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The Nakajima—Zwanzig generalized quantum master equéG@ME) provides a general, and
formally exact, prescription for simulating the reduced dynamics of a quantum system coupled to a,
possibly anharmonic, quantum bath. In this equation, a memory kernel superoperator accounts for
the influence of the bath on the dynamics of the system. In a previous [@p&hi and E. Geva,

J. Chem. Physl19 12045(2003] we proposed a new approach to calculating the memory kernel,

in the case of arbitrary system-bath coupling. Within this approach, the memory kernel is obtained
by solving a set of two integral equations, which requires a new type of two-time system-dependent
bath correlation functions as input. In the present paper, we consider the application of the linearized
semiclassicalLSC) approximation for calculating those correlation functions, and subsequently the
memory kernel. The new approach is tested on a benchmark spin-boson model. Application of the
LSC approximation for calculating the relatively short-lived memory kernel, followed by a
numerically exact solution of the GQME, is found to provide an accurate description of the
relaxation dynamics. The success of the proposed LSC-GQME methodology is contrasted with the
failure of both the direct application of the LSC approximation and the weak coupling treatment to
provide an accurate description of the dynamics, for the same model, except at very short times. The
feasibility of the new methodology to anharmonic systems is also demonstrated in the case of a two
level system coupled to a chain of Lennard—Jones atoms20@ American Institute of Physics.
[DOI: 10.1063/1.1738109

I. INTRODUCTION be noted that this point of view is analogous to that taken in
Quantum effects play a central role in a variety of im- mart?: (_ax.perlm(tants,tr\]/vhege the snwnt)nme_:‘_\;] DO:;.are probe(t:i]
portant processes that take place in condensed pha]%@l €ir impact on the observed system. 'hus, this approac
as the additional advantage of isolating those aspects of the

environments> Hence, the simulation of quantum dynam- h d . hich bed b formi
ics in condensed phase hosts is one of the most importart?f"l ynamics which are probed by periorming measure-
ents on the system.

challenges facing theoretical chemistry. Whereas numericall{)1 .
Let us consider a general system, where the overall

exact classical molecular dynamics simulations are feasible ¢ hanical Hamiltonian has b ted int
for relatively complex many-body systems, the analogouglY@ntum-mechanical Hamiitonian has been separated into

numerically exact solution of the Schinger equatiofi® the following four generic terms(1) The system Hamil-

for such systems remains far beyond the reach of currentll_g:ia” Hs, which only depends on the system DQE) The

available computer resources, due to the exponential scalifggth Hamiltonian Hy, which only depends on the bath
of the computational effort with the number of degrees ofDOF; (3) The system-bath couplingiy,s; and (4) W(t),
freedom(DOF). which stands for an external perturbation that the system is
A common approach for dealing with this difficulty is Subject to, and which can be described in terms of system
based on the observation that, in practice, one can often dpperators and explicitly time-dependent classical fields
rectly probe and/or manipulate only a small number of the o R
DOF. The subsystem subject to direct observation and/or ma- H=Hg+ Hy+Hps+W(t). (1)
nipulation may correspond to the reaction coordinate, a re-
laxing vibrational mode of a solute molecule, or an optically The available theoretical approaches for dealing with the sys-
active transition in a solvated chromophore molecule. Thustem dynamics can then be classified based on the assump-
it is worthwhile to consider a strategy that combines an actions they make with respect td,s andW(t) (cf. Fig. 1). In
curate description of the subsystem, which will be referred tahe absence of an external perturbation, W(t)=0, the
as the systenfrom now on, with a minimal, yet accurate, overall systenithe system plus the bathill be at a state of
treatment of the rest of the DOF, which will be referred to asequilibrium, which is described by a density operator of the
the bath The key to the success of such an approach relieg, p=e PHITI e #M] (B=1kgsT, wherekg is Boltz-

on one’s ability to accurately filter out those aspects of th§,ann's constant and is the absolute temperatyreMost
many-body bath dynamics which affect the system. It shouldyeriments start with the overall system in this state. The

scaling of the computational effort involved in computing
dElectronic mail: eitan@umich.edu quantum mechanical expectation values at such an equilib-
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* Another important class of methods is based on the ex-

- m plicit division of the overall system into a system and a bath,

§ g & and corresponds to the case whetg can be treated as a

£ B2 °°"°,«»¢ I turbation. This corresponds to the region that lies

S e ‘g}é & small per p A g

TE“ ﬁ 2 &9@&0 along, and in the close vicinity of, the/(t) axis in Fig. 1.

2 g 2 & &00 The assumption of weak couplifgVC) between the system
Hbs k5 2 g v&t@@y and the bath, augmented with the complementary assumption

