
Efficient determination of thermodynamic properties from a single 
simulation 

J. M. Rickmana) and D. J. Srolovitz 
Department of Materials Science and Engineering, The University of Michigan, Ann Arbor, 
Michigan 48109 

(Received 12 July 1993; accepted 5 August 1993) 

A method for calculating the density of states of a system directly from its trajectory in phase 
space is described. As a specific example, the method is applied to the Monte Carlo simulation 
of a two-dimensional Ising model. The energy distribution function is calculated from the 
density of states and the associated Hehnholtz free energy per spin is calculated for various 
system sizes and temperatures and shown to be in excellent agreement with the exact results. 

1. INTRODUCTION 

Since the thermodynamics of any system may be ob- 
tained directly from the free energy or partition function, 
the determination of these quantities is central to much of 
statistical physics. While thermodynamic derivatives of the 
free energy, such as the internal energy or magnetization, 
may be expressed in terms of ensemble averages of dynam- 
ical variables normally accessible by computer simulation, 
this is not true of the free energy itself. According to 
Binder,’ the “Monte Carlo method yields information in 
quantities which are thermal averages of observables, but it 
does not yield any estimates for the partition function 2 
itself. As a result, while the internal energy is easily calcu- 
lated, neither the free energy F= - kBT In Z nor entropy 
are obtained directly.” In the present paper, we demon- 
strate that the partition function and therefore the “abso- 
lute” free energy may be calculated directly from a simu- 
lation and propose a simple, efficient method for doing so. 

Several methods to indirectly extract free energies from 
computer simulations have been proposed.26 The now 
standard approach to this problem has been to relate quan- 
tities such as the free energy or entropy of the system of 
interest to that of a conveniently chosen reference system 
by the construction of an integration path between the 
systems. 2P4 While methods based up on this concept have 
had some successes, the extremely large computational de- 
mands inherent to these indirect approaches have limited 
their applicability to a small number of very simple sys- 
tems. However, as the entropy is related to the volume of 
the allowed region of phase space by Boltzmann’s equa- 
tion, it should also be possible to calculate the entropy 
directly from a detailed knowledge of the trajectory of a 
system (the set of states realized in a simulation). 

Ma,’ for example, developed a method to calculate the 
entropy from a trajectory based on the assumption that the 
states comprising the trajectory can be divided into groups 
of states which are each uniformly distributed in regions of 
phase space. The phase space volume of these regions, and 
hence the entropy, can be determined by counting the 
numbers of pairs of states in a region that coincide. This 
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method has been applied, with some success, to calculate 
the entropy of small, 1-D Ising models consisting of up to 
16 spins and the entropy of a 2-D Sherrington-Kirkpatrick 
spin glass at low temperatures.* While this approach is 
very appealing, its principal drawbacks are that it is not 
very accurate (the calculated spin entropy differs from the 
exact value by approximately 5%) and that it is applicable 
only to small systems or low temperatures. 

Other approaches, such as histogram analyses9 and cu- 
mulant expansions” have permitted the calculation of free 
energy and entropy over appreciable ranges of parameter 
space from a single simulation. Such approaches effectively 
determine free energy and entropy differences from trajec- 
tories since an energy histogram is a summary of the frac- 
tion of time spent in various regions of phase space. Un- 
fortunately, since simulations rarely access the very high 
and low tails of the energy histogram, these methods can 
only explore a limited range of parameter (e.g., tempera- 
ture and pressure) space. Whereas the histogram and cu- 
mulant expansion approaches often require the introduc- 
tion of a reference state to determine free energies, it is 
advantageous to obtain the “absolute” free energy and its 
generating function, the partition function, directly from 
the simulation. 

In this paper we show that the density of states may be 
calculated directly from a trajectory in a simulation. The 
“absolute” free energy, the entropy, and all other thermo- 
dynamic quantities can be directly determined from the 
density of states. This method is much more accurate and 
efficient than the coincidence-counting method, and its im- 
plementation is straightforward. Unlike numerical meth- 
ods for calculating the density of states from several arti- 
ficially constrained systems with related Hamiltonians, l1 
our method is based on a direct analysis of the trajectory of 
the unconstrained system of interest. The direct determi- 
nation of the density of states in a simulation at one tem- 
perature has the additional advantage that it allows one to 
calculate properties over a wide range of temperature based 
upon a single simulation at one temperature. As a specitic 
example of this general method, we explicitly analyze the 
well-known case of a 2-D Ising model. 
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II. PROCEDURE 

Consider a system in thermodynamic equilibrium at a 
temperature T interacting with a heat reservoir. The aver- 
age properties of this system, such as its specific heat or 
magnetization, can be calculated from a series of configu- 
rations (a trajectory) generated, for example, by using a 
canonical Monte Carlo simulation. These cofigurations 
can be sorted into groups with the same energy, E. Each 
group corresponds to a region in phase space consisting of 
g(E) (the density of states) total states, and it is assumed 
that the generated configurations within any group are ran- 
domly distributed in the associated region of phase space. 
The thermodynamic properties of this system at inverse 
temperature P=l/kBT can then be calculated from its 
partition function 

Z(B) = c gwwBE, 
E 

(1) 

where the summation is over the discrete set of energies 
available to the system. Hence, all thermodynamic proper- 
ties can be calculated once the density of states g(E), and 
hence the partition function Z, is known. 

