Navier—Stokes equations and hence provides a lower

(52 jimit to any mathematically rigorous upper bound on the
effective in regions of the#—Re plane where the steady dissipation factor, we stress that it is not known to be an
laminar solution is not absolutely stable. This bound allowsabsolute lower bound on the dissipation among solutions of
for the residual dissipation in the vanishing viscosity limit in the Navier—Stokes equations for small injection angles and
the sense thaBs,—constant-0 as Re-«. In Fig. 6, the high Reynolds numbers.
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These results and observations may have interesting im-  Finally, from the point of view of astrophysical applica-
plications for the mathematical analysis of solutions of thetions, the results reported here seem intriguing. The striking
Navier—Stokes equations. This system represents, as far effects that suction has on the stability of shear flows imply
we can ascertain, a first example with flux across its boundthat there will be strong interactions between the inflows in
aries in which a finite constant residual dissipation is evidenaiccretion disks and the shear. These could cause intermit-
in the upper bound analysis. Heretofore, the best estimate fdency in the turbulence whose dissipation is thought to pro-
the high Reynolds number friction factor in the presence ofduce the luminosities of the disks. There may be here a par-
flux at the boundaries was Hopf's origin@nd very general tial explanation of the marked time dependence of these
bound,3<0(eR9, which is not of much use practically. The luminosities. To investigate such possibilities, we need to
upper bounds derived in this paper establish that a finit@llow more general exit conditions since there is the impli-
asymptotic residual dissipation bound is possible in the pressation that the throughput will become variable. Though the
ence of flux. However, because of the simplicity of the ge-present study is still far from including astrophysically real-
ometry in this case, it remains unclear whether more generastic conditions, the results uncovered suggest interesting
finite residual dissipation bounds, like those W&gcently ~ possibilities for such applications.
obtained for shearing boundaries in the high Reynolds num-
ber limit, can be derived when there is a normal componenhck NOWLEDGMENTS
to the velocity at the boundaries. ) .
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rigorously proving the existence of such corrections in the cussed a relatend as yet unresolvegroblem, Joe Keller
asymptotic Res limit because the result for the exact for an interesting discussion on the issue of lower bounds,
laminar flow is sufficient to establish the precise nature of@nd Tom Mullin for bringing Ref. 28 to our attention.
the strict 3~Ré€ scaling in any upper bound. However, it
seems unlikely that the energy dissipation rate in a high ReyAPPENDIX A: USEFUL INEQUALITIES
nolds number turbulent flow would be smaller than that in a
steady laminar flow. This suggests that corrections to th?h vsis:
high Reynolds number scaling such as the logarithmic fric- € ana ys's', . . _ .
tion law are in a very real sense delicate modifications of Schwarz’s inequality-or functionsf(x) andg(x) which

Kolmogorov type scaling with a nonvanishing but finite re- are square integrable on the domin

Here is a brief summary of the key inequalities used in

sidual dissipation. An arbitrarily small perturbation of the

boundary condition in the form of a small amount of suction Qfg dQ<[[f[[[|g]]- (A1)
appears sufficient to destroy the logarithmic corrections in . .

the high Reynolds number limit. Holder’'s inequality. There are more general versions of

This latter observation is not altogether surprising as it isHolder’s inequality, but in this paper we use only the fact
known that turbulent shear flow over a rough boundary prothat
duces such simple scalifigin the case of pipe flow, the
turbulent dissipation factor depends on the degree of bound- f fg ngSUPXEn|f(X)|f 9]dQ. (A2)
ary roughness much as the dissipation factor depends on the o
injection angle for the problem studied in this paper. ThePoincare’s inequalityOne version of Poincare’s inequality
sensitivity of such(logarithmig corrections to perturbations states that for any square integrable functf¢r) satisfying
in the boundary conditions is also illustrated in the recenDirichlet boundary conditions on the domdih
experiments of Cadatt al.” where an array of bumps on the 1
walls in a turbulent Couette flow experiment resulted in a  ||f||?< —||V{||? (A3)
constant dissipation factor quite close to that3rB). There A
have been Taylor-Couette experiments with suctfobut it where), is the smallest eigenvalue of the negative Laplac-
remains to be seen whether high Reynolds number sheajan with Dirichlet boundary conditions on the domain. For a
driven turbulence experiments with suction can be performed|ab of thicknes#, this lowest eigenvalue is at least as large
in order to investigate these issues further. And there havgs 7/h? corresponding to a function with a sii) depen-
been direct numerical simulations of channel flow with in- dence ony across the slab. A divergence free vector field
jection and suction at the waff§ but the systematic compu- satisfying Dirichlet boundary conditions on the domain
tational study of turbulent energy dissipation a simple sheapbeys
layer with injection and suction remains. These kinds of high
Reynolds number problems are of interest for laminar flows IIv]|2< i||VV||2, (A4)
as well® ot
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where o is the smallest eigenvalue of the Stokes operator

ov=—Av+Vp, V-v=0, (A5)

with Dirichlet boundary conditions.
Gronwall's inequality.Consider a functiorf(t) satisfy-
ing the differential inequality

df

at (A6)

< - uf.

Multiply by the positive integrating factcg*! to see that

0>eﬂtﬂ+,ue‘“f= i(e/‘tf) (A7)
dt dt '
Hencee*'f is a decreasing function of time, and tez0 it is

bounded by its initial valué(0). This means that

f(t)<f(0)e ~. (AB)

APPENDIX B: PROOF OF (3.13)

In this Appendix we sketch the derivation of some of the
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f dQU,’/(Y)Uny
Q
vU* Re tange Retan’
= p—
B 2\2v* 1— e Retans
G RERER
‘ &Uz ‘ t?UZ ]
vU* Re tange ™ Retan? ,
= —
B 2\/§V* 1— e Retand V]2 (B6)

Inserting this estimate into E¢3.8) we deduce

H{vi=v|1-

Re tand e‘Re‘WHHV 2
_ v||2.
1_e*RSIn(9

1
2/2tané

(B7)
HenceH is certainly positive if Re and satisfy

inequalities referred to in the text. We start with the funda-

mental theorem of calculus in the form

yovy(X,y',z
oy 2= | WY ) g (BY)
0 ay
and use the Schwarz inequality to deduce
2 12
hl dvy(X,y',2)
va(x,y,Z)Iiﬁ(f — dy’) : (B2)
0 ay
Similarly,
2 112
hldvy(x,y',2)
Ivy(x,y,Z)Iﬁﬁ( fo yaT dY’) : (B3)

Again, the Schwarz inequality, along with the fact thab|
<(1/2)ca?+ (1/2c) b? for anyc>0, implies that the second
term in the integrand if{{v} in Eq. (3.8 is bounded accord-
ing to

f(ldQU}(y)vxvy

2
l &vy

ay

Ux

Iy

Retande R tana) ( ’

}

o™ 2
ay

=3[y of 5

vU*
2V*

1 (?vy

ay

|

(B4)

The incompressibility conditiotV-v=0 and some integra-

1— g~ Retand

Re tand

vU* ( 1
2/2tary

In analyzing the functiondl in Sec. IV A the procedure
is the same withJ , replaced by the profil&(y) from Eq.
(4.13.

Retanpe™

1_e—Retan0 >0.

(B8)
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