é’ g 2 o@@@& that the system’s relaxation occurs on a time scale which is

EEEC & much longer than that of the bath fluctuations, then leads to a

=272 " description of the system dynamics by a Markovian quantum

) 4-th order MASIEREUE master equatioiQME) of the Bloch—Redfield typ&-5-3°

g Bloch-Redfield master equation

In this case, the influence of the bath shows up via popula-
W(t) tion and phase relaxation rate constants, which can be ex-
pressed in terms of two-time free-bath CFs. In principle, the
FIG. 1. A classification of theoretical approaches based on the assumptiot@ME approach can be extended so as to take into account
they make with respect to the strength of the system-bath couplingand  higher order terms in the perturbation expansion with respect
external perturbatiorii/(t). to the system-bath couplirf§:**=*3*However, the latter are
given in terms of multitime CFs, and are difficult to compute
in practice.
rium state is favorable, and they can be calculated via pow-  The availability of feasible methods drops rapidly as one
erful imaginary-time path integral techniques, for relatively moves into the region where neith@/(t) nor Hy can be
complex many-body systerfis? treated as small perturbatiorisf. Fig. 1). One approach,
Linear response theorft RT) is applicable in the case which gained popularity over the last several decades, is
whereW(t) is finite, but can be treated as a small perturbabased on the path integral formulation of quantum
tion. It corresponds to the region that lie close to the originmechanic$;'~*¢ and introduces the influence of the bath in
and along theH ¢ axis in Fig. 1. In this case, the nonequilib- terms of aninfluence functiona(lF).*’ One of the most im-
rium relaxation dynamics of the overall system is the sameportant advantages of this approach has to do with the fact
as that of its spontaneous fluctuations around equilibriumthat theexactlF can be obtained in closed form, in the case
and can be described in terms of two-time correlation funcof linear coupling to a harmonic baffi->' This fact, in con-
tions (CF9.™ It should be noted that LRT does not require junction with important algorithmic advances, such as the
that we explicitly divide the overall system into a system anddevelopment of iterative tensor quasiadiabatic propagators
a bath, and is in fact valid for an arbitrary system-bath couby Makri and co-workers, have opened the door to numeri-
pling. At the same time, the earlier mentioned CFs represertally exact calculations of the reduced dynamics of this type
much more reduced quantities in comparison to the full wavef systems(as long as one can evaluate the remaining path
function or density matrix of the overall system. As such,integral over the system DO£?~®"However, there are many
they may be thought of as filtering out those aspects of thé@nportant systems, e.qg., liquid solutions, where it is difficult,
overall system dynamics which are relevant for describingand perhaps even impossible, to map the bath Hamiltonian
the relaxation process. LRT is particularly useful in two situ-onto a harmonic one. Recent attempts by Makri and co-
ations: (1) When the system is subject to a relatively weakworkers to use semiclassical approximations in order to
external perturbation, which shifts the overall system onlyevaluate the IF in the case of anharmonic baths and nonlinear
slightly relative to its equilibrium staté¢2) When the system couplind®"°appear promising, and their relationship to the
follows rate kinetics, such that the rate constant does ngbresent work will be discussed in Sec. V.
depend on the initial state, and can therefore@eveniently An alternative to the IF approach may be based on
calculated with an initial state which is in the close vicinity the equation of motion that governs the system dynamics,
of equilibrium. An important example for the first scenario iswhich is known as thegeneralized quantum master
provided by linear spectroscopy, where the laser field is ofteequation (GQME).2®1""1="" The  Nakajima—Zwanzig
treated as a small perturbation. For example, the absorptiocBQME'®17:20-2471-T§epresents such an exact equation of
spectrum of a chromophore in solution can be expressed imotion. In this equation, the influence of the bath on the
terms of a two-time dipole CF. In fact, this approach can besystem is given in terms of memory kernesSuperoperator.
extended so as to account for higher order nonlinear respondée latter is analogous to the IF in the sense that it contains
to the laser field, and put it in terms of multitime dipole all the information needed in order to account for the influ-
CFs? However, it should be noted that such multitime CFsence of the bath on the system dynamics. However, the use
become increasingly more difficult to compute as one movesf this GQME, as such, has been rather limited due to diffi-
further and further away from equilibrium. An important ex- culties in evaluating the memory kernel. As a result, the
ample of the second scenario is given by chemical reaction&GQME has been mostly used as the starting point of more
where rare event statistics associated with barrier crossingpproximate treatments. The most popular approximation is
leads to rate kinetics, and where the rate constant can H#sed on the assumption that the system is weakly coupled to
expressed in terms of a two-time CF which involves thethe bath, and leads to the earlier mentioned QME of the
reactive flux operator:'* Bloch—Redfield type. Unfortunately, the very same WC as-
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sumption imposes serious restrictions on the range of phesnstrated in the case of an anharmonic bath model in Sec. IV.
nomena that can be described by QMEs, and especially so ithe main conclusions are summarized and discussed in
condensed phase systems. For example, QMEs are unableSec. V.

describe such important phenomena as solvation dynamics

and solvent memory effects, which are central to solution

chemistry. Il. THE MEMORY KERNEL
In a previous papéef we presented a new framework for
calculating the Nakajima—Zwanzig memory kermgthout In this section we provide an overview of our recently

resorting to the assumption of weak system-bath couplingoroposed approach to calculating the memory kernel of the
The strategy we proposed is based on expressing this kernbkajima—Zwanzig GQME, for an arbitrary system-bath
in terms of two-timesystem-dependent bath correlation func- coupling. The formalism presented herein is based on a
tions (SDBCFg, which should be contrasted with tliee-  somewhat more general treatment of the system-bath cou-
bath CFs that the WC approach gives rise to. The transitiorpling term, but is otherwise similar to that in Ref. @here
from bath-free to system-dependent CFs reflects the fact that more detailed discussion of other aspects of the theory has
one has to account for the reverse action of the system on theeen providep

bath, which remains unaccounted for within the framework  We consider an overall system with the following gen-
of the WC approach. It should be noted that properly aceral quantum-mechanical Hamiltonian

counting for this feedback reaction is crucial for describing A A A A
such important phenomena as solvation dynamics. H=Hs+Hp+Hps, @

A demonstration of the new approach in the case of gyhere H, H,, and H,s are as in Eq(1) [W(t) may be
two-level system linearly coupled to a harmonic bath haydded at a later stage via the Hamiltonian term in the

been provided in Ref. 78. In this case, it was possible tazQME]. The initial state of the overall system is assumed to
compute theexact SDBCFs, and hence, the exact memoryhave the following factorized form:

kernel. However, in the more general case of nonlinear cou- _ R ~eq

pling to an anharmonic bath, one would have to develop p(0)=ps(0)@py", )
feasible and reliable approximate schemes for calculatlrjg th\‘?vheref)s(O) is the initial density operator of the system, and
sought after SDBCFs. In the present paper, we consider a A A

methodology which will be applicable within this more gen-  pg%=e~AHo/Tr [eAMb] (4)

eral scenario. . A
the density operator of the free bath at thermal equilibrium

. i
Several strategies have been proposed over the last tw%r ) . .
g brop r, stands for partial trace with respect to the Hilbert space

decades, that attempt to address the challenge of providing;{ the bath. It is also assumed, without loss of generalit
an effective, computationally feasible, and versatile approxi- ' ' 9 4

mate method for calculating quantum-mechanical CFsJFhat
Those methods are based on various approaches, including a <Hbs>0 =Tr[ peH ] =0. (5)
. R 84 X . eq bLPb "'h:
mixed quantum-classical treatmént®* analytical contin- . )
uation®5-% centroid molecular dynamic4:s~1* quantum As is well known, the reduced quantum dynamics of the

