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For any Lie algebra g and integral level k, there is defined an invariant 
Z,*(M, L) of embeddings of links L in 3-manifolds M, known as the Witten- 
Reshetikhin-Turaev invariant. It is known that for links in S3, Z,*(S3, L) is a 
polynomial in 4 = exp (2d(k + ci), namely, the generalized Jones polynomial of 
the link L. This paper investigates the invariant Z,*_,(M,0) when g=sK, for a 
simple family of rational homology 3-spheres, obtained by integer surgery around 
(2, n)-type torus knots. In particular, we find a closed formula for a formal power 
series Z,(M) EQ[ [h]] in h=q- 1 from which ZF-,(M,0) may be derived for all 
sufficiently large primes r. We show that this formal power series may be viewed as 
the asymptotic expansion, around 4 = 1, of a multivalued holomorphic function of q 
with 1 contained on the boundary of its domain of definition. For these particular 
manifolds, most of which are not Z-homology spheres, this extends work of 
Ohtsuki and Murakami in which the existence of power series with rational coef- 
ficients related to Z,*(M, 0) was demonstrated for rational homology spheres. The 
coefficients in the formal power series Z,(M) are expected to be identical to those 
obtained from a perturbative expansion of the Witten-Chem-Simons path integral 
formula for Z*(M, 0). 0 199.5 American Institute of Physics. 

I. INTRODUCTION 

Suppose that M 
framed link. In Ref. 

is a compact oriented 3-manifold without boundary and that LCM is a 
1, Witten formally defined a topological invariant Zf (M, L) of this pair, 

dependent on additional pieces of data, namely, a choice of a Lie algebra g, of a level k EZ, along 
with a choice of representation, pi of g, for each component Li of L. Witten’s formulation of 
ZF (M, L) was as a functional integral 

Z:(M, L) = I,,q trpi( P exp $L A ds) eik’4w Iw(A,dA+1’3[A,A])d~~A (1.1) 

over a quotient of the space of G-connections on M by an appropriate gauge group. The first term 
in the integrand is known as the Wilson loop associated with L; it is the product of the traces of the 
holonomies of the connection A around the components of L, the traces being taken in the 
representations attached to the components. The second term in the integrand is the exponential of 
a multiple of the Chem-Simons action. The functional integral definition only makes sense when 
k is an integer so that 4 is a root of unity, since it is only then that the exponential of the 
Chem-Simons action is invariant under the action of the gauge group. Although many attempts 
have been made to directly make sense of this expression, it remains only a formal expression 
from which valid results can be derived when the functional integral is manipulated according to 
certain rules; see, for example, Refs. 2-8. The approaches which are closest in spirit to that of 
(1.1) employ the notion of a topological field theory (see Ref. 9) whose definition is based on 
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Segal’s mathematical definition of conformal field theory. The situation is much like that which 
existed for divergent series in the last century and indeed I will indicate some rather close con- 
nections between these two stories in this paper. 

Many alternative and completely rigorous formulations of Z,*(M, L) have been obtained, 
primarily using a presentation for M as obtained from S3 by surgery around some link. In par- 
ticular, in Ref. 10, a construction for the link invariant Z$(S3, L), which takes values in polyno- 
mials in q = exp 2ti/(k + ci), is given in terms of the quantum group U,g and representations pi of 
it, placed on the components of L. In the case when g=$ and all the components of L are 
endowed with the two-dimensional vector representation, Z,*(S3, L) = VL(q), the one-variable 
Jones polynomial of L. More generally, when g=sl, and all the components are endowed with the 
m-dimensional vector representation, Zf(S3, L) = XL(q, qmel) is a slice of the two-variable 
HOMEY polynomial. 

Using the description of a compact connected orientable 3-manifold M, without boundary as 
obtained by Dehn surgery around a suitable link L, in S3, Reshetikhin and Turaev” for g=&, 
and Turaev and Wenzl” more generally, obtained Zz(M, L) as a combination of the values of 
Z,*(S3, L,U L’) with all possible choices of irreducible representations attached to the compo- 
nents of L, . Here L’ CS3\L, is the image of the link LCM under a surgery operation taking M 
to S3. This sum will only be finite when q is a root of unity. However, it is still something of a 
mystery that while Z,*(S”, L) can be defined for all values of q, being a polynomial in q, this is 
not true in any of the definitions so far known for Zz( M, L) when M f S3. 

In this paper, we concentrate only on invariants of pairs in which the link is empty and we 
take g=sI,. In this case, Z,$(M,0) has a simple combination formulation,” see for example 
Kauffman and Lins12; a self-contained summary of this formulation is given in Sec. II B while all 
the necessary basic notation used throughout this paper is given in Sec. II A. In this formulation it 
is apparent that Z:(M, 0) can be defined in this way for all roots of unity q, rather than just ones 
of the form e2?ri’r. Very few concrete computations of Zz(M, a), as a function of r= k+2 (the 
order of the root of unity q), have been carried out-see Refs. 13-18 for some such computations. 

It follows quickly from its definition that, for fixed order r of the root of unity 
q,VZ,*( M, 0) can be written as an algebraic function of q with rational coefficients. In the 
normalization for which the invariant for S3 is 1, denote the invariant for the pair (M, 0), as an 
algebraic function of q at rth roots of unity, by Z,(M). We now describe the results of Refs. 
19-22 on the forms of these functions of h=q- 1 when r is an odd prime. 

Theorem (Murakami/Oht.suki): Suppose that r is an odd prime and M is an oriented 
Z-homology sphere. 

(a) (Murakamit’) As a function of q,Vz,(M)~Z[hl, so that for some a,,,(M) EZ, one has 
Z,(M)=Z,a,,,(M)hm. For Ocms(r-3)/2, a,,,(M) is uniquely determined by this con- 
dition as an element of ZlrZ and 

so,,(M)= 1, al,,(M)=6VM), 

where X(M) denotes the [SU(2)-] Casson invariant of M. 

(b) (Ohtsuki”) There exist rational numbers a,,30(M) such that, for any prime ra2m + 3, 
a,,,,(M)=a,,~(W as elements of ZlrZ. 

As a result of part (b) of this Theorem, one may define a formal power series 

Z,(M)= c a,,,hm 
m=O 
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with rational coefficients, which is an invariant of integral homology 3-spheres M. Some indica- 
tion that similar results may be obtainable for 3-manifolds which are not necessarily integral 
homology spheres but only rational homology spheres is given by the following theorem. 

Theorem (Murakami21): Suppose that r is an odd prime and that M is a ZlrZ-homology 
sphere sothat N=IH,(M,Z)I is coprime to r. Let TV denote the quantum S0(3)-invariant of 
M. Then Z,.(M) = N{N},r,(M), where {N}, denotes the Legendre symbol of N mod&o r, has the 
following properties: 

(a) 
(b) 

Z’,(M) EZ[h], say Z,(M)=C,a,,,(M)hm with a,,,(M) ~2; 
aO,,(M)-1 and a,,,(M)=33X’(M) where A’(M) denotes the Casson-Walker invariant of 
M. 

An analog of the second part of the previous theorem for rational homology spheres may be 
found in Ohtsuki.** Note that when M is a Z-homology 3-sphere, N= 1 and so Z,(M) =Z,( M), 
thus justifying the use above the same notation, a ,,,(M), for the coefficients of powers of h in the 
expansions of Z,(M) and g,(M) . Indeed this second theorem is an extension of part (a) of the first 
theorem above. The difference in the factors (6 and 3) preceding the Casson and Casson-Walker 
invariants is due to a difference in the normalizations of these invariants in their definitions; see 
Ref. 23. 

