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where H- -H- -C and H- -D- -C are weak bonds 
and make a negligible contribution, leads to a value of 
-2 kcal. Therefore, E5-E2=1 kcal compared with the 
experimental value of 1.0 kcal. 

The preexponential factor for this pair of isotopic 
reactions can be calculated from the difference in the 
entropies of activation. Using the same loose complex 
as above and applying the expression derived by 
Bigeleisens for the calculation of entropy differences 
between isotopic molecules, a value of 0.8 is obtained 
for A2/ A 5, 1.1 being obtained experimentally. The 

8 J. Bigeleisen, J. Chern. Phys. 21, 1333 (1953). 
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assumption of a weak H- -H bond in the activated 
complex for the H + H 2CO reaction is in reasonable 
accord with the experimental data. This leads to 
Eo = E7 and Es = E2• The activation energies E2, E5, Es 
have thus been evaluated relative to E 7• The latter has 
been determined relative to Es and E9,2 where 

(8) 

(9) 

D+ H 2-->HD+ H 

D+ CH4-->HD+ CHa 

A summary of the activation energies thus far obtained 
is presented in Table I. 
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It is shown that the theory of transport phenomena in gases may be so formulated that the potentials 
characterizing the cross sections, which account for intractions between molecules in the binary collision 
limit, are the same as those conventionally employed in investigations of molecular structure. Thus it is indi­
cated that at least some of the essential features of chemical forces may be conveniently introduced into the 
descriptio n of such phenomena. 

I N recent investigations Dahler! and von ROOS2 have 
formulated descriptions of transport phenomena for 

systems of polyatomic molecules taking explicit 
account of internal degrees of freedom. However, in 
both instances the effective potentials appearing in the 
Liouville equations for the statistical description of the 
center-of-mass motion of the molecules were formu­
lated in slowly convergent terms with respect to the 
actual potentials expected to characterize the interac­
tions between such systems. Specifically, these analyses 
have been so developed that, when employed in the 
context of the binary collision approximation for the 
description of dilute gases, the cross sections for colli­
sions will be defined in terms of first-order perturbation 
approximations to the actual chemical potentials. 

It is the purpose of this note to suggest that in 
terms of a suitably modified representation for the 
internal degrees of freedom of the system, some of the 
essential features of chemical forces can be retained in 
the statistical description of the systems presently 
under consideration. In order to develop this suggestion, 
we recall the structure of the Hamiltonian for such a 
system, 

N 

H = L[T(~i) + V(~i) + T(Ri) ] 
N 

+ LV(~i, ~i, Rii) , (1) 
i<i 

1 J. S. Dahler, J. Chern. Phys. 30,1447 (1959). 
2 Old wig von Roos, J. Chern. Phys. 31, 1415 (1959). 

where T( ~j) is the kinetic energy of the internal 
degrees of freedom of the jth molecule; V (~i) the 
potential energy of same; T(Ri) the kinetic energy of 
the center-of-mass motion of the jth molecule, and 
V(~i, ~i, Rii) is the potential energy of interaction 
between particles comprising the ith molecule and 
those of the jth molecule. We have here introduced the 
notation, Rii=Ri_Ri, where Ri is the position of the 
center-of-mass of the jth molecule. We now introduce 
two-molecule wave functions in the conventional 
manner appropriate to the description of the two 
molecules in strong interaction. On defining 

Hii= T(~i) + T(~i) + V(~i) + V(~i) 

+V(~i,~i,Rii), (2) 

we develop the set of eigenfunctions for our present 
purposes according to 

Hiiipaii(~i, ~i, Rii) =8aii(Rii)ipai/~i, ~i, Rii). (3) 

Clearly the ip's have been assumed to be a diagonalizing 
representation in ~ space, and hence they-as well 
as their eigenvalues 8-depend parametrically upon 
the components of the center-of-mass displacements 
RH. Noting that the potential V(~i, ~i, Rii) vanishes 
when the ith and jth molecules are infinitely far apart, 
and defining molecular wave functions according to 