112-115 504 the semiclassical system can be cligls?c?rilb;agwby t.he formally exact Nakajima—
Zwanzig GQME;>""*="™""which assumes the following
form under the conditions described earlier:

mode coupling theory,

approximatiorf-°8116-13%rom those, semiclassical and ana-

lytical continuation methods appear to be the most suitabl

for calculating the SDBCFs. Since N* SDBCFs are re- R i t R

quired for calculating the memory kernel, it is important to g7 Ps(t) = = 7Lsps(t) = fodﬂc( T)ps(t—1). (6)

choose the most cost-effective meth@s long as it is reli- .

able). In this paper we consider the application of the lin- Here, £(-)=[Hs, ] and [;d7K(7)ps(t—7) represent the

earized semiclassicdLSC) method, which is very flexible bath-free(Hamiltonian and bath-inducethon-Hamiltonian

and relatively inexpensive, to the -calculation of thecontributions to the system dynamics, respectively. The

Nakajima—Zwanzig memory kernel. It is important to note memory kernel/C(7), is explicitly given by either one of the

that the LSC approximation, like many of the other approxi-following equivalent expressions:

mate methods mentioned earlier, works better at short times. L

Thus, while LSC will probably fail when applied directly to _ —iocHh ~e

simulate the system dynamics, one expects it to do much K= ﬁ2Trb{£bse Loy}

better if it is only used for calculating the memory kernel,

which is often relatively short lived, followed by solving the

Nakajima—Zwanzig GQME in a numerically exact manner.
The structure of the remainder of this paper is as fol- . .

lows: The theoretical framework for the Nakajima—zwanzigwhereL(-)=[H,-], Lp{-)=[Hps, ], Q=1-P and

memory kernel is outlined in Sec. Il. The application of the _ e

LSC approximation to the calculation of the this memory PL)=pp @ Tro(). ®

kernel is considered in Sec. Ill. The methodology is tested on  As was shown in Ref. 78, the memory kernél;7), can

a benchmark spin-boson problem and its feasibility is dembe obtained from the following equation:

1 : A
= 5 Trol Lo ™7 L5, @
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(7 , , to the proposed approach. However, a significant number of
’C(T)=/C1(T)+|fod7 Ky(r=7")Ko(1"), (9 nontrivial applications involve systems which can be de-
scribed in terms of a relatively small number of states, where
where the computational effort would be manageable. Furthermore,
1 the effective number of elements can be brought down some-
Ka(7)= — Trol Lo 7t Lo ped. (10) W?at,zto N3(N— 1)/2 in the case ofC(7) .and K1(7), and
#2 N“(N“+1)/2 in the case ofC3(7), by taking advantage of
. . . . . their symmetrieg®
K,(7) is an auxiliary quantity which can be obtained by y
solving the following integral equation: lll. A LSC APPROXIMATION OF THE SYSTEM-
DEPENDENT BATH CORRELATION FUNCTIONS

— +' ’ ! ! !
Kaln)=Ke(7) |J’0 dr'Kg(r=r)Ka("), (D In the present section, we consider the application of the
following approximation in the calculation of the SDBCFs:
where R R
Tr(Aeth/ﬁée—th/h)
1 —iLrlh p ~e
Ka(r)= 2 Tryie Lohp}- (12
~ d Jd A ,Po)Bw(al” ,p!y.
Thus, finding K£(7) translates into calculatindgC,(7) and (2wﬁ)fJ % ] dPoAw(Go.Po)Buld: ™. P )
K5(7), followed by solving Eq(11) for 5(7), and Eq.(9) (16)
for K(7).

K,(7) andK4(7) are system superoperators. Within the Here, f is the overall number of DOR=[q",... "] and
framework of a Liouville-space-based description and tetP=[p™,...,p("'] are the corresponding coordinates and mo-
radic notation? those superoperators can be represented b{jenta
N?x N? matrices, in the case of aX-state system. We as- . R
sume thatH,s is given in terms of the system coordinates, AW(q,p)=f dAe 'PA(q+ AI2|A[q— A/2) (17)
such thaHpe=H,{(X), whereX is the system position opera-

tor. The matrix elements d;(7) and/Cs(7) in terms of the is the classical-like Wigner transform of the quantum me-

system position representation are then given by ctlccall)nica(ICI)czperatg)rA éWi(tg) Az(glﬁ(l).---),A(f)]}ls“'l?’s andOI
G; " =0; "(do.Po) and p;~"=p;"(do,Po) are propagate
{(Xa  Xp| K1(7)|X1,X2)) classically with the initial conditions), and p,. For later
1 reference, we denote the approximation in Etp) as the
= —{([HpdXa) — HpdXp) (20,2 1'T)|:|bs(X1)>gq LSC approximatior(the reason behind the name is clarified
#2 R late).

~ - N 0 The LSC approximation, as well as other related treat-
—(HodX2)[HpdXa) ~HpdXp) 1(2D,8,1i7))edt (13) ments which are based on the Wigner representation, have
and been considered, in a variety of contexts, by many workers
in the past!6:117:125130.134-15¢ 5 example, Eq(16) can be
obtained from the general theory of Wigner distributions via

1 . -
_ - ) 0
{(xa ol Ka(D)lx2. x2)= % {{16(20,8, 1) HedX1))eq the following straightforward procedure:

—<l:|bs(x2)fb(2,b,a,1;r))go} Tr(e~AHelftiBe HUA)
(14 1 N
where, the averag(a--)gq is defined similarly to that in Eq. - (2mh) f dqof dpolAe™ " Jw(o.Po)

(5), and

- - - - « [eiHt/igg=iHUA ’
I'(2b,a,1;7)=(x,|e" 7" |xp)[(x,] e "H7"|x,). (15) [ Iw(Qo.Po)