In this paper we restrict our attention to a particular two-parameter family of rational homol- 
ogy 3-spheres {M,,,}, given by integer t-surgery around a (2, n) torus knot. This family contains 
a subfamily of integral homology spheres, namely, those for which In + tl = 1 while the Poincare 
homology sphere is included as M-,,,. For these manifolds we compute the associated invariants 
Z,(M) and derive a closed formula for Ohtsuki’s invariant Z,(M); see Theorem IV.9 and Eq. 
(IVIO). From computations of some coefficients in the power series Z&M,,,) for various n and 
t, it is suspected that Z,(M) EZ[[h]] whenever M,,, is a Z-homology sphere (see Conjecture 
IV.20). In Theorem V.4 it is shown that the values of Z,(M), for all sufficiently large primes r, can 
be reconstructed from Z,(M), by projection of Z[ [h]] onto the quotient by the relation 
( qr-- 1 )/( q - 1) =O. In Theorem VI.3 it is shown that Z,(M) may be regarded as an asymptotic 
expansion around q=l of a multivalued holomorphic function of q whose domain of definition 
contains q = 1 on the boundary. 

Theorem (See IV.1, lV.9, IV.19, IV.20, V.4, and VI.3 for details). Suppose that n is an odd 
integer and t # - n is an integer, while r is an odd prime not dividing t + n. Put h = q - 1. 

(i) There is a formal power series, Z,(M,,,) in h, with coeflcients in Z[b, l/l t + n I], such that the 
coeficients of hi in 

Z,(M,,,)- ]t+nl(‘-‘)‘2Z,(M,,,) 

are divisible by r for 0 G i G (r - 3)/2. [It is not necessary to assume t + n + 0 (r) for this part 
of the theorem.] 

(ii) Z&M,,,) = ( - l)‘A*“(q Al@9 - qA2’$l[2( 1 - q-‘)I where S=sgn(t+n) while Al(x) and 
A*(x) are two quadratics given by (IV.8) and we have used a symbolic notation defined in 
Sec. HA. 

(iii) %Wf,,,) -{b+nl~,G(M,,,) is divisible by (qr - 1 )I( q - 1) in the ring of formal power 

(iv) 
series in h = q - 1 with rational coeficients whose denominators are not divisible by r. 
The formal power series for Z&M,,,) in h = q - 1 may be obtained as an asymptotic expan- 
sion around q = 1 (or In q =0) of an appropriate holomorphic function of In q defined on 
C7iR. 

(v) It is conjectured that Z&M,,,) EZ[ [h]] when M,,, is a Z-homology sphere. 
Another way to state these results is to say that the formal power series Z,(M,,r), although it 

has zero radius of convergence in the usual complex topology, converges in the r-adic topology at 
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rth roots of unity to {It + nl}z,(M,,,), so long as r is an odd prime not dividing 
b+nl=IH,(M,,t, Z)l. 

The restriction to the particular family of manifolds discussed in this paper is necessitated by 
the fact that it is only for these manifolds that the associated state-sum expressions for Z,(M) 
involve only “trivial” quantum 6j-symbols which cancel, leaving a relatively simple sum. The 
techniques developed in Sec. III to enable the computation of Z,(M) can currently only be 
applied in these cases, although it is hoped that they can be extended to deal with all 3-manifolds 
with only relatively minor modifications. 

An outline of the present paper is as follows. In Sec. II, a combinatorial formulation of Z,(M) 
is summarized and is used to obtain a presentation for Z,(M,,,) in Sec. II C as a quotient of two 
sums. This is reformulated in Sec. II D into a shape more amenable to the techniques of the 
subsequent sections. The denominator is a Gauss sum and the numerator is a two-dimensional 
variant. In Sec. III, the modulo r properties of sums over the same domain as in the numerator are 
investigated and these results are applied in Sec. IV to obtain the asymptotic expansion Z,(M,,,). 
In Sec. V a more exact analysis of the sums involved in Z,(M,,,) is carried out and enables these 
values, for all sufficiently large primes r, to be reconstructed from Z&M,,,). In Sec. VI, a 
reconstruction of a holomorphic function is carried out from the formal power series for Z,(M,,,). 
Finally, in Sec. VII, some conjectures are made on generalizations of the theorems proved in this 
paper to more general manifolds. 

II. WITTEN-RESHETIKHIN-TURAEV INVARIANTS 

In this section a state-sum form is obtained for the Witten-Reshetikhin-Turaev invariants 
Zk(M, 0) for the manifolds M used in this paper. This expression is obtained in Sec. II C using 
the formalism of Ref. 12 (summarized in Sec. II B) for computing ~1~ invariants derived from the 
recoupling theory of the Temperley-Lieb algebra. A reformulation of the sum in a form more 
convenient for the computation of asymptotic expansions in Sec. IV is derived in Sec. II D. 

A. Notation 

1. Links and manifolds 
Any compact connected oriented closed 3-manifold may be obtained from S” by surgery 

around an appropriate framed link. For integers n and t with n odd, let M,,, denote the manifold 
obtained from S3 by integer surgery around the (2, n) torus knot with t additional twists. The 
framing number of the knot is n + t and therefore M,,t will be an integral homology sphere for 
t = -n + 1 and a rational homology sphere when t # -n. 

Example 11.1: The mirror image of M,,, is M-,, -, for all n and t. The Poincare homology 
sphere is realized as M,,-, and the framed knot in S3 giving rise to this manifold is shown in Fig. 
1, where the knot is given the blackboard framing. This diagram also serves to identify positive 
twists, the two extra curls being negative twists. 

2. The g-symbols 
Throughout this paper, r E N will denote the order of a root of unity q. Set I= { 0, 1 , . . . ,r - 2). 

Let A=q1’4 and define the q-numbers by 

InI =A2"-A-2n 9 A*-A-2 ' 

The q-factorials are defined by [n] !q= II:= 1 I q [ ‘1 . A triple of non-negative integers (a, b, c) will 
be said to be q-admissible when b+c-a, cfa-6, a+b-c, and 2r-4-a-b-c are all posi- 
tive and even. 

If a is a non-negative integer, set Aa = ( - l)a[a + II4 . If (a, b, c) is a q-admissible triple, 
set 
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FIG. 1. Knot for Poincarg homology sphere. 

iqb=( - 1) (a+b-c)/2A[a(a+2)+b(b+2)-&+2)]/2, 

rY(a, b, c)=(-l)X 
[x+ l]!q[X-u]!q[X-b]!*[X-C]!q 

C4q~l!,[cl!, ’ 
where 2x = a + b + c. The latter expression is known as a &net. 

Suppose that {ai}&, are non-negative integers such that (ai, ai, ak) is a q-admissible triple 
for each (i, j, k) ES where S={(1,2,3), (1,4,5), (2,4,6), (3,5,6)}. If the edges of a tetrahedron are 
numbered l-6 as shown in Fig. 2, then the elements of S are precisely those triples of numbers 
whose associated edges share a common vertex; that is, the elements of S index the vertices of the 
tetrahedron. Considering the integer ai to be placed on the ith edge, it is given that those triples of 
integers on edges emerging from any vertex form a q-admissible triple. Define the associated 
tetrahedral net (a variant of the quantum 6j-symbol) to be 

[z: ;: :j = “;;~~~f5!q sc:$;:“) rI,,L-~;;~;y~:s,!q~ 
Here 2xU=Eii,vai for each v ES while if e denotes a pair of opposite edges, of which there are 
three, then 2ye=Ci,,Ui. 

It is easily verified that when all indices are elements of the set I, the quantity Aa along with 
the values of @nets and tetrahedral nets are all nonzero. The &net depends in a totally symmetric 
way on the three indices, while the tetrahedral net exhibits the S4 symmetry of the tetrahedron. 
The special values 

FIG. 2. Tetrahedral net. 
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A;,“= 1, e(a, a, O)=A,, =qu, a, i) 

will be used in the next section. 