(4) 
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where 

we observe that 

Lim <Pa'i( ~i, ~j, Rii) 
I Rii I~oo 

~q,a,(~i)q,aiW), 

(5) 

(6) 

if one chooses an unsymmetrized representation for the 
bimolecular states, or 

Lim <Pa'i(~i, ~i, Rii)~[q,a.c~i)q,ai(~i) 
I Rii I~oc 

±q,a,(~i)q,ai(~i) ]/V1 (7) 

for a symmetrized representation. Symmetrization is 
here implied with respect to the simultaneous inter­
change of all of the coordinates of corresponding 
particles in the ith andjth molecules. Accordingly, one 
further expects that 

Lim 8aij(Rii)~Eai+Eai' 
I Riil~oo 

(8) 

Both the bimolecular functions <Paij and the Ulll­

molecular functions q,a, are presumed to be unit 
vectors in their respective spaces. 

The eigenvalues 8a, considered as functions of the 
relative displacement of two interacting molecules, are 
the potentials which presumably characterize these 
interactions. It is part of our present purpose to indi­
cate that transport theory in dilute gases may be so 
formulated that, in the binary collision approximation, 
the cross sections describing these collisions are to be 
computed (at least in part) within the context of a 
dynamical scheme characterized by these potentials. 

We may now construct a complete orthonormal set 
of states in the space of the internal degrees of freedom 
of the system of N molecules, i.e., 

(9) 

and in terms of them exhibit the wave function for the 
totality of the degrees of freedom of the system as 

'It(R, ~,t) = L XaI2···aN-IN(R, t)<PaI2" • <PaN-IN' 

(10) 

A distribution function for the external degrees of 
freedom may now be defined by2 

Fala, = (211')-3N/2XaCa,*e( -iK· R). (11) 

In this expression the label a stands for the set of 
labels {a12!Js4" • aN-IN} ; the function Ca'* is the com­
plex conjugate of the Fourier transform of Xa', i.e., 

Cal (Kl .• . KN, t) 

= (211')-3N/2! tJ3NR exp( -iK.Rha,(RI .. ·RN, t), (12) 

and K·R is the 3N dimensional scalar product 
N 

K·R= LKi.Ri. 
i=1 

(13) 

Since the time derivatives of X and C* are directly 
deducible from the wave equation for 'It, it is a straight­
forward matter to show that 

DFala,= (i/Ii) L[Falbg{ 8b5oo,+Uoo+ Too+V·Boo, 
b 

-iK· Boo'} t - {5ab8b+ Uab+ Tab- Bab·V 

-iK·Bab } Fbla], (14) 

where all vectors are to be interpreted as 3N-dimen­
sional and we have introduced the symbols 

D=[(a/at) + Ui/M)K·v- (iii/2M) V'2], 

(15) 

where the nab las with primes at the upper left or right 
are to be interpreted as acting to the left or right, 
respectively. The matrix elements of T, U, and Bare, 

Tab 
N 

= (<Pal2' •• <PaN-IN' L[ - (1i2/2M)VRi2]<Pbl2' •• <PbN-IN) ' 
i=1 

x {( L L + L L) V(~i, ~i, Rii) } <Pbl2" • <PbN-IN) 
Odd i l>i+1 Even i l>i 

and 

Bab= (<PaI2' •• <PaN-IN> (1i2/M)V<Pb12' •• <PbN-IN) ' (16) 

and the eigenvalues 8a are explicitly 

8a = L &;i+l. (17) 
Odd i 

The distribution function defined by Eq. (11) and 
described by Eq. (14) is related to the conventional 
Wigner distribution function by 

Fala , = exp (!VK'VR) Fala,. (18) 

This latter function satisfies the Liouville equation 

[(a/at) + (Ii/M)K'V]Fala, 

- (i/21i) L[Bab exp(!i'VR·VK')·V Fbla, 
b 

+V Falbe( -!i'VK,VR') • Boo'] 

= (i/Ii) L[Falbe( -!i'VK,VR') 
b 

x {5oo,8b+ Uoo,-iK· Boo'} 

- {5ab8b+ Uab-iK· Bab} e(!i'VR,VK') Fbla,]. (19) 