1

Here,I' is a bath operator, which in our case is given interms ~ ~
of eitherHy{x) or I, (the latter is the bath unity operajor (2mh)'
Thus, all the information needed for determining the influ- X[, p(©"] (18)
ence of the bath on the system is now contained in quantities oot
of the form<f‘(2,b,a,1;7-)f\>gq whereT and A are bath op-  The first equality in Eq(18) is exact, and the second is based
erator (and which depend parametrically on the systemon the #—0 limit of the equation of motion of
state$. We refer to quantities of the forgl’(2b,a,1;7)A)e,  [€"""Be ™!"],,. The LSC approximation can also be de-
as SDBCFs. rived within the framework of the semiclassical initial-value-
In the case of aiN-state system, the superoperatki{s),  representation methodolog}f130:132147-151Fqr  example,
K1(7), andK5(7) are represented biy?x N? matrices. The  Miller and co-workers, have recently derived it byeariz-
need for computing~N* SDBCFs obviously imposes re- ing the forward-backward action in the semiclassical initial-
strictions on the type of applications that will be accessiblevalue-representation(IVR) expression for a quantum-

fd%f dpo[Ae_Bg]w(%'po)Bw
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mechanical CF, with respect to the difference between the In many applications of interest, such as nonadiabatic
forward and backward trajectorig¢the LSC approximation electron transfer and optical spectroscopy, the system corre-
has been denoted LSC—IVR by those workevge also note  sponds to electronic DOF, and is most conveniently de-
that the very same approximation can be derived by linearscribed in terms of a discrete manifold of states, rather than
izing the forward-backward action in tlexactreal-time path  in terms of the electronic coordinates and momenta. In such
integral expression for the CF, and without explicitly invok- cases, it is convenient to employ the Meyer—Mill®iM)
ing the semiclassical initial-value-representation approxi-nethod for mapping the discrete electronic manifold onto an
mation®3 isomorphic  system that consists of  harmonic
The major advantage of a LSC-based approach has to doodes:32148.150.157-1631ore gpecifically, if the system Hil-
with its computational feasibilityalthough the computation bert space is spanned by the discrete bgkls,...,|n)},
of the Wigner transform in systems with many DOF is notthan, following Refs. 161 and 162, one can represent the
trivial).11®1%4-156The approximation also has the attractive corresponding eigen-projectors in terms of bosonic creation
features of being exact at the initial time, at the classicabnd annihilation operators
limit, and for harmonic systems. Its main disadvantage has to At oA a1
do with the fact that it can only capture quantum dynamical |J><k|<_)a A [aiT A= (1K) (21)
effects that arise from short-time interferences between th&he mapping in Eq(21) is justified by the fact that the
various trajectories(the longer time dynamics is purely operatorg|j)(k|} satisfy the same commutation relations as
classical.**® However, it should be noted that this may rep- the operatorga;a,}. Furthermore, the operatozg anda;
resent less of a problem in the case of condensed phase syan be associated with a fictitious harmonic mode which
tems, where CFs are relatively short-lived. corresponds to the following coordinate and momentum op-
It should be noted that the LSC approximation can alscerators

be used to describe tmnequilibriumdynamics of a system
coupled to a bath*®**°The procedure is based on the fact g, = \[(a +ah), pj=-i ﬁ(é._éT) [8:.p]=ih
that the matrix elements @f(t), in a representation of one’s J J 2" P '
choice, can be written in the form of CFs of the overall (22

system[cf. Eq. (16)]: As a result, one can map the original discrete states onto the

Si S 1% u p l
| > | ! '.“’}' |2> |011!"'101'--1|n>( }|o,0,...,]>.

:Tr[ﬁ(o)eiﬁt/ﬁ|v><u|e—iﬁt/h] (23
1 One can also map the operators defined within the original
~ j dgo f dpo[ (0) 1w discrete manifold of electronic states, onto operators that can
(27h)f be given in terms of the coordinates and momenta operators
of the harmonic modes
X (o, Po)l [v)(ullw(a ™ ™). (19)
. - iXjl—alaj==(§3+p?—1)
However, it is important to note that the reliability of the PUl=ga =5 QTP =),

approximation in the last equality of EQL9) is limited to
very short times. Ata AA o aa A A

Employing the LSC approximation, E(L6), for calcu- INCECHED =27 (A PP IPiG). (24)
lating the SDBCFs is straightforward once the latter are re-

written as CFs of the overall system Finally, as long as the Hamiltonian only includes operators of

the form a;rak, as it must, we are assured that the dynamics

<1:(2 b a l'T)]\)O will be restricted to the subspace of the Hilbert space of the
ed harmonic modes, which is spanned by the states in(ZR).
:Trb{;\ﬁgq(xﬂeil:|7/ﬁ|xb>f~<xa|e—il:|r/ﬁ|xl>} It is instructive to consider the application of the LSC
X X method to the calculation of the SDBCFs in the relatively
:Tr{f\,”;gq|xl><x2|eiHT’ﬁ|xb)<xa|lA“e*iHT”L} simple case of a two-level systefiLS) (n=2). To this end,

we consider the following general Hamiltonian that describes
a TLS coupled to a bath

%Wﬁj dQOJ dPOJ don dpo[ ApEw

[ P2
H=Q&,+Ad,+ +V(Q)+A(Q)5,. (25
X (Qo,Po) X)Xzl Tw(Xo,Po) Wl QP I[ [ p) e 2 2mM (Q+AQéz. @9
X (xal Tl X1 {], (20 Here, &x=|+><—|+|—><+|, oy =(I+)(= ==X+ )i
ando,=|+){(+|—|—){—|, wherea,| +)==|=). It should

where Q=[QW,... QM7 and P=[PW,...PN] corre- be noted that in this casé;, plays the role of the system
spond to the coordinates and conjugate momenta of the batloordinatex. Following Refs. 150, 161, and 162, the TLS is
DOF, whilex andp correspond to the coordinate and conju-then mapped onto the isomorphic system that consists of two
gate momentum of the system D@&ssumed to be one di- harmonic oscillators with coordinates and momenta
mensional for the sake of simplicity (9. ,p4+) and @_,p_), respectively, such thdtr)«—|1,0)
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and |—)«|0,1). The LSC approximation of the SDBCF in A. A two-level system linearly coupled
Eqg. (20) involves the following four system Wigner trans- to a harmonic bath

forms that correspond to the operatdrs)+|, |—)—|,
|+)—| and|—)+|, respectively,
3