3. Symbolic notation 

The final main piece of notation used in this paper is symbolic. Let B, denote the mth 
Bernoulli number, as defined by the generating function 

m B,P z 
c m!=- m=O ez-1’ 

(11.2) 

Following Ref. 24, we will use a symbolic notation employing the symbol B so that B”’ refers to 
B, . This has the particular property that 

b-l 

z210 f(i) = ]a~~.f(X)dX (11.3) 

for integers a and b. Using f(i) = (i), we get 

for all a,b EN. Since both sides are polynomial functions of a and b, this equality also holds for 
any a,b EQ. 

Put 

I Bf314 

B,=2 xm dx. 
Ls+1/4 

Using the generating function for B, in (11.2), it follows that 

- B,p 
’ m! 

-=qe~~4+e-z’4)-1e 
m=O 

(11.4) 

In particular, b,=O for m odd while go= 1, L?,=-l/16, 1?,=5/256, 1?,=-6114096, 
is= 1385/65 536, and B,o=-50 521/l 048 576. It follows from (11.4) that 

m 
2m 

El i s=o 2s 24sg2s=s = m 09 

from which one deduces that 24mi 2m is an odd integer for all m. Indeed, 22mgm is the mth Euler 
number and other expressions for B,,, are 

B,=4i.m! 5 (- 1)‘(2n-i(2s+ 1))-m-‘=4 
$=-cc I 

m (iz)” dz 
--m e2 7rz+e-2m’ (11.5) 

the series is absolutely convergent for m>O and convergent, but not absolutely convergent, for 
m=O. For large m, it may be seem that B2,--4/K’(2m)!( -4r2)-m. 

Suppose now that f(x) is a polynomial function of x. Then we may write 
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FIG. 3. Local labels at a vertex in 9. 

(11.6) 

using a symbolic notation in which Bm is replaced by B, . In this notation, f(B) =f( -B) for all 
polynomials f. From (X5), it follows that an integral presentation for f (8) is given by 

(11.7) 

B. A summary of a state-sum formulation of invariants 

Suppose that M is a 3-manifold obtained by surgery around the framed link L in S3. Represent 
L by a link diagram 9 with the blackboard framing and place the checkerboard coloring on the 
regions into which B divides the plane where the exterior region is unshaded. The 51, Witten- 
Reshetikhin-Turaev invariant of the empty link in M, at the r* root of unity q, will be denoted 
Z,(M). We here summarize the state-sum formulation of Z,(M) as described in Ref. 12. 

Define a state model in which what is meant by a state is an allowed assignment of an element 
of I to each of the components of L as well as to each of the regions into which $9 divides the 
plane. Such an assignment is said to be allowed so long as the infinite region is labeled 0 and, for 
each edge of g, the triple of integers assigned to the two adjacent regions and the component 
containing the edge form a q-admissible triple. For a fixed state CT, define local weights on each 
vertex, edge, face, and component of 8 as follows. If e is an edge of ~8, set 

w,(u)=B(a, b, c)-X, 

where a, b,c are the assignments given by u to the component of L containing e and the two 
regions adjacent to e and x is the Euler characteristic of the edge (1 unless the edge contains no 
vertices, in which case it is 0). If f is a face or component of B set 

where x= 1, unless f is a face containing no vertices in which case x=0. Finally, if v is a vertex 
of B, set 

w ((T)=(~~*yy~~‘y 
a b j 

” b c 1 1 c d i’ 

where i,j and a,b,c,d are the labels assigned to the two components of L and the four regions 
meeting at v, respectively, while E= +- 1 according to the orientation of the crossing (over/under) 
relative to the local shading of regions. The convention on local labels and the sign E is determined 
by Fig. 3 in which the sign is positive. 

J. Math. Phys., Vol. 36, No. 11, November 1995 



R. J. Lawrence: Asymptotic expansions of WRT invariants 6173 

FIG. 4. Link diagram for MS,* 

To the state (T we now assign a global weight 

WLAO = rI w,blrJ-s WA(+) rI WfwrInrr wc(d* 
vertices regions 

u e f c 

The invariant Z,(M) is now obtained from the partition function of this state model by renormal- 
ization. so that 

Z,(M) = G;“+G:“- 
St2 CT wsAu)* 

where n + and n _ are the numbers of positive and negative eigenvalues, respectively, of the linking 
matrix defined by the framed link L. Also, G + and G _ denote the partition function evaluations on 
an unknot with framings 1 and -1, respectively. 

Finally, to simplify computations, it may be noted that if a link is changed by altering the 
framing on one of its components, then the global weight associated with a state scales by the term 

(- l)QfAh+2)f, 

where n denotes the number assigned by the state to the component and t denotes the number of 
positive twists added. Applying this fact to compute G, one obtains 

A-3’ 2r- 1 
G,= 2 (_ l)aA’++2)A;, 

ael E(A-~ -A2> azo (- lYAea2, 

which is a Gauss sum. For odd r, putting q=A4, one has 

G,= 

(11.8) 

(11.9) 

One important property of the invariant Z,(M) is that it transforms according to q H q- ’ when 
the manifold M is replaced by its mirror image. 

C. Computing the invariants 

In this section we apply the method of Sec. II B to compute Z,(M,,,) for odd n with n # - t. 
Let Qn be the link diagram of the (2, n) torus knot containing n vertices with n +2 regions, 
precisely two of which are unshaded in the associated checkerboard coloring. Figure 4 shows 3s; 
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the associated blackboard framed link defines M,,c. 
In the state model for Z,(M,,,) described in Sec. II B, the states are indexed by a pair a,i E I, 

where a is the label assigned to the single component of L (and thus also to the n shaded regions) 
and i is the label assigned to the interior unshaded region. The only constraint is that (a, a, i) be 
a q-admissible triple; that is, i must be even with OG~nin( 2a, 2r - 4 - 2~). The n vertices all 
have E= - 1 and so the global weight contribution to Z,(M,,J associated with this state for the 
diagram 9,, is 

The invariant for the manifold M,., is therefore 

r-2 min(a, r-2-a) 

(- l)arAa’(a+2kAaA2j(( - l)a-iAa(a+2)-2j(j+l))-n, 

(11.10) 

where 6=sgn( n + t) and we have put i = 2 j. 

D. Reformulating the sum 

In this section we reformulate the sum in (II. 10) into a more manageable form for the purpose 
of computing asymptotic expansions. Putting a = b - 1 and j = k - 1 gives 

r-l min(b, r-b) 

G&(M,,,)=(- l”bzl (- 1)(‘+1-“)bA(‘-“)(b2-1)[b]q kzi (- l)“kq”k(k-1)‘2[2,+ 114. 

(11.11) 

Since [-a],=-[~]~, the inner surmnand scales by (-l)‘+ ’ = 1 under the transformation 
k-t 1 - k; indeed, under this transformation, the term A 4k-2/(A2-A-2) in [2k- II4 transforms to 
the other half of [ 2 k- lls . Therefore, replacing the double summation by one over a diamond for 
(b, k) defined by max(b + 1 - r, 1 - b)SkSmin(b, r-b) doubles the result, while if one of the 
terms of [ 2k - I] Q is simultaneously removed, then the result remains unchanged. Next, change 
variables to n = k + b and y = k - b; the region of summation now consists of those integer points 
(x9 Y)E[l, rlX[1 - r, 0] for which x + y is even. Thus 

G&W+f,,t) = ‘,:?:2;’ xil ,$- (- 1) (X(t+ l)+,‘(zn-t- 1))/2A 1/4(t+n)(X2+yz)+ l/2(%-t)Xy 

x+2; 

XV 
(3-fl)x+(l-n)y_A(1-n)x+(3-n)y). (II.12) 

For the rest of this paper we assume that r is odd. Under the transformation b-r r - b, the 
summand in (11.11) scales by a factor ( - l)r+(r’b)(r-n)A(r-n)r2, since [r- blq= [b], . Since r is 
odd, this means that a factor (1 - ( - Ar2)t--n) may be extracted from the sum by restricting the 
region of summation to even b. In (11.12), this results in a restriction of the region of summation 
to those integer points in [ 1, r] X [ 1 - r, 0] whose coordinates are congruent module 4. Thus, 
putting q =A4, 
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G&(M,,,)= ((A;y:2t;22 (I-(-Ar2& i ,x,y(qg(x’Y)--~(Y,x)), (11.13) 
x=1 y=l-r 

x=y(4) 

where 

sx,y=(- 1) (x(c+ l)+y(2n-t- 1))/2 
9 

gk y)=~(t+n)(x2+y2)+$(3n-t)xy+t(3-n)x+$(l-n)y. 