At least one aspect of this relation is amusing. It 
is noted that the transport terms (left-hand side) are 
modified in a fashion peculiar to systems characterized 
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by velocity dependent potentials. That indeed the 
effective potentials in the present representation have 
this property is supported by the observation that the 
eigenfunctions Xa satisfy an equation of the form 

ift(axa/at) = L)<~abXb, (20) 
b 

and 
(21) 

The issue of symmetrization of the total wave 
function is somewhat more complicated here than in the 
instance that the internal degrees of freedom are dealt 
with in the context of the representation, {<Pal" '<PaN}' 
However, this difficulty is not inconveniencing here. 
The implications of the present derivation are such that 
one would expect the resulting equations to be useful 
only in the limiting instance that the binary collision 
assumption is applicable. Under such circumstances, 
it is sufficient to be able to define a distribution func­
tion corresponding to an arbitrary ordering into 
pairs-appropriate symmetrization within a given bi­
molecular function being presumed. 

[(a/at) + (ft/M)k·v.,JFala,(l) 

We emphasize the content of these remarks by 
turning our attention to an investigation of the impli­
cations of Eq. (19) for the reduced distribution func­
tions. To this end we define the densities 

g(i) (x, k) =5(Ri_ X)5(KL k), 

g(ii) (x, k, x', k') 

=5(RL x) 5(KL k) 5(Ri- x') 5(Ki-k'), 

g(iiz) (x, k, x', k', x", k") 

= 5(Ri_X) 5(KL k) 5(Ri-x') 5(Ki-k') 

x 5(RI_X")5(KI-k"), (22) 

and the reduced distribution functions, 

If we concentrate our attention upon Fa I a,(l) , we find 
that it satisfies the equation (neglecting terms which 
describe ternary collisions), 

= (ift/2M) f d3x'd3k'~[(V"aalb(12»)e( -!i 'Vk'V,,') . .100,(1) +.1ab(l)e (!i 'V,,·Vk')· (V"Fbla,(12)] 

+ (ift/2M) f d3x'd3k'~[Falb(12)e( -!i'Vk-V,,') (.100,2) (1)+ (.1ab2) (l)e(!i'V",-Vk') Fbla,(12)] 

+ (h/M) f d3x'd3k'~[{Falb(12)e( -!i 'Vk·V.,') (k-.1oo,(l)+k' -.100,(2» } 

- { (k-.1ab(I)+k' -.1a b(2»)e(!i 'V,,-Vk') Fbla,(12)}] 

+ (i/ft) f d3x'd3k'[Faa, (l2)e( -!i 'Vk-V,,') 8a,(12)- 8a(12)e(!i'V ",-Vk') Fala,(12)]. (24) 

Here we have introduced the notation 

Aab(1).(2) = (<I>al2l VI,2<I>b12)' 

(.1ab2) (I) ,(2) = (<I>al2l V li<I>b12) • (25) 

It is to be noted that having discarded terms char­
acterizing three particle interactions (terms propor­
tional to triplet densities) the issue of wave function 
symmetrization remains only in the ultimate treatment 
of the details of binary collisions and the reduction 
of the doublet densities to functionals of appropriate 
singlet densities. 

Finally, it is recalled that the matrix elements (25) 
are in general expected to be sma1l3 ; hence, if we ignore 
them entirely in Eq. (24), we obtain 

[(a/at) + (ft/M)k-V.,JFala,(l) 

= (i/h) f d3x'd3k'[Fala,(12)e( -!i'Vk-V ",') 8a ,(12) 

- 8a(12)e(!i'V""Vk') Fa la,(12)]. (26) 

3 M. Born and J. R. Oppenheimer, Am. J. Phys. 84, 457 (1927). 

In this approximation, ftk=Mv, where v is the ve­
locity of the particles; and the equation for the diagonal 
elements of (26) may be written compactly as 

In the classical limit, (27) becomes 

[(a/at) +v-V",]Fala(l) 

which is simply the familiar Liouville relation between 
a singlet density Fala(!) and a doublet density Fala(12) 

for a system of particles interacting according to the 
potentials, 8a (12). 
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Calculations have been made for the 1s2s, ls3s, and 1s4s 15 states of He and He-like ions, assuming 
wave functions of the symmetrized product form, u(O v(2)+u(2) v(l). The results are the best obtained 
till now using such a functional form, and are even better than some recent calculations which, in ad­
dition, use angular correlations. 