(11,010 Tw(ap) = >

h
q?ﬁpi—i)

w @ (a3 +p3+a® +p?)ih

23
[10,2(0, 11wl 0.p) = 5

A
2 2—_
q-TP- 2)

x @~ (a% 07 +aZ +p? )i
[12.0¢0.41w(a,p)= 2~ (q-+ip-)(a, ~ip,)

w @ (a3 +p3 +a% +p?)ih

3

2
[10,0(1.0]w(a.p)= 2~ (a-—ip-)(a: +ip+)

s~ (@3 +pi+aZ +p2)h

Consider an overall system whose Hamiltonian has the
form of Eq. (25), with

N
V(Q):El ElM(D[w(j)]z[(g(j)]z, (28)
=
and
N ~
_E C(j)Q(j>_ (29)
i=1

A complete characterization of this harmonic bath is pro-
vided by its spectral density function

aT [c c ]
=— [ (1
Jw)=~ 2 om Lo ol (30)
The Wigner transform of the bath operam(é) is trivial
and given by[A(Q)]Jw=A(Q). The Wigner transform of
A(Q)pl only involves Gaussian integrals and can therefore
be evaluated analytically

Finally, we note that, within the LSC approximation, [A(Q)f)ﬁq]w(Q,P)

g+(t), p«(t), Q(t), andP(t) are propagated according to

classical mechanics, subject to the Hamiltonian in ).

N
:2N[ 1T tanr[,Bﬁw(j)IZ]]
j=1

In practice, it is convenient to propagate the quantities

MM:(Q+Q—+D+P ), oy™=(q.p-—q_p;)/A, and N 0 o
W= (g% +p2—q%—p? )/Zh which are the classical vari- S tant phw'/2] [PJ] 10

ables that correspond to the operatarg, (ry, and o, ex =1 haol)/2 oM 2

within the MM mapping. The equations of motion fof™™

ay™, o¥™, Q(t), andP(t) are given by

&¥M=—2[A+A<Q>]aw,

. 2 2
oyt=— 200"+ S [A+AQ]e™,

y h
. MM_EQ MM (27)
o, _ﬁ O'y ,
o (k)
(9Q K ﬁQ(k) z -

IV. ILLUSTRATIVE APPLICATIONS

% [w(j>]2[é(j)]2} )

(31

N
x> C(k)[ Qi
k=1

The results reported later were obtained for a spectral
density of the form

tant Bh w¥/2]
M (K)o (K PO

J(w)zggwef“’/‘”c, (32

and the following values of the various parameteks:()
=1.0, BrQ)=5.0, £=0.1, andw./Q=7.5. It should be noted
that results based on numerically exact SDBCFs have been
reported for the same model and parameters in Ref. 78. In
the present paper, we present results obtained by using the
LSC approximation and MM mapping in order to compute
the SDBCFs. It should be noted that the overall Hamiltonian,

In this section we employ the LSC approximation andincluding the TLS in the MM representation, is clearly an-
MM mapping, in order to calculate the SDBCFs, memoryharmonlc due to the term\(Q)o,——3SL ,c0Q)(g?

kernel superoperator’(7), and subsequently simulate the +p2 —

—p?)/2k. Thus, the LSC method is not formally

reduced quantum dynamics, in the case of two nontriviakxact |n thls case.

model systems. Both examples involve a TLS coupled to a
bath, with the overall Hamiltonian as in ER5). The first

The procedure for obtaining the memory kernel, and
subsequently simulating the system dynamics, is similar to

example demonstrates the accuracy of the methodology, ithat followed in Ref. 78. Briefly, the SDBCFs are computed

the context of a benchmark spin-boson probl&it5*while

and used in order to calculaté;(7) and [C3(7) on a 300

the second example tests the feasibility of applying thepoint time grid with a time step of 0.02 %, Equation(11) is

method to anharmonic systems.

then solved forC,(7), via an iterative procedure, with



J. Chem. Phys., Vol. 120, No. 22, 8 June 2004 A semiclassical generalized master equation 10653

1 T T " T J
T T O Qg e -Gl
— LSC-GQME - Y Lse
* Exact ] -0.4- ——- +—LSC
--WGC L .---o+-++,EExact
. 2. - Direct LSC 08 lmoedemoxd
= N/AN — F ' T T 1
~ ST L VR, | —_ — WC
D_+O'5 T e 1 e i LSC M
R 2o o—-e +-+-, Exact|]
/ M 0
/ ko)
’
v, \\/ Ng ] e -1 — WC T
0 o O\ [ |
0 10 -
Qt

o
-
T

FIG. 2. The relaxation oP , (t) =(+|ps(t)|+) to equilibrium in the case of

a TLS linearly coupled to a harmonic bath. Shown are the predictions of the 0 0.5 1 1.5

GQME with LSC-approximated kernéLSC—-GQME, solid ling, the exact Q1

result(solid circleg, a prediction based on the WC treatméstashed ling

and the prediction based on direct application of L@6tted ling. FIG. 3. The exact, LSC-based and WC-based real par{sref|K(7)|++)

and {+—[K(9|——) (upper pang| {+—|K(7)|+—) (middle pane), and

{+—|K(D|—+) (lower pane), for a TLS coupled to a harmonic bath. Note

that {+—|IC(D|+ +)=¢+—|K(7|——) at the WC limit.
Ko(7)=K3(7) as the initial guesg10-20 iterations were
required for convergengeThe resulting/C,(7) is then sub-
stituted into Eq.(9), so as to obtairiC(7) on the same 300
point time grid. The matrix representing(7) is kept in
memory as a 2xX300 array throughout the subsequent nu-
merical solution of the GQME, which is carried out by the
second-order Runge—Kutta methi§d A time step of 0.01
Q! has been used, apg(t) over the previous 300 steps has
been kept in memory, as &2x300 array, in order to evalu-
ate the non-Markovian contribution to the time derivative.