Observe that g(x, y) takes integer values while s,,~ = (- 1 )“y on the region of summation in 
(11.13). Since r is odd, we may define a ZlrZ-valued function gi(n, y) on ZXZ for which 
16g(x, p)=l6gi(x, y)(r). Clearly g,(x, y) is well defined on ZlrZxZlrZ, that is, 
g,(x+r, y)=g,(x, y+r)=g(x, y) as elements of Z/r-Z. The double sum in (11.13) can now be 
rewritten as 

,il -jr (- l)Yqgl(x? Y)+( - l)*yl(Y. x) 

i%(4) 

=il yljr ~-I~ypp’(x~ywir $, (- l)xqgl(Y-w+r) 

y-x(4) y-r=,x+r(4) 

y=x(2) 
I 

b=a+ l(2) 

Xqg,(a+(l+r)/2,b+(1-r)/2) 
f 

where in the last line we have changed variables according to x = a + i( 1 + r) and y = b + i( 1 - r). 
The exponent of q in the last line may be rewritten as a( 3u + b + 2) + G(u, b) where 

G(u, b)=; (u+b)2+ 
t-n 
16 (u-b)2- i EZlrZ. 

Combining this with (11.9) in (11.13) and observing that - A” = A-‘*, we obtain 

Z,(M,+,)=(- l)t+lrAn-r+6 
1 +A.(nftb’* xca, b)EX( _ l)bqG(a. b)*(1!4)(3a+b) 

1 +A+* (p- l)Z;~r-qsa* ’ (11.14) 

where cy= (r - 1)/2 and X denotes the set of integral points in [-a, cr]X[ - (Y, a] whose coordinates 
have opposite parity. 

It may now be verified that the expression on the right-hand side of (11.14) is invariant under 
the simultaneous transformation on the variables t, n, and q in which I+ - t, n+ - n, and 
4-4, so that the manifold M,,, changes to that with the opposite orientation. The only term for 
which this is not immediate is the sum over X in the numerator. For this term note that G 
transforms to -G under t+ - f, n-t - n so that applying the transformation (a, b)+( - a, - b) 
now verifies invariance. 

For the purposes of investigating the behavior of Z,.(M,,,) as a function of q when r varies, 
it is convenient to consider a slight variant of Z,(M,,,) defined as follows. Let c,(m) = Aem( 1 
+ Ahmr2). Let i?!,(M,,,) be given by (- l)‘+” A 2n times the ratio of the sums involved in (11.14), 
so that 
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c,(n+t) _ 
Zr(“n,t) = c(s) Zr(“n,t)* r 

In particular, Z,(M,,,) can be written as a polynomial in q. 

III. CONGRUENCE PROPERTIES OF SUMS OVER SPECIAL SETS 

Throughout this section, it is assumed that r=2a+l is an odd prime. All parameters are 
integral and all congruences are modulo r, unless otherwise stated. Also, X denotes the subset of 
[-a, LU] X [ - CY, a] consisting of integral points whose coordinates have opposite parity. 

A. Gauss sums 

Before investigating the behavior of the sum in the numerator of the right-hand side of (11.14), 
we will consider that of the Gauss sum in the denominator. Put 4=ek. Then 

r-l 

c $a*=, y$+; u2i. 
a=0 

However, { 1 ,...,r- 1) forms a cyclic group of order r- 1 under multiplication modulo r and 
therefore, 

r-l 

c ,-( a’ 
-1, if (r-1)/i, 

a=1 0, otherwise. 

Hence 

r-l 
c qc,2= _ W(‘- lv2 

a=0 ((r-1)/2)! +“(k’-‘)* (III.0 

This equation holds modulo r, in the sense that the coefficient of k’ in the expansion of the 
left-hand side is a rational whose denominator is not divisible by r, for 0s i< r- 1. Furthermore, 
for each i, this rational is congruent module r to the coefficient of k’ in the right-hand side. 

B. Sums over X 

Next consider sums of the form involved in the numerator of (11.14), that is, of functions 
( - l)yf(x, y) over the region X, where f is a polynomial in a and 6. Let (“,) denote the usual 
binomial coefficient with (“0) defined to be 1 for all x. Now the functions {a ! (i’2> la E NU{O}} form 
a basis over Z[1/2] for polynomial functions in x with coefficients in Z[1/2]. Indeed, working 
modulo r, only those basis elements with a< r are relevant. Therefore, it is only necessary to 
compute sums of the form 

where 0 Ca < b < r. Note that Sa,b is antisymmetric in a and b. 
Lemma 111.2: 
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Proof: Assume that O<u<b<r. Let ch = Ex~-~(“,‘2) for i=O,l. Then s,,b=c~c~-c~cj,. Ob- 
x-i(*) 

serve that 

a+r 

cz+c;= c xl2 
( i( 

= [(~+rWl+l 
x=-a a u+l )-( -,‘+“:“I)-0. 
x even 

Thus Sn,b= - c~(c~ + ci) and the first case of the lemma is now immediate. 
Next note that (,C t) ~0 unless x= - 1, in which case it is = 1. Thus c:- t + cj- t = 1, so that 

&-,‘-c,O= c xEL:;‘dl,, (z)=(‘%y-( -,‘:‘“‘j. 
Finally, from the observation that 

- l/4, if cy is even, 
-314, if LY is odd, 

the lemma now follows, since XEy implies (f)=(i) so long as O+z<r. n 
Lemma 111.3: Suppose that f(x, y) is a polynomialfunction over Z[1/2], of x and y. Let F(x) 

denote the sum, over all positive integers j, of the coeficient of yjCr- ‘) in f (2x, 2y) -f (2y, 2x). 
Then 

(,,& (- 1)yf(x9 Y)= f (- l)W@. 

Proof Let f& denote the coordinates of f(x, y) with respect to the basis e,,b=(“,‘2)(g’2). 
Then, by Lemma 111.2, 

However, with respect to the basis {(i) IO C a < r} for polynomials in x, the coefficient of (,.E t ) in 
xa is 

0, for OCa<r- 1, E 
-1, for u=O(r-1) and a # 0. 

Thus 

fa,r-l -fr-l,O-,il (coeff. of t yj@-l) 
0 in f(2y, 2x)-f(2x, 2~)) 

= -coeff. of 
0 

z in F(x). 

However, for any polynomial g, 

so [ ( TFl) -( ~~l)}(coeff. of (i,) in g(y))= /~~,::g(y)dy= F7 (III.4) 
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using (11.6), while the summand is ~0 for a >r. The lemma now follows by combining these 
results. n 

In particular, if f has degree less than r- 1 in x and y independently, then 

(x,xx (- 1JYf(x7 y)=O. 

IV. ASYMPTOTIC EXPANSIONS 

In this section we use the results of Sec. III to derive an asymptotic expansion for ZJM,,,). 
Throughout this section r will be an odd prime while n and t are integers with n odd and r # - n. 
Also, q =ek. 

