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Closure Relations for the Eigenfunctions of the One-Speed Transport Equation 
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Orthogonality relations for the eigenfunctions of the one-speed transport equation are used to derive 
the corresponding closure relations. These express in a concise form the completeness properties 
previously proved by Case. 

I. INTRODUCTION 

THE plane-symmetric normal mode solutions to 
the equation of steady-state one-speed neutron 

transport with isotropic scattering possess a variety 
of completeness properties. These were all proved by 
Casel via construction of a solution to the singular 
integral equation for the expansion coefficients 
implied by a hypothetical representation of an 
arbitrary function in terms of some set of the eigen­
functions. In such an approach the form of the 
expansion coefficients appears as a by-product of the 
completeness proof. In a later paper2 (henceforth 
referred to as I), a set of orthogonality relations was 
presented, which may be used to determine expansion 
coefficients directly. On the other hand, as we show, 
these relations also provide a completeness proof in a 
more conventional form. That is, by the use of our 
knowledge of the normalization coefficients contained 
in the orthogonality relations, we exhibit the closure 
property for Case's eigenfunctions by direct calcula­
tion. Acquaintance with paper I is assumed, and 
definitions and notation are borrowed from there. 

First, in Sec. II we show that the set of continuum 
eigenfunctions {4>vCu)} , el ~ y ~ fJ, obey a closure 
relation with respect to the interval [el, fJ] whenever 
el and fJ both lie in the open interval ( - I, I). Then, in 
Sec. III we discuss the lack of uniqueness or "over­
completeness" that arises when el and fJ are both 
positive or both negative, and indicate the modifi­
cations necessary when el or fJ take on the special 
values ±I. 

II. PARTIAL RANGE COMPLETENESS 

The expansion coefficient A(Y) in 

'IjJ(ft) = s: A(y)(Mft) dy (1) 

is conveniently calculated by application of the 
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orthogonality relation [Eq. (1.22)] 

f .p.(ftH..{ft)Yo{f.t) dft = Yo(y)A+(Y)A-(y)o(y - v'). 

(2) 

(Here and henceforth we choose for the principal­
value integral with two singularities in the integrand 
the same interpretation as used by Case. l •3) From the 
right-hand side of Eq. (1) we obtain 

f .pv.(ft)Yo(ft) dft s: A(y).pift) dy 

= A(yl)YO(yl)A +(yl)A -(yl). (3) 

The procedure is legitimate whenever the functions 
involved are such that the order of integration on the 
left-hand side of the last equation can be reversed by 
application of the Poincare-Bertrand formula. 4 

If the above method is formally applied to the 
function tp(ft) = o(ft - ft'), a closure relation im­
mediately follows: 

(P,/.. (,,),/.. ( ') Yo(ft') dy _ o( _ ') 
J~ 'I'.\f" '1'. ft Yo(Y) A+(y)A-(y) - ft ft, 

ft,ft' E [el, .8], -1 < oc <.8 < 1. (4) 

Our main goal is to prove this identity in a direct way. 
We may remark that the convergence of the integral 
for ft:F p,' is ensured since the factor Y[YO(y)]-l 
possesses at most a weak (i.e., integrable) singularity 
(cr., the discussion at the beginning of Sec. Ill), 
whereas the factor [A + A-]-1 is well behaved. 

Substituting the expression (I.2c) [i.e., Eq. (2c) 
of Ref. I. This notation is applied several times 
throughout this paper] for .p.(ft), we obtain two 
o-function contributions from the left-hand side of 
Eq. (4): a term 

[J.2{f.t)/A+{f.t)A-{f.t)]o(ft - fl') 

due to the product of the 0 functions appearing 
explicitly in .pv, and a term 

[7Tc2fl2/4A+(ft)A-(ft)]O{f.t - ft/) 

3 I. Kuscer and N. J. McCormick, Nucl. Sci. Eng. 23,404 (1965). 
• N. I. Muskhelishvili, Singular Integral Equations (P. Noordhoff, 

Ltd., Groningen, The Netherlands, 1953). 

823 



824 I. KUSCER AND F. SHURE 

arising from the application of Eq. (1.9). According to 
Eq. (l.4b), both contributions together give just the 
right-hand side of (4). 

We are left· with the task of showing that the 
remaining part of the integral in (4) vanishes. Since 
this part has the form 

YoV/)[I(P) - 1(fJ-')]/(fJ- - fJ-'), (5) 

III. OVERCOMPLETENESS AND 
UNDERCOMPLETENESS 

We still have to see under what conditions the 
closure relation (4) is unique, and what happens when 
oc = -lor fJ = 1, or both. To this end we reexamine 
the proof of the preceding section to ascertain when 
it may be, or may need to be, modified. 