In Fig. 2, we show the relaxation of the population o

state [+), P, (t)=(+]|ps(t)|+), to equilibrium, starting :
from the initial stateps(0)=|+)(+|, as obtained via the treatments fail. ,
LSC—GQME method, where one solves the GQME with a Ip the case of a TLS, there are only _four independent
kernel that was computed based on the LSC approximatiowagr'x elements of the memory kernel, which can be chosen
and MM mapping(solid line). Also shown in this figure are: as® (+—|K(n]++), (+ =K@ = =), (+—IK@)]+—),
(1) The numerically exact result, as obtained via the iterativear?d«”L_VC(T)‘_”L»' Their real and imaginary parts, as ob-
tensor quasi-adiabatic propagator method of Makral. tained from the exact, LSC-based and WC treatments, are

(solid circles:”® (2) The result based on the WC treatniént shown in Figs. 3 and 4, respe.ctively. The agreement of the

(dashed ling and(3) The result obtained via a direct appli- LSC-based and exact resqlts is much better than ?he agree-
cation of the LSC approximation to the TLS dynamics, Eq_ment of the WC results with them. At the same time, the.

(19) (dotted ling. It is first interesting to compare the results agreement between th'e LSC-based and exact results is
of the WC and direct LSC treatments. Both are only accurat&Iearly not as good as in the case of the actual system dy-
at very short times. In the case of the direct LSC treatment,
the inaccuracy at longer times can be traced back to the fact

Furthermore, the asymptotic equilibrium state clearly devi-
ates from the corresponding classical equilibrium state, and
is also affected by the coupling to the bath, which is evident
from the significant deviation relative to the asymptotic state
that the WC treatment gives rise to. Finally, and most impor-
tantly, Fig. 2 shows that restricting the use of LSC to the
calculation of the short-lived memory kernel leads to a very
accurate result, which is almost indistinguishable from the
§ exact result. Thus, the LSC-GQME methodology is found to
be very accurate in a case where both the direct LSC and WC

S ) . . — WC
that the dynamics is purely classical. This is manifested by 0.2 —" +-++LLSSCC —
the fact that the coherent oscillations arerdampednd the - /f:\ .....IZL,, Exact| 1
asymptotic equilibrium state is classical. In the case of the 0.1 NT T m e Bxact

WC treatment, the inaccuracy results from neglecting higher

order terms in the system-bath coupling. Thus, the coherent _ Oy , '["'"',““"
oscillations areunderdampegdsince the bath-induced deco- e 05

herence is underestimated. Furthermore, although the =

asymptotic state corresponds to a quantum-mechanical equi- = 0_

librium, the latter is described by a system density operator E 0.5 ,

of the form p=e~AHs/Try(e PHs), and does not take bath- 0.5 o ! L5
induced shifts into accoun®

The exact result in Fig. 2 lies between the predictions oFIG-»4- Tge«exaﬁé(L)TC-b;S(ed and WC-glaseCé if(‘?agiTlgzy)‘pa@;ezlliC(r)\

the direct LSC and WC treatments. The damping of the co- *7 and &+ =ik(n|==) (upper pangl and {+ ~|k(n)]+~) (lower

o . . . ) ane), for a TLS coupled to a harmonic bath. Note that{kn—|/C(7)|

herent oscillations is weaker in comparison to the direct LS(L»:O in this case(see lower panel of Fig. 3 for its real parNote that

treatment, but stronger in comparison to the WC treatment(+—|K(n)|++)=¢+—|K(n]|——) at the WC limit.

[=Ton|
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between atom A and the first helium atom is either
280 e_pt 1o OF 2Y85 . s—1,, depending on whether the
internal state of atom A is given dy-) or |—). For example,
this could correspond to a situation where the electronic
wave function of the excited electronic state of the solute
atom A is less spatially confined than that in the ground

FIG. 5. A schematic view of the helium chain model. The TLS is directly electronic state.

coupled to helium atom 1, and the interaction potential depends on the TLs I the next step, we rewrite the Hamiltonian in Eg84)
state. The helium atoms interact via nearest neighbor Lennard—Jones poteim the form of Eq.(2), such that the bath Hamiltonian is
tials. Helium atoms 1-10 are free to move, while the 11th helium atom isgiven by

held fixed.

. 10 (k)12 1
o= 3, s IV RV R @7

namics(see Fig. 2 We view this observation as encouraging iye system Hamiltonian is given by
from a computational point of view, since it suggests that the
actual system dynamics is not very sensitive to the fine de-
tails of the SDBCFs. Thus, a moderately accurate memory
kernel may be sufficient for obtaining reliable predictions of
the system relaxation dynamics.

~ R 1 R R R
Hs=Qo,+|A+ §<V+(X)_V—(X)>eq 0y, (39
and the system-bath coupling is given by

B. A two-level system nonlinearly coupled Hp= A ® 0, (39
to an anharmonic bath where

Our second example involves the nonadiabatic relax- . 1 R . . .
ation dynamics of a TLS coupled to an anharmonic bath. The  A=Z[V.+(X)=V_(X) —(VL(X) = V_(X)eq. (40
latter consists of a linear chain of 11 helium atoms, that lie
along thex axis (cf. Fig. 5. We assume that the TLS corre- It should be noted that the terV. (X)+V_(X))o-/2 has
sponds to an internal DOF of an “atom” A, which is held been added to the original system Hamiltonian, &),
fixed atx=0. The TLS Hamiltonian is given by such thatH s satisfies Eq(5).
~ 0 . A Calculations pertaining to this model have been per-
Hs=Qox+Ao,. 33 formed using the following values of the parametefs:
The bath Hamiltonian is similar to that employed in Refs. 88,=40K, oye_a=4.944a.U., ope_pe=4.310a.U., €ye_p/ks
97, 154, and 167. The instantaneous positions of the first teff 25.1K, epe_ne/kg=10.2K, 0=1.0x10""a.u,, A=1.2
helium atoms (=1,2,...,10) are given byx,=ope_a+ (i x 10" %a.u., andro=0.2a.u. Unlike in the case of the har-
—1)0he_net 61, and the 11th, and last, helium atom is held monic bath, the Wigner transform afp;? cannot be calcu-
fixed at X;;=ope_pt 1004e_pe (cf. Fig. 5. The overall lated analytically for this anharmonic model. At the same