A. Proof of integrality 
Theorem lV.l. For any odd primer, Z,(M,,,) may be represented by a polynomial in q with 

integer coefficients. 
Proofi By (11.14), we know that Z,(M,,,) can be written in the form 

.i!,(M,,,)=( - l)‘+aA2” 
q,, b)EX( - 1 )bqG(a. b)+1N3a+b) 

(q-s- 1)Z;;bq8a2 . 
(IV.2) 

Let R, denote the quotient of the ring of polynomials in q with rational coefficients by the ideal 
generated by (qr- 1 )/(q - 1) and let fr(q) denote the element given by the right-hand side of 
(IV.2). Next observe that in R,, (E~~bq~“2) . (Z~~bq-Sn2) = r so that 

(- l)‘+n r-l 

t-r(q)= r(q-” 
_ 1) (a,;Ex czo (- l)bqG(a, b)+1/4(3a+b)+n/2-6c2. 

Since q’=l in R,, the sum on the right-hand side of this last expression may be considered as a 
polynomial in q of degree at most r- 1 and such that the coefficient of qp, for O~p<r, is 

since #{c ~WrZ~c2~x}~1+~(r-1)‘2. Us’ mg Lemma III.3 it follows that these coefficients are all 
integers divisible by r. Also, the sum of all these coefficients is 

(a,GEx (- l)b.r=O. 

Therefore, (q- ‘- 1 )f,(q) is equal in R, to a polynomial in q with integer coefficients of sum 
zero. Hence fr(q) is equal in R, to a polynomial in q whose coefficients are rationals which have 
denominators not divisible by r. n 

The polynomial in q for Z,( M,,,), whose existence is given by this theorem, when considered 
as a polynomial in h = q- 1, has the coefficients of hi uniquely determined, modulo r, for 
0 <is (r - 3)/2. Indeed, Theorem IV. 1 is a special case of a theorem of Murakami;20 however, it 
is instructive to use the techniques of Sec. III to verify its validity for our particular manifolds. 
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B. Computation of asymptotic expansion 

Consider the summation in the numerator of the right-hand side of (IV.2). The coefficient of k’ 
in this sum is 

; (xz x (-- I)‘( ‘3x7 Y)+ ; (3x+y))‘, 
3 E 

(IV.4) 

the summand of which is a sign, times a polynomial in x and y of degree 2i with coefficients in 
Z[ l/2]. Suppose that i<r. Then by Lemma 111.3, the sum in (IV.4) is congruent modulo r to 

K {coeff. of y’-’ in (2G(2B, 2y)+38+y)‘-(2G(2B, 2y)+B+3y)‘}, 
2 

and in particular is ~0 when 2isr- 1. Put i=j+(r+ 1)/2 and observe that i!-((r+ 1)/2)!(3/ 
2) * + * (j + l/2). Hence the sum in the numerator of (IV.2) has the property that coefficients of k’ 
for is r - 1 are congruent to those in 

(_ l)a(k/2)(r+ I)/2 cre3v2 
c 

(k/2)j 
2((r+ 1)/2)! i=~ (3/2)***(j+ l/2) (‘Oeffe Of “-’ 

in (2G(2b, 2y)+3B+y)jf(‘+“‘*-(2G(2B, 

Lemma N6: Suppose that g(y) =ay*+ by + c for some 
O=Zjs(r-3)/2. Then 

(r-3)/2 

c 

(kl2)j 
j=. (3/2)...(j+1/2) ccoeff* Of Y’-’ in 

2y)+B+3y)j+(‘+‘)‘*). (IV.5) 

a,b,cEZ[1/2] with a f 0 and 

g(Y) j+(r+ I)/* 
> 

a(‘- 1)12 
= O(k(r- 1 W) + ~ 

k 
(q1/2(c-b2/4a)- 1). 

Proof: The coefficient of y’-’ in g(y)i+(r+1)‘2 is easily seen to be 

j+l 

c a(r-l)/*-Pb*PCj+l-P 

p=o 

and so the left-hand side of the equality in the statement of the lemma is 

(r-3)/2 

a(r- lPC 
c j=. (3,$.:;;): l/2) x (;)‘( j+&+ ‘) (;:;:l)’ 

However, 

m j+l 

,z pzo (3/2).X::;+ 112) (j+lp+ ‘) (jj+‘,‘::) = & (g*(1-y’4)- I), 

from which the result is derived by combining it with the last statement. n 
Considering both 2G(2x, 2y) + 3xfy and 2G(2x, 2y) fxf 3y as quadratic functions of y 

in the form of g(y) in the above lemma, we find that both have a = (t + n)/2. Applying the above 
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lemma to (IV.5) and combining it with (III. I), we deduce that the coefficients of k’ in an expansion 
of the right-hand side of the expression for Z,( M,,J in (IV.2), for 0 s i G (r - 3)/2, are congruent 
modulo r to those in 

(- l)‘A*nltfnlwY* 4:;(y-$yB) (IV.7) 

where A,(x) and A*(x) are the values of 1/2(c- b2/4a) for the two quadratics. This holds for 
t fn f 0; when t +n=O the first (r- 1)/2 coefficients of k’ are all divisible by r. Note that in 
general jt+nj(‘-I)‘* is congruent to the quadratic residue of It + n I modulo r. Indeed, 

2(t+n)Al(x)=4n(t-n)x2+4tx-&(t+n)-3, 
(IV.8) 

2(t+n)A2(x)=4n(t-n)x2+4(t-2n)x-$z(t+n)-z. 

The expression in (IV.7) should be interpreted purely formally as representing a power series in 
h = q - 1 or in k. To find the coefficient of a certain power of h in the series, that coefficient is 
found in the power series for the exponentials in the numerator and the resulting polynomial in B 
is evaluated with &’ replaced by j, . We have now arrived at the following theorem. 

Theorem IV.9: When r an odd prime, the polynomial in h = q - 1 representing z,( M,,,) given 
by Theorem IV1 has the property that the coeficients of hi in it, for O~i<(r-3)/2, are congru- 
ent mod&o r to those in It + n ICr- ‘)‘*Z,(M,,,) where 

Z&M,,,) = (- l)‘A*” 
qA,(h-qA2(% 

2(1-P) 
(IV. 10) 

and S=sgn(t+n) while A,(x) and A2(x) are given by (N8). 
Example ZI?ll: The coefficient of ho in Z&M,,,) EQ[[h]] is 

t- 1)’ 
~(-l)‘s(A,(B)-A~~~))=(-l)‘~~=~, 

since Bo= 1 and B, =O. 
Example IVl2: The coefficient of h’ in Z,(M,,,) is 

C-1)‘: (A,(B)-A,(B))(n-t+3S+2A,(B)+2A2(tj)) 

=:,i’,‘; (3n2-5-(n+t)*+3S(t+n)). 