Since closure implies the mutual orthogonality of all 
the eigenfunctions involved, the question of unique­
ness is answered simply by trying out all weight 
functions which produce orthogonality. These func-

(6) tions are listed in paper I; and if they are derived 
by the constructive method of Case and Zweifel,s it 
can be seen that the list is complete. 

we only need to demonstrate that 1(fJ-) is a constant. 
In view of the identities 

1 1 Cp A-Cp) ± A+(p) __ ± __ = __ .o....;:... __ ~ 

xt(p) Xo(p) 2 yb)A+(v)A-(p) 

{ 

cp}.(v) 

yo(v)A+(v)A-(v) , 

- 2 .(CV)2 1 
- 'IT: "2 yo(v)A+(p)A-(p)' 

(7+) 

(7-) 

which are obtained from Eqs. (T.4b) and (Ll7), the 
integralterm on the right-hand side of (6) is equal to 

(8) 
where 

No(z) == _1 (P[_l - _1 J~. 
2'ITi J~ xt(p) Xo(v) l' - z 

(9) 

This may be written also as 

N (z) - -1-1-1-~ 
o - 2' v (')' ' 'lTl a AO z Z - Z 

(10) 

where the integration is carried out in the clockwise 
direction over a closed loop which surrounds the cut 
(oc, fJ) but leaves the point z outside. We deform this 
contour into a large circle to obtain 

No(z) = [l/Xo(z)] - 1, (11) 

where we have used the fact that Xo(z) possesses no 
zeros in the cut plane and tends to 1 as z -+ 00. 

Therefore, 

UNt<fJ-) + No(fJ-)] = ![+ + _1 -J - 1, (12) 
2 Xo(fJ-) Xo(fJ-) 

and by the use of identity (7 +) we see that the 
variable term here just cancels the other term in (6). 
Thus 

(13) 

remains, so that the expression (5) vanishes, and the 
closure relation (4) is verified. 

The analysis hinges on the behavior of the function 
Yo(v) on the interval [IX, fJ] over which it is defined. It 
can be seen l that yo(v) is real finite, and nonvanishing 
in the interior of the interval, except for the trivial 
zero at v = O. At the end points this function has, at 
most, weak zeros or weak infinities. That is to say, 

yo(v),......, (fJ - p),ep), l' -+ fJ, 
,....,., (1' - IX)-r(a), l' -~ IX. (14) 

As long as IX > -1 and fJ < 1, the exponents here 
are < 1 in magnitude. In fact 'T(x) is an odd mono­
tone function with 'T(l) = 1. 

In view of the relation 

(IS) 

no generality is lost by restricting ourselves to the 
case fJ > O. Let us try, still for -1 < oc < fJ < 1, to 
repeat the derivation of Eq. (4), with Xo(z) substituted 
by an a arbitrary X function obeying the conditions 
mentioned in I: 

X(z) = (a - bz)(c - dz) Xo(z), if oc < 0, (l6a) 
(z - 1X)(fJ - z) 

X(z) = (a - bz) X (z) 
(fJ - z) 0 , 

if (X ~ 0, (16b) 

with arbitrary a, b, c, d. The corresponding functions 
y(v) and N{z) are defined by Eq. (USa) and by an 
equation of the form (9), respectively. In the analog 
of Eq. (11), an additional term containing z crops up, 
due to the residues of the integrand at z = alb and 
z = c/d (at infinity if b = 0 or d = 0). Consequently 
the term corresponding to (5) now does not vanish. 

We have tacitly avoided the choice alb = c/d = (X 

or fJ in Eq. (l6a) or alb = oc in (l6b). In view of Eq. 
(14), whenever IX ~ 0, such a choice causes the 

S K. M. Case and P. F. Zweifel, Linear Transport Theory (Addison­
Wesley Publishing Company, Inc., Reading, Massachusetts, 1967). 
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function y(v) to acquire a strong zero at the re­
spective end point, which prevents the integral in 
Eq. (4) from converging. Thus, although orthogonality 
is produced by three linearly independent weight 
functions if IX < 0, or by two if IX = 0, in these two 
cases Yo(v) is the only such function allowed in the 
closure relation (4). This agrees with Case's statement! 
that for any such interval the expansion (1) is unique. 