Hamiltonian is given by time, a numerically exact calculation of the corresponding
10 (012 multidimensional integral via conventional Monte Carlo
H=H0+ 2 [p™] FVL R+ W+ [+ V(R =)~ ], (MC) techniques is prohibitively expensive, due to the oscil-

S =1 2Myge latory phase factore 'PoA’% One way of overcoming this

(34 problem is by introducing an approximation that will allow
wherex=(x®,... X9 andp=[p®V,...,p9] are the op- US 10 perform the Wigner integral analytically. We have re-
erators representing the coordinates and momenta of the HEENtly proposed such an approximation, which is based on a
lium atoms. and quadratic expansion, in terms oA, of the ratio (Qq
V. = pHeA s +A/2le” AMo|Qy— A/2)/{Qole PMb|Qg).** The resulting

==V (Ohe-at 017 T0) methodology will be referred to below as the local harmonic

10 approximated LSGLHA—-LSC). The LHA-LSC methodol-
+2 ufj"‘“e(oHe_He+ Sit1—6)). (35 ogy has several important advantages such as reproducing
=1 the correct classical and=0 limits, as well as accounting
Here, for both quantum and anharmonic aspects of the bath when

12 sampling its initial configurations. It has also been observed
(Z) _(E (36 O lead to accurate results when applied to the challenging
r r problem of calculating high-frequency vibrational energy re-

is the familiar Lennard—JoneJ) potential, witho ande  laxation rate constantghe reader is referred to Refs. 154
given by{ope_a, €ne_at ANA{ T pe_te €re_nd fOT the He—A, and 155 for }‘urther details The results reported Iatgr are
and He—He interactions, respectively. It should be noted thdt@sed on using the LHA-LSC method for calculating the

the potential energy in Eq(35 only includes nearest- Wigner transform ofApp.

neighbor interactions. Importantly, the interaction between In Fig. 6, we show the real and imaginary parts of the
atom A and the first helium atom depends on the internafree-bath CFC(t) =(A(0)A(t)), as obtained from a LHA-
state of atom A. More specifically, the equilibrium distanceLSC-based calculation, with as in Eq.(40). This CF rep-

6

ULJ(r):4€
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FIG. 6. The free bath CE(t) =(A(0)A(t)) for the helium chain model, as 0.1 —Wwc
obtained via the LHA—LSC method. r / “|
02 5000 10000
T(au)

resents the only input required in order to account for theFIG. 8. The LHA-LSC-based and WC-based real part§-of-|)C(7)|++)
influence of the bath on the system in the WC limit. It is and {+—|K(7)|=—) (upper pane| (+—[K(7)|+—) (middle panel, and
important to note that this CF decays to zero and is rel_ativel)g;i;f(:t;g ﬂl%\?frtﬁ;??;f‘%(g|I'f;gzyflfﬂctgﬁw;a;tc?ﬁé” V?/fcll
short lived, which justifies the view that a bath consisting ofjimjt.
11 helium atoms can already be considered as a condensed-
phase host.

In Fig. 7, we show the relaxation of the population of the calculation of the memory kernel will lead to more accu-
state [+), P, (t)=(+|ps(t)|+), to equilibrium, starting rate results.
from the initial stateps(0)=|+ )(+|, as obtained by solving ¢ The WC and LHA-LSC-GQME treatments lead to
the GQME with a kernel that was computed based on th&ignificantly different asymptotic equilibrium states, which
LHA-LSC approximation(solid line). Also shown in this implies that the system-bath coupling cannot be assumed to
figure are:(1) The result obtained via a direct application of be weak.
LHA-LSC to the TLS dynamics, Eq19) (dotted ling; and * One expects the direct LHA—LSC and WC relaxation
(2) The result obtained via the WC treatment, with the free-behaviors to be overdamped and underdamped, respectively,
bath CF obtained via LHA-LS@dashed ling It should be relative to the exact resultf. Sec. IVA. The damping in
noted that a numerically exact quantum mechanical calculathe relaxation predicted via the LHA-LSC-GQME method
tion is prohibitively expensive in this case, and is thereforeS indeed intermediate between those two extremes, which is
not available for comparison. The following observations carconsistent with the view that LHA-LSC-GQME is more
be made based on Fig. 7: accurate.

« As expected, the results from all three methods coin- The LHA-LSC-based real and imaginary parts of
cide at very short times. The corresponding time scale i&+—|[K(n)|++), (+—|K(n|——=), (+—[K(7n|+-), and
comparable to the lifetime of the CF in Fig. 6. This suggests(+ —|K(7)|—+) are shown in Figs. 8 and 9, respectively.

that restricting the use of the LHA—LSC approximation toAlso shown in those figures are the corresponding predic-
tions of the WC treatment, which are based on the bath-free

CF in Fig. 6. The lifetimes of the GQME and WC memory
kernels is seen to be comparable to that of the free bath CF in

---WC

----- Direct LHA-LSC
— LHA-LSC-GOME 03— '
c é: 0 < y '../~ ~a Sy
~40.5H A — = — (3.7 — WC
A, \ T NeT e we '0-3f O o+ ]
v < -0.6f e
v — 2F T t T ]
\’ F s
0 . ! . v% 0pF—~— T
0 1e+05 2e+05 o) . —wWcC ]
t(aw) g 2 W
. 1 ' |
FIG. 7. The relaxation oP , (t)=(+|ps(t)| +) to equilibrium in the case of 40 5000 10000

a TLS nonlinearly coupled to an anharmonic bath which consists of a chain T(au)

of eleven helium atoms. Shown are the predictions of the GQME with a

LHA-LSC approximated kerndLHA-LSC—GQME, solid ling, a predic-  FIG. 9. The LHA-LSC-based and WC-based imaginary partstof|iC(7)|