Example IV13: The manifold M,., is a Z-homology sphere for I t + n I = 1. In this case, t + n = 8 
and so Z,(M,,,) = g,(M,,,). The formal power series in h given by Z&M, f) now has the property 
that the first (r - 1)/2 coefficients are congruent modulo r to those in a rational polynomial repre- 
sentation of Z,(M,,,) not involving denominators divisible by r. This property uniquely identifies 
Z,(M,:t) and it is therefore the rational formal power series whose existence was proved by 
Ohtsukr m Ref. 19. By Example IV. 11, the coefficient of ho is just 1. The coefficient of h * given 
in Example IV.12 reduces to @3n*-3)/4, which for odd integers n is always divisible by 6. 
Indeed, it is 6 times the Casson invariant of M,,t, as was shown for general Z-homology spheres 
in Ref. 18. 
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Example ZKl4: The expression (IV.10) may be used to determine the asymptotic growth of the 
coefficients of powers of k in the formal power series for Z&M,,,). Observe first that if B,(x) 
denotes the nth Bernoulli polynomial, then 

for large m. The second step uses B,(x)= -m!(2rri)-*C, + o~-me2”isx which is valid for 
OGX< 1 so that this step is valid for O<lcul< l/4. However, B,(x + 1) = B,(x) + mxm- ’ and there- 
fore whenever 4a $ Z, the above estimate on the growth of B, remains valid. The coefficient of km 
in the expansion of ga(B+a)2 is therefore 

4 (2m)! m 
--- 

n- m. 1 ( i -s cos 2rrcr, (IV.15) 

for a$ $+ ;Z, while the coefficient of km in the expansion of qfcx) where f(x) = ax2 + bx + c grows 
as in (IV.15) with a=b/2a. Since the leading terms in A,(x) and AZ(x) are identical and nonzero 
for n # t, the coefficient of km-’ in the expansion of Z&M,,,) is therefore 

2( - l)f (2m)! 7r(t-2n) 
--m! ( ~YI{D:I))~( ‘OS &-cos n(t-n) )’ ?T 

The ratio of the m th to the (m - 1)-th coefficient in the expansion in powers of k (and hence also 
for the expansion in powers of h) therefore grows with m as 

2n(n-t) 
- 7r2(n+t) m’ for n # t. (IV.16) 

When n= t, Al(x) and AZ(x) are both linear functions and the formal power series defined by 
(IV. 10) has a positive radius of convergence; see Sec. VI for a closed formula for the holomorphic 
function so defined. 

Note that Theorem IV.9 constructively demonstrates the existence of Ohtsuki-type formal 
power series even for manifolds which are not integral homology spheres; see Ref. 22. However, 
in such cases care must be taken over the normalization of Z,(M,,,) which is employed. In the 
case of the manifolds M,,, discussed in this paper, we have seen that the appropriate normalization 
is 

* Zr(MnJ7 
r 

where c,(m) = A -“( 1 + Ammrz), the remaining dependence on r being by a factor which is the 
quadratic residue of 1 I + n I. 

C. Integrality for homology spheres 

It follows immediately from (IV.10) that the coefficients in the expansion of Z&M, ,) in 
powers of h are all rational. In this section the denominators in these coefficients will be dis- 
cussed. 

In order to do this, it will be convenient to express polynomials in a single variable, x say, in 
the form of linear combinations of binomial coefficients (k), for m 20. For any ring RCQ, let 

P(~~R)=[~oa,(~)( a, E R are almost all zero . 
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Since f(x+ 1) -f(x) =CrEOca+ t a (“) when f(~)=X~=~c,(~), the following lemma may be ob- 
tained by induction. 

Lemma IVl7: A polynomial f(x) lies in P(x, R) if and only if f(x) E R for all x EZ. 
Lemma N18: Zfa>O, u and v # 0 are integers, then vZa(~‘“) EZ. 
Proof (I thank G. Freiman for providing this proof): Now Vet= (v”la!)u(u -v).*.(u 

- (a - 1)~). Suppose that p is a prime dividing both v and a !. The greatest power of p dividing 
a ! is pf where 

t=a+;+ [I [ 1 . ..<a+.+ a 

P P P P --*= p-lea- 

Thus any prime dividing v will appear in a ! with a power which is at most that in which it appears 
in v’. 

Suppose now that p is a prime dividing a. 1 but not u. Then the number of elements of 
{ U,U-v,...,U--(a-1)~) divisiblebypm willbeeither[alpm] or[alp’“]+l,foranymEN.I’he 
number of powers of p dividing u(u-v)***(u-(a-1)v) is therefore at least 
[alp] + [alp21 ++*a , which is the greatest power of p dividing a !. We have now shown that any 
prime dividing a ! will appear in a ! with a power which is at most that in which it appears in 
v”u(U-v)***(U--(a-1)~). n 

Combining the last two lemmas, we deduce that whenever v ,a EN and k,l E v - ‘Z, 
v2ackx;lr2 ) E P(x, Z), while (l/d’ ) - (‘L4 ) E 2-4aZ. Recalling (IIIA), we deduce that 

E 2-4a-3v-2a~ , 

so that qkB+lBZ E Z[ l/2, l/v][[ h]]. The following theorem now follows immediately from 
(IV.lO), since 8(t + n)Ai(x) is a quadratic polynomial with integer coefficients for i = 1,2. 

Theorem IV.19: The coefficients of powers of h in Z,(M,,r), when considered as a formal 
power series in h, lie in Z[ l/2, lllt+nl]. 

For Z-homology spheres, Theorem IV. 19 gives Z, E Z[ 1/2][ [ h]] . However, in this case, it is 
believed that one can obtain the following stronger result. 

Conjecture N20: When M,,, is a Z-homology sphere, Z&M,,,) is a formal power series in 
h = q - 1 with integer coefJicients. 

Discussion: Suppose that M,,, is an integral homology sphere, so that I r + n j = 1 while S=n 
+ r. Then by (IV.lO), it suffices to show that $A2n(qAl(B) - q”2@)) E Z[[h]]. By (IV.8), 
-S(Ai(xS)+n/2)=fi(x) depends only on ti=na while 

fl(X)=2n(2n- 1)X2+2(n-*)x- y+ ;, 

f2(x)=%i(2i- 1)x2+2(%i- 1)x- ;+ $. 
Since in our symbolic notation f (i?) = f ( -8)) (IV. 10) may be reduced to 

qf*& - (Sf,G) 
ZdMn,t)= 2tq-1j 7 

where q=q-s. The conjecture now reduces to the question, does q fz(‘) - qfl(‘) lie in 2Z[ [h] ] for 
all odd integers TI? 
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Example IK21: In the course of the discussion of Conjecture IV.20 it was observed that for the 
subfamily {M,,,I In + II= 1) consisting of Z-homology spheres, Z,( M,,,) depends only on n = n(n 
+I), as a function of cj=q -(n+r) As a power series in h = S - 1 one can obtain ’ . 

Z,(M,,,)=(Y~+CY$+L~~~~+... , 

where a,= 1 and cu, is a polynomial in n of degree 2m. By geometric arguments it follows that 
Z,=l when n=+l and so one may write cr,= (- l)“(n*- 1)/3,/S, for m EN, where & is a 
polynomial in fi of degree 2m -2. Indeed, it may be computed that & =6, P2=(25n2- 16n +3)/4, 
and /3s=(427ri4-528n3+230n2-48n+ 15)/48. It can now be seen explicitly that these first few 
coefficients are integral. As was mentioned already in Example IV.13, a,/6 is always an integer, 
namely, the Casson invariant of the 3-manifold. From the above explicit calculation it can be seen 
that CY* is divisible by 3 and is an odd multiple of cu,/6. 

Example N22: For the Poincare homology sphere M -3.2 we have S= - 1 so that S = q and the 
first 14 terms of the expansion are 

Z,(M-3,2)=1-6h+45h2-464h3+6224h4-102 816h5+2 015 237h6-45 679 349h7 

+l 175 123 730h8-33 819 053 477h9+1 076 447 743 008h” 

-37 544 249 290 614h”+l 423 851 232 935 885h’* 

-58 335 380 481 272 491h’3+e.. . 

Some other computations of Z, for a number of Z-homology 3-spheres in our series are collected 
below: 

Zcc(M3,m4)= 1 -6h+69h2- 1064h3+20 770h4-492 052h5+ 13 724 452h6 

-440 706 098h7+... , 

Z,(M-5,4)= 1- 18h+41 lh2- 12 900h3+523 445h4-**. , 

z,(kf,,-,)= l- 18h+531h2-21 180h3+ 1 074 975h4--... , 

Z,(M-7,6)= 1-36h+ 1674h2- 106 884h3+8 799 855h4-**. , 

Z,(M7,-s)= 1 -36h+2010h2- 152 244h3+ 14 703 739h4-*.* . 