The energy values obtained for He are: 2.14307, 2.06036, and 2.03320 for the Is2s, 1535, and 154s IS states, 
respectively. The wave functions obtained were checked by other criteria besides the energy criterion. 

1. INTRODUCTION 

THE ground state of helium and He-like ions has 
been the subject of several investigations, but 

relatively little work has been done on the excited states 
of the same systems since the pioneer work of Hylleraas 
and Undheim,1 Hylleraas,2.3 and Coolidge and James.4 

Recently, however, there seems to have been a re­
newed interest in this subject.5-9 Our aim is to in­
vestigate the Isns IS states which present the greatest 
difficulties in a general treatment of the excited states 
of He.1 We are looking for a relatively simple func­
tional form for these wave functions which can be 
physically visualized and the use of which can be 
extended to more complex systems. 

The most powerful method for obtaining approximate 
wave functions is the variation method. Its use for the 

* The research in this document has been sponsored in part by 
tbe King Gustaf VI Adolf's 70-Years Fund for Swedish Culture 
Knut and Alice Wallenberg'S Foundation, The Swedish Natural 
Science Research Council, and in part by the Wright Air De­
velopment Center of the Air Research and Development Com­
mand, U. S. Air Force through its European Office under a con­
tract with Uppsala University. 
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• E. A. Hylleraas, Z. Physik 83,739 (1933). 
3 E. A. Hylleraas, Z. Physik 106, 395 (1937). 
4 A. Coolidge and M. James, Phys. Rev. 49, 676 (1936). 
5 R. ¥ariott and M. ]. Seaton, Proc. Phys. Soc. (London) A70, 

296 (1957). 
6 B. Kockel, Ann. Physik 20, 53 (1957). 
7 Z. Horak, Czechoslov. J. Phys. 8, 271 (1957). 
8 B. K. Gupta and V.S.R. Rao, Proc. Phys. Soc. (London) 

A71, 1015 (1958). 
9 Ya. 1. Vizbaraite, V. I. Kaveckis, and A. P. Jucys Optika i 

Spektroskopia 1, 282 (1957). ' 

excited states is complicated by the additional require­
ment that the trial function must be kept orthogonal 
to the exact wave functions belonging to the lower 
states. In the case of two-electron systems, reliable 
approximations have been obtained only for the ground 
state, so in practice the condition is replaced by the 
weaker requirement that the wave function must be 
orthogonal to the approximate trial functions corre­
sponding to the lower states (e.g., Mariott and Seaton") 
However, this does not ensure that the trial energy 
value should always be higher than the exact one, and 
it is very difficult to infer conclusions about the ac­
curacy of the wave function (the trial energy value may 
coincide with the exact one, but the wave function 
may be very wrong). Essentially, the same holds for 
the Hartree-Fock treatment of the excited states (e.g., 
Vizbarite ct. al, the energy values for the ls2s IS and 
ls3s IS of He lie below the experimental value). 

There is, however, a variant of the variation method 
due to Ritz, which is free from this defect. The wave 
function is approximated by a trial function which is a 
linear combination of given functions, the coefficients 
are determined from the condition that (H) A, should be 
stationary and the secular determinant, respectively, 
give roots 10, II,···. Hylleraas and Undheim1 and 
MacDonaldlo have shown that these roots are upper 
limits to the corresponding exact eigenvalues. Shull 
and L6wdin!l·12 obtained a criterion for the accuracy of 
the trial wave function and they have shown that the 

In J. K. L. MacDonald, Phys. Rev. 43, 830 (1933). 
IlH. Shull and P. O. L5wdin, Phys. Rev. 110, 1466 (1958). 
12 P. O. L5wdin, Advances in Chem. Phys. 2, 266 (1959). 