tion based on the WC treatmefatashed ling and the prediction based on ++) and {+—|K(9|——) (upper pane| and {+—|K(n)|+—) (lower
direct application of LHA-LSC(dotted ling. The latter is only given at pane), for a TLS coupled to a linear chain of 11 helium atoms. Note that
short times due to an increase in the number of unstable trajectories that the¢+—|(7)|—+)»=0 in this case(see lower panel of Fig. 8 for its real
MM mapping gives rise to. parh. Note that{+—|K(9)|++»=(+—|KC(9)|——) at the WC limit.
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Fig. 6, and an order of magnitude smaller in comparison tdo anharmonic environment$%81€® Similarly to the
the time scale of the TLS relaxation in Fig. 7. The GQME memory kernel, the IF provides a formally exact and com-
memory kernel is visibly different from its WC counterpart, pact parameterization of the influence of the bath on the sys-
which is consistent with the view that the WC limit is not tem dynamics. The semiclassical approximation employed
valid in this case. Another signature to a non-WC behavior ishy Makri et al. is different from the LSC one, and is based
provided by the difference betweefr—|K(7)|++) and  on treating the forward-backward dynamics in terms of a
{+—|K(r)|=—) (those two matrix elements coincide in the singlesemiclassical propagator of the Herman—Kluk tyfe.
WC limit).”® As in the spin-boson case, all elements, excepself cancellations of the forward and backward actions then
for ((+—|K(7)|+—), vanish atr=0. This is consistent with |ead to a smoother integrand, which can be integrated over
the explicit expressions in the WC limit, and appears to revia MC techniques. This forward-backward semiclassical
main valid beyond it. methodology is particularly suitable for calculating the IF,
Finally, we note that a fewless than 2%of the trajec-  which is given by the trace over a product of real and imagi-
tories in the LHA-LSC calculation of the SDBCFs were nary time evolution operators. The application of the
observed to become unstable and were therefore discarde@rward-backward semiclassical approach to the calculation
This unphysical instability can be traced back to the MMOf CFs of the form Tré\ei““hée“””h) is also particularly

mapping, which allows for initial values afY™ which are . .
bping z straightforward when the operat@ has an exponential

larger (smallep than 1(—1), such that the system-bath cou- :
Iir? tfarm 0 D:]\A (can)mauke the otentiél unbounded ult form. Unfortunately, the SDBCFs may involve nonexponen-
pling 'Tlbs— A0z, P " ““tial operators. Although the latter may be represented

should be noted that the fact that the SDBCFs are reIativelf . i
. . n terms of exponential operators, the procedure is not
short lived plays a key role here too, since the number of . . :

. ) o unique, and different representations can lead to
unstable trajectories grows with tim@or that reason, the different resultd2155170 |0 fact it has been arqued
direct LHA—LSC result in Fig. 7 is only given at relatively by Mil q ' K that ' f th i 9 tical
short time$. We have verified that the SDBCFs obtained by y Miller a_n CO'W(,” ers that one of the mos prag |'ca
discarding the unstable trajectories are in agreement with Presentations, which has been based on the ideBity
calculation based on an alternatit@s well as more compu- = —i(d/dx)e™B|, _o, Ref. 127, is closely related to the LSC
tationally demanding mixed quantum-classical Liouville approximation’.”
treatment, which avoids those instabilities. A more detailed A comparison of the computer memory requirements of
discussion of this point will be provided in a separate forth-the IF and GQME approaches seems to suggest that the latter
coming paper. provides a more favorable “packaging” of the information

regarding the influence of the bath over the system’s dynam-
ics. More specifically, ifN is the number of state®.g., cor-
V. CONCLUSIONS responding to the states included in the discrete variable rep-

In this paper, we proposed a new methodology for simuJesentation and .kmax_ IS the _nl_mee_r of time slices that
lating the nonequilibrium reduced quantum dynamics of dhe bath coirrelatlon time is divided into, then the computer
system coupled to a bath. The new methodology is based giPace required for storing the IF scales Iik&max (within
using the LSC approximation for calculating the two-timethe iterative tensor propagator method of Makri and
SDBCFs, which are then fed as input into the calculation ofc0-worker3,>"~°*®2%4while the space required for storing
the memory kernel, and followed by propagation of the systhe memory kernel scales like N*Xkp,. This favorable
tem density matrix based on the GQME. The new methodscaling is intimately related to the fact that the memory ker-
ology can be used for simulating the quantum dynamics ofel can be expressed in terms ofN* two-time CFs,
strongly coupled and highly anharmonic condensed phas#hereas the IF is a function of thekg,, variables that cor-
systems, even when it takes place far from equilibrium. Agespond to the discrete representation of the system’s
such, it represents an important step forward in our ability tdorward-backward path. Thus, it is easier to store the
simulate quantum dynamics beyond the domains of validitynemory kernel in memory throughout the simulation in the
of LRT and WC treatmentscf. Fig. 1). The success of the case of a system with relatively largéandkp,. It should
new methodology relies on the ability of the LSC approxi-also be noted that the structure of the IF approach forces a
mation to generate a reasonably accurate description of tiéescription of thesystemdynamics in terms of path integrals,
dynamics over the life time of the memory kernel. Since thewhich may not be the most cost-effective framework for
latter is typically much shorter than the system relaxationsimulating the dynamics of what is usually a relatively small
time, one expects the new methodology will generally bequantum system. At the same time, the description of the
significantly more accurate in comparison to a direct appli-system dynamics via the GQME is formulated in terms of
cation of the LSC approximation. The new methodologyoperators, and is therefore free of such constraints.
should also exhibit superior accuracy in comparison to stan- The LSC-GQME methodology presented herein would
dard QMEs of the Bloch—Redfield type, which are subject toallow for the simulation of nonequilibrium quantum dynam-
the restrictive assumption of weak system-bath coupling anits of a system with an arbitrary coupling to an anharmonic
Markovity. environment, and beyond the domains of LRT and WC treat-

The LSC—-GQME methodology presented herein is simi-ments(see Fig. 1L Many exciting applications fall into this
lar in spirit to the semiclassical methodology of Maktial.  category, including electronic and vibrational relaxation,
for calculating the path integral IF that results from couplingchromophore spectroscopy, coherent control, and chemical
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reactivity, in liquid solution and other anharmonic media.
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4R. P. Feynman and A. R. HibbQuantum Mechanics and Path Integrals

Those and other applications are the subject of ongoing work (McGraw-Hill, New York, 1965.

in our group, and will be reported in future publications.
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