It can be seen that the coefficients grow very rapidly with the complexity of the manifold. By 
(IV.16), the ratio between mth and (m - 1)-th coefficients in the expansion of Z,(M,,,) in powers 
of h for In +rI = 1 is asymptotically 2n( 1 -2ii)mlw2. 

V. RECONSTRUCTION OF WRT INVARIANTS 

In this section we show how the values of g,.(M,,,) for odd primes r which are not factors of 
t + n may be reconstructed from the formal power series Z,( M,,f). Throughout, r is an odd prime 
and all congruences are modulo r unless explicitly stated to the contrary. Let Z, denote the set of 
those rationals whose denominators are not divisible by r. Let Z,[ [h]] denote the ring of formal 
power series in h = q - 1 with rational coefficients whose denominators are coprime to r. We also 
use the notation {c}~ to denote the quadratic residue of c modulo r; that is, 

if c is not a square in ZlrZ, 
if CEO, 
otherwise. 

J. Math. Phys., Vol. 36, No. 11, November 1995 



6124 R. J. Lawrence: Asymptotic expansions of WRT invariants 

Thus the number of solutions in Z/r-Z to x*=c is l+(c), . 
Lemma Kl: For any a,s E ZlrZ, 

if a=O, 

if af0 and s#O, 

(r-l)(a),., if af0 and s=O, 

where the sum is over a complete set of residues mod&o r. 
Proof For a =O or ~‘0, the statement is immediate. Assuming a,s + 0, let ti be the inverse 

to a in ZlrZ. Then 

7 {s + ax*),= {al,? {s~+x*), 
={a},(#{(x, y)EZ/rZXZ/rZlx*+sci=y*}-r) 

={a}r(#{(u, u)EZlrZXZlrZjuu=-sG}-r)=--(a),, 

where in the penultimate step the change of variables u =x-y, u =x + y has been employed. H 
For a+O, the result of the sum in the statement of Lemma V.l can be written as 

(rS,,o- I){a}r, using the Dirac delta function S, which is 1 if T is true and 0 otherwise. 
Lemma K2: Suppose that f(y) is a Z,-valued polynomial function and that a and b are 

rationals whose denominators are not divisible by r and whose dtperence is divisible by r. Then, 

b-a r (qfw+...+q f(r- 1’) - /;++abqf(Y) dy 

is divisible by q’-1 in Z,[[h]]. 
Proof Without loss of generality, we may assume that a <b. Suppose first that a, b E Z with 

e=(b-a)lrEN. Then 

I 

a-lfcr s-l r-l 

B+bqf(Y) dy= 2 qf(“d=x c qf(n+lr+k)=e(qf(o)+...+qf(‘-‘)), 
B+U I?l=Cl I=0 k=O 

using q’= 1 along with the fact that X= y implies f(x) =f(y). As formal power series in h, the 
above equalities hold modulo qr- 1. The result thus holds whenever a and b are integers. 

Next observe that if K(h) E Z,[ [h]], then the statement that K(h) is divisible by qr- 1 in 
Z,[[h]] can be written as a countable sequence of Q-congruences (modulo r), each of which 
involves only a finite number of coefficients of powers of h in K(h) . Since the ‘coefficient of h’ in 
the expression in the statement of the lemma is a polynomial in a and b (whose degree depends 
linearly on i) and the statement of the lemma holds for integer values of a and 6, it therefore holds 
for all a,b eZr. n 

Lemma K3: Suppose that Q(x, y) is a quadratic polynomial in x and y whose homogeneous 
part of degree 2 is symmetric in x and y. Assume that the common coefJicient of x2 and y* in 
Q(x, y) is af0. Let A(x) and A’(x) denote the values in ZlrZ of the discriminant c - b2/4a for 
the two quadratics Q(2x, 2y) and Q( 2y,2x), considered as quadratics in y with coeficients 
dependent on x. Then 

qA’(i) - qA’($ 
2 {dr+;;i; qpcx,& (-l)Y{~-Q(x, y)}, 

is divisible by qr- 1 in Z,[[h]]. 
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Pror$ By definition, X consists of integral points in [-a, OI]X[-cy, CI] for which the parities 
of the two coordinates are contrary. Thus 

,,zEx (-l)‘{~-Q(x, Y%=~& {P-Q(G Y)I,-{P-Q(Y, ~11, 
. y even 

= c {P-Q(G Y)}~-{P-Q(Y, x))r, 
y :wn 

where the two sums on the right-hand side are over domains which are subsets of the set of all 
integer points in [-cu, a]X[- a, a]; the last step uses the antisymmetry of the summand. By 
Lemma V. I, the last sum can be evaluated to give 

,ze, (rs~-At(~~2)=o- 1){-a),-(rsp-A(,/2)z0- 1)(-a},, 

and therefore, 

={ea>, c qA”~LqA(~)a 
y= -[a/2] 

By (II.3), the sum on the right-hand side may be rewritten as 

I B+l+[n/*] 
s= 

B-[a/2] 
(4 

A’bLqW)dy. 

Next observe that 

a iI lr 3r -- =--- 
2 4 4 Or 4-4’ 

Ly 3 r [I 1 r 
I+ - =4+4 or 4+4, 2 

according as r= 1 or 3(4). Combining this with the fact that { - l}r= (- I)(‘-‘)‘* we obtain 

S={- l}r 
I 

B+3/4+(-I)%4 

B+1/4+(-l)a+1r/4 
( qA’b’)- q&‘))dy 

r-l 
(qA%“-qAb’~)dy+; m-o (qA’(m)-qA(m)), 

up to the addition of a multiple of qr- 1 in Z,[ [h]], using Lemma V.2. However, it follows from 
their definition in terms of Q(x, y) that A(x) and A’(x) are quadratics in x which share the same 
coefficient of .r* and the same discriminant. The case when the coefficients of x2 in A(x) and 
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A’(x) vanish modulo r may be dealt with independently. Working modulo r in this case, the linear 
terms differ by at most a sign and when they vanish A(x) = A ’ (x) . In all cases we conclude that 
the sum on the right-hand side of the last equation vanishes; the result follows using (11.6). n 

Theorem VA: Assume that n is an odd integel; r an odd prime, and t E Z is such that I + n is 
not divisible by r. That is, we assume that M,,, is a ZlrZ-homology sphere. Then 
Zr(M,,,)-{lt+nl}~Z,(M,,,) is divisible by (qr- l)/(q- 1) in the ring offonnal power series in 
h = q - 1 with rational coeficients whose denominators are not divisible by r. 

Proof: By (IV.2) and (IV.lO), it is required to show that 

qA,‘i) _ qA26) 
(-1)‘A2”{lt+nI}, 2(l-q-a) -(-l)r+crA2n 

-q,b)EX(- l)bqG(a, b)+114(3a+b) 

(q-8- 1)C.;$q8a2 

is a multiple of (qr- 1 )/( q - 1) in Z,[ [ h]] . Rewriting the expressions, it suffices to show that 

qW% - qAdk 

2 it+n)r+~~~~qp~=,~~x(-l)b p-G(a, b)-:(3a+b) 
I r 

is a multiple of qr- 1 in Z,[[h]]. We have here used the fact that the quadratic residue is 
multiplicative and { - s), = (- qL1 f or a=(r- 1)/2. Recall also that by construction, A,(x/2) and 
A2(x/2) are the values of c- b2/4a obtained by viewing G(x, y)+(3x+y)/4 and G(x, y)+(x 
+ 3 y)/4 as quadratics in y. The result now follows immediately from Lemma V.3 when it is noted 
that the coefficient of the square terms in either of the quadratics just mentioned is (t + n)/ 16.m 

Note that Theorem IV.9 may be deduced from Theorem V.4. The result of this theorem may be 
expressed alternatively as follows. Consider the natural map 

e,:z ;, -& [ 1 Nhl1-t 
Zr[Chll 

((qr- l)l(q- l))U[hll ' 

given by dividing out by the ideal generated by the relation imposed on q by requiring it to be a 
root of unity of order r. Then Theorem V.4 states that 

~r(M,,t)={lt+nl}r~r(Z~(M,,t)), 
so that if Z,(M,,,) ~Z[1/2, l/(t-kn)][[h]] is known, then g,(M,,,) may be obtained as a poly- 
nomial function of q for any odd prime r which is not a divisor of 

It+nl= IfflW,+tv Z)l. 
VI. EXTENSION TO HOLOMORPHIC FUNCTIONS 

In this section we will investigate the extent to which Z,(M,,,) which is defined in (IV.10) as 
a formal series can be viewed as an asymptotic expansion of a holomorphic function of q. 