An apparent paradox arises when orthogonality 
relations with different weight functions are applied to 
Eq. (1). In contradiction to the established uniqueness 
of this expansion, different expansion coefficients A(v) 
seem to follow. However, a closer inspection shows 
that, although orthogonality relations are formally 
valid for any of those weight functions Y(ft), only one 
of them, Yo(ft), can be used for the determination of 
expansion coefficients. The trouble stems from the 
weak infinities of A(v) and of the "useless" weight 
functions at one of the end points, where, e.g., a 
behavior like (fJ - V)-T(P) and (fJ - ft)-HT(P) is en­
countered. The two exponents add up to -1, whereby 
the Poincare-Bertrand formula breaks down,4 and 
consequently the equation corresponding to (3) 
becomes invalid. (The integral over ft on the left-hand 
side diverges.) 

The situation is different if IX > 0, because then the 
function 

Y1(V) == [(v - 1X)/(fJ -v)]Yo(v) (17) 

is a valid substitute for Yo (v), and we indeed get two 
closure relations. Similarly, for an arbitrary "P(ft) we 
obtain two different expansions (1), one from the 
orthogonality relation with the weight Yo(ft), and the 
other with Y1(ft). Their difference gives an expansion 
with the sum zero, 

iP 
A(v)4>,.(ft) dv = 0, (18) 

A(v) oc cv 1 ,(19) 
2 (v - lX)yuCv)A+(v)A-(v) 

as can be verified directly. We may say that the set 
{4>vCft)}, IX S v s fJ, now is overcomplete (not linearly 
independent) in the interval IX S ft S fJ.1 

It should be emphasized that for ° < IX < fJ < 1 
only the two weight functions Yo(ft) and Y1(ft) are 
useful for determining the expansions of "P(ft). Linear 
combinations of Yo and Y1' although formally per­
mitted in the orthogonality relation (2), fail in Eq. (3), 
because again the Poincare-Bertrand formula breaks 
down at one of the end points. For the same reason, 
none of the orthogonality relations can be applied to 
linear combinations of the two expansions. In 
particular, this warning holds for Eqs. (18), (19), 
which therefore do not contradict orthogonality. 

Whenever fJ = 1, the proof given in Sec. II breaks 
down in its first step, since Yo(v) f"oo.J (1 - v) in the 
neighborhood of v = I and the integral in (4) diverges. 
However, in the particular case ° < IX < fJ = 1 the 
closure relation (4) is valid with Yo(v) replaced by Y1(V), 
Eq. (17). Of course, the proof is the same as before. 
Hence, here again we have unique expansions in 
terms of the continuum modes alone, in agreement 
with Case. 

We consider finally the case fJ = 1, IX S 0, and 
try to use again a general X function and a corre~ 
sponding Y function. It turns out that no such com­
bination leads to a closure relation of the form (4), 
because either the integral there diverges, or a residue 
of the r,!!ciprocal X function leads to an additional 
term. We are thus forced to the conclusion that the 
continuum eigenfunctions alone no longer form a 
complete seU 

However, the set {4>.} may be made complete by 
the addition of only one (two, in the case IX = -1, 
fJ = 1) new function, linearly independent of the 
continuum N.}. One such function is the discrete 
eigenfunction 

4>+({t) = tCYo[Ijevo - ft)], (20) 

which is automatically introduced by repeating the 
derivation of Sec. II with 

Xlz) == [(Yo - z)/(1 - z)]Xo(z), (21) 

and with the corresponding functions Y2(ft) and N2(z). 
(For simplicity we exclude the case C = 1, so that 
Vo ¥= 00.) When proceeding from Eq. (10) to Eq. (I 1) we 
get an extra term, namely the residue of the integrand 
at z' = Vo. Let us quote the final result for the half­
range (IX = 0, fJ = 1): 

Y2(ft'>[f 4>.(ft)4>.({t') yb)A :~v)k(V) 
+ 4>+(ft)4>+(ft') (c~J ~o~o~J = b(ft - ft')· (22) 

This agrees with what follows from the orthogonality 
relations (LAI), (LA2), (LA4), if the different 
notation used there is taken into account: 

y(z) = Yo(z)/(1 - z) = Y2(Z)/(Vo - z). 