Write q =ek. As a warm-up, we first investigate q f(j) where f(x) is a real linear function, say, 
axfb for a,b ER. Using (II.4), 

m (ak)n _ 2qb 
4 ai+bcqbx 

n=O 
n!B,= q%q-a’4. 

Thus, for linear functions, f, qf(‘) can be extended from a formal power series to a (possibly 
multivalued) holomorphic function. More generally, for any function f(x), one may use the 
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integral presentation (11.7) to view qfcB) as representing a (multivalued) holomorphic function of 
q, or a single-valued holomorphic function g(k) of k =ln q, defined by 

ekf(iz) & 
* 

~z+e-2Tz’ (VI. 1) 

on the domain of q for which this integral converges. When f is a quadratic function, say, 
f(x) = ax2 + bx + c for some a, b, c E R, the integral converges for a = 0 and for ?X( a k) >O, that is, 
for 1 q/ > 1 or 1 q I< 1 according to whether a is positive or negative. 

However, it is also possible to consider the sum 

2 c 
eri(m+ 1/2)+kf(m/2) 

, 
mEZ+ll* 

(V1.2) 

for functions f for which this sum converges. Observe that the integrand in (VI.l) has poles at 
(m/2 + 1/4)i for m EZ and the residues there are ekfcAm’*- 1’4’/4mi( - 1)” so that a naive appli- 
cation of Cauchy’s residue theorem would indicate that (VI.l) and (VI.2) represent the same 
function. In fact, though, for quadratic f as above, the sum (VI.2) converges for %( uk) <O, that is, 
for [q I < 1 or [q I > 1 according to whether a is positive or negative, so that the regions of definition 
of (VI.1) and (VI.2) are disjoint, for a # 0. Indeed, when a # 0, both (VI.l) and (VI.2) define 
holomorphic functions of In q for which In q=O is contained in the common boundary of their 
domains of definition and their asymptotic expansions about this point are both precisely the 
formal power series qf(‘) previously defined. 

Combining this with (IV.10) we obtain the following theorem. 
Theorem VI.3: For any odd integer n and integer t # -n, the formal power series 

Z,( M,,J in h = q - 1 may be viewed us the asymptotic expansion of the following holomorphic 
function of In q: 

I 

2 (- l)lqm/* 

l-q-” I 

m qAl(iz)-qA2(iz) dz 

--m e2az+e-2rrz ’ 
Z-(MnJ = ( _ 1 )Cqd2 m 

1 -q-6 ,g, (- l)Yq 
A~(m12-1/4)~qA2(m/2-1/4)), 

according to whether the integral or sum converges, where S=sgn(t +n) and Ai(x),A*(x) are 
given by (NS). The domain of dejinition of Z, is In q E CLR, that is, O<lql<a with 141 # 1. The 
integral converges when l<lql<m or O<lql<l and the sum converges when O<Iql<l or 
1 <lql<m, according to whether n(t-n)l(t + n) is positive or negative, respectively. When it is 
zero so that n = t, the following closed expression may be obtained: 

z 

co 

(M 

n,t 

)= (- l)nq3n/8(q-1/8n-q-9/8n) 

(1 -c%q1’4+4-“4) ’ 

where q # 1 and in addition q =0 or q = ~0 is excluded from the domain according to whether 
n>O or n<O. 

VII. CONCLUSIONS 

In this paper, a detailed analysis of the 512 Witten-Reshetikhin-Turaev invariants for a spe- 
cific family of 3-manifolds has been carried out. Although it may appear at first sight that the 
methods employed depended heavily on the simple state-sum form for the invariants which only 
exists for these particular manifolds, the author believes that similar results hold more generally. 
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Conjecture VII.1: For an appropriate normalization Z,(M) of the sI,-WRT invariant, there is 
an invariant, Z,(M), of Q-homology 3-spheres, M, which takes values in formal power series in 
h=q- 1 with coefftcients in 2 [l/2, IH,(M, Z)l-‘1, such that Z,(M) -Z,(M) is divisible by 
(qr- l)/(q- 1) in Z,[[h]], for all odd primes r. Furthermore, Z,(M) can be expressed as an 
asymptotic expansion around In q =O of a holomorphic finction of In q with domain CGR. 

By Ref. 22, it is known that for Q-homology spheres, a formal power series Z,(M) in 
h = q - 1 exists with rational coefficients and such that the coefficient of hi in it is congruent to 
that in z,(M) for almost all primes r and 0 s i G (r - 3)/2. By Ref. 20, the first two terms of an 
expansion of Z,(M) are known for Q-homology spheres. Conjecture 1 would imply that all the 
information on $I,-WRT invariants at prime roots of unity is contained in a new invariant which is 
a holomorphic function. It should also be possible to reconstruct from this function the values of 
Z,(M) when r is composite, but this is likely to involve some deep theory. When sK2 is replaced 
by another Lie algebra, a conjecture of the same form as that above should hold and it is expected 
that, much as for Vassiliev invariants, there will be universal invariants out of which those for 
particular Lie algebras may be constructed. 

. Conjecture Vll.2: When M is a Z-homology 3-sphere, Z,(M) EZ[ [h]]. 
The main obstacle that must be overcome before these conjectures can be verified is a better 

understanding of the quantum 6j-symbols entering state-sum expressions for the WRT invariant. 
The coefficients of powers of h in Z,(M) should match those coming from a formal perturbation 
expansion of the Witten’s functional integral arising from Chem-Simons theory; see Ref. 25. That 
is, they should be given by a combinatorial sum, involving the graph cohomology of M, of 
finite-dimensional integrals over the configuration space of points in M. In particular, such coef- 
ficients should be 3-manifold invariants of jinite type, playing a role similar to that played by 
Vassiliev invariants in the theory of link invariants in S3. I refer the reader to Ref. 6 for the close 
connection between perturbative Chem-Simons theory for knots in S3 with Vassiliev invariants, to 
Ref. 26 for a self-contained account of the pretty algebraic structures related to Vassiliev invari- 
ants, and to Refs. 27 and 28 for definitions of finite type for 3-manifold invariants. 

Since, for Z-homology spheres, the coefficients of powers of h in Z,(M) are conjectured to 
be integral, it is natural to expect them to be counting some sets, with appropriate signs, much as 
the first coefficient, the Casson invariant, counts representations of the fundamental group into 
SU(2). If this is indeed so, it is interesting to speculate on how the objects being counted depend 
on the manifold (perhaps only via the fundamental group and signature information), on the power 
of h, and on the Lie group involved (perhaps via affine Lie groups at a suitable level). 

A better combinatorial understanding of the WRT invariants for manifolds is undoubtedly 
needed and long overdue. For example, unlike the related invariants of Turaev and Viro for which 
a description is given in Ref. 29 in terms of a triangulation of the manifold, this has not yet been 
carried out for the WRT invariants. The generalizations and connections outlined here will be the 
subject of future work. 
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