In the full-range case (IX = -1, (J = 1), two 
discrete terms are needed for completion, for instance 
the two discrete eigenfunctions 4>+(ft) and 4>-(ft)· 
These are introduced by taking 

v~ - Z2 A(z) 
XaCz) == 1 _ Z2 Xo(z) = 1 _ c· (23) 
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Pursuing the same procedure as before we obtain 

,u'{fl~hl)~.(,u') vA+(:;A-(V) 

+ [~+(,u)~+(,u') - ~-(,u)~-(,u')] 2: )} 
cVo (vo 

= ~(,u - ,u'), (24) 
where 

N(vo) == [dA(Z)] = ~ _ 1 (25) 
dz .='0 v~ - 1 Vo 

The result is seen to correspond to the known 
orthogonality relations for the full range case. l 

Recollecting what has been said about completeness 
of the eigenfunctions we recover the classification 
given by Case. In short, we can state that the set of 
continuum modes ~.(,u), IX ::;; V ::;; (3, -1 ::;; IX < (3 ::;; 1, 
with respect to expansions in the interval IX ::;; ,u ::;; (3, 

is overcomplete, whenever this interval does not 
contain any of the three special points -1, 0, 1; 

is complete if the interval contains one of those 
points; 

is undercomplete if it contains two (or all three) of 
those points, and can be completed by addition of one 
(or two) further function, e.g., ~+(,u) or ~-(,u) (or 
both). 

IV. COMMENTS 

The discussed closure relations are not entirely 
new, certainly not for the full range and the half 
range [Eqs. (24) and (22)]. For these two cases they 
are encountered in connection with the Green's 
function for the infinite medium and with the solution 
of the albedo problem for the semi-infinite medium, 
respectively.I.5 Hence, the above considerations repre­
sent nothing more than a demonstration that the 
~ function is truly reproduced by the expansions. So 
is any other function which we would expand. 

Instead of deriving the closure relation from the 
orthogonality relations, one could alternatively prove 
the closure relation first, and derive the orthogonality 
relations therefrom. The factor needed in the integrand 
ofEq. (4) can be constructed in a way very close to that 
used by Case and Zweifel5 for the orthogonality 
relations. Such an approach may have some peda­
gogic value as a short way of introducing Case's 
formalism from the start. A brief sketch is given in 
the following. 

The eigenfunctions ~.(,u) satisfy the equation 

(v - ,u)~v(,u) = tcv, (26) 

which we write down twice, for the values ,u and ,u'. 
We multiply both sides of the first equation by 

(2/cv)~.(,u')G(v)dv, 

and of the second by 

(2/ cv )~v(,u )G( v )dv, 

where G(v) is a function to be determined later. 
After integration and subtraction we obtain 

(,u - ,u')f.P ~ ~v(,u)~.(,u')G(v) dv 
" cv 

= f: ~v(,u)G(v) dv - f: ~v(,u')G(v) dv. (27) 

If a closure relation with the "weight" (2/cv)G(v) 
exists, the integral on the left-hand side is zero for 
,u :F ,u'. Hence we must require that 

f: ~v(,u)G(v) dv = const. (28) 

This is a singular integral equation, like those con­
sidered by Case. By applying the usual techniquel •5 

we find that the solutions G(v) indeed are the same as 
implied by the results of Secs. II and III. 

The difference between Eq. (28) and the equation 
involved in the constructive determination of the 
orthogonality relations5 lies in the interchanged role 
of the variables v and ,u, which means that the 
equations are the ad joints of each other, in Musk­
helishvili's sense.4 This explains why the number of 
linearly independent orthogonality relations in general 
differs from the number of linearly independent 
closure relations. 

Let us conclude with remarks about possible 
generalizations. A closure relation for the two-media 
case2 can immediately be written down. Also the more 
general scheme with a variable c(v), useful with a 
simple model of energy-dependent neutron transport 
or of nongrey radiative transfer,6.7 can be worked out 
without difficulty. In addition, a generalization to 
anisotropic scatteringS•9 is also possible. 

ACKNOWLEDGMENTS 

We owe sincere thanks to Professor P. F. Zweifel 
and Professor G. C. Summerfield for enlightening 
discussion and encouragement, and for critical 
comment which enabled us to avoid some incon­
sistency. 

One of us (1. K.) wishes to express appreciation of 
the department of Nuclear Engineering, University to 
Michigan, for the hospitality extended to him during 
his stay 

6 R. J. Bednarz and J. R. Mika, J. Math. Phys. 4, 1285 (1963)' 
J. R. Mika, Nuc\. Sci. Eng. 22, 235 (1965). ' 

7 J. C. Stewart, I. Ku~cer, and N. J. McCormick (to be published). 
8 J. R. Mika, Nucl. Sci. Eng. 11,415 (1961). 
9 N. J. McCormick and I. KuRer, J. Math. Phys. 7, 2036 (1966). 