In order to calculate g(E) directly from a simulation, 
we have found the following approach to be both efficient 
and easy to implement in a Monte Carlo simulation. First, 
from a knowledge of the possible excitation energies for the 
system under consideration, identify a special subset of 
g(E) states for each energy E. This subset is simply a 
convenient set of easily identifiable states. For example, in 
the case of the one-dimensional, ferromagnetic Ising model 
subject to periodic boundary conditions, states correspond- 
ing to a given excitation energy can be classified in terms of 
the number of bonds between unlike spins, where each 
such bond contributes 2J (J is the energy parameter) to 
the excitation energy. Thus, a special subset of states hav- 
ing energy 4nJ, where n is a positive integer, consists of n 
isolated “down” spins such that no two “down” spins are 
nearest neighbors. This can be created by placing the n 
“down” spins on the even-numbered lattice sites and plac- 
ing “up” spins on all of the remaining sites. There are, of 
course, other ways to choose special subsets. It is conve- 
nient to choose special subsets based on some simple rules, 
as in the example above. It is essential, however, that the 
precise number of states within a special subset be calcu- 
lable in order to implement this information into the 
scheme described below. 

After making this identification, group the configura- 
tions in a generated trajectory by energy and examine the 
set of states in each group recording whether or not a state 
is contained in the special subset of states for that group. 
This operation can be performed during the course of the 
simulation by simply comparing a given configuration with 
those in the special subset. For example, in the case of the 
one-dimensional Ising model discussed above, one could 
simply ask whether a generated configuration consists of 
“down” spins on even-numbered sites and “up” spins on 
the remaining even-numbered sites and on all of the odd- 

numbered sites. If the answer is yes, then this configuration 
belongs to the special subset. 

The fraction of realized configurations of energy E 
that fall within the subset is the probability function f(E) . 
Since generated configurations are randomly distributed in 
each group g(E) =g( E)/f(E). That is, f(E) is an un- 
biased estimator of the fraction of states in the special sub- 
set. Therefore a determination of f(E) for all important 
excitation energies directly from simulation yields g(E) 
and, by using Eq. ( 1 >, Z. The only assumption that is 
made in determining Z by this prescription is that contig- 
urations corresponding to the same energy are randomly 
distributed in their associated region of phase space. 

Upon obtaining f(E), and hence, g(E) from conlig- 
urations generated in a simulation at one temperature, 
properties at other temperatures can be determined by us- 
ing Eq. ( 1) without resorting to further simulations. Thus, 
for example, the “absolute” free energy, F= - k,T ln Z, 
can be obtained over a wide range of temperature without 
the introduction of a reference state. The ensemble average 
of a quantity X, (X), can be directly calculated from 
g(E) as (X) =ZEXg( E)emBE/Z(fl), where Z(p) is de- 
fined in terms of g(E) in Eq. (1). 

Further, if one is only interested in determining the 
partition function, it is not necessary to determine g(E) 
for all energies E in a trajectory. In fact, it is cnly neces- 
sary to calculate g!E) for a specific energy E since the 
fraction of time p(E) that the system spends with energy 
k is given by 

p(&=g($)e-@/Z(P). (2) 
So, Z(B) is then determined once p( J!?) and g(k) are 
obtained from a simulation. As a practical matter, it is 
necessary to choose an ,!? that is sampled often eno-ugh in 
a si*mulati?n in order to accurately determine p(E) and 
g(E). g(E) can, of course, be calculated by identifying a 
convenient special subset of states having energy E and 
then using the previously described technique. The key to 
a successful implementation of this counting method is 
clearly the identification of easily distinguishable subsets in 
which b(E) is large. This second approach will be imple- 
mented below in order to obtain the free energy of large 
systems. 

III. EXAMPLE: ISING MODEL 

In order to make these ideas more concrete, we con- 
sider, as a specific example, a ferromagnetic 2-D Ising 
model having N spins with nearest-neighbor interaction 
energy J on a square lattice subject to periodic boundary 
conditions. For this model, the possible excitation energies 
are given by l =4p J, where p is a non-negative integer and 
p# 1. The identification of special energy subsets is facil- 
itated by dividing these excitation energies into two classes. 
In the first class, a subset of states having excitation energy 
E, consists of n isolated spins with s= - 1 (or+ 1) such 
that no two spins with s= - 1 (or + 1) are nearest neigh- 
bors. The energy of a subset with n isolated spins is easily 
calculated by noting that a broken bond has excitation 
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TABLE I. The probability function f(E) and the number of states g(E) in the special subsets of states for 
several excitation energies for a N=36 Ising model with Tz3.20 J/k,. The density of states can be found 
from g(E)=E(E)/f(E). 

7995 

24J 36 J 48 J 60 J 72 J 76 J 

i?(E) 9816 307 008 505 584 5 203 728 961 832 4 467 168 
f(E) 2.783~ IO-’ 7.912x 10-Z 1.934x 10-s 1.135x10-3 4.236~ lo-’ 2.936x 1O-4 

energy 2J and each isolated spin creates four broken 
bonds, i.e., E,= 8n J. In the second class, a subset of states 
having energy E, consists of a single nearest-neighbor pair 
of spins with s= - 1 (or f 1 ), m isolated spins with 
s=-1 (or fl) and N-m-2 spins with s=+l (or 
- 1) such that no two spins, other than the pair, are near- 
est neighbors. The energy of this subset is calculated by 
observing that the nearest-neighbor pair of spins creates six 
broken bonds and the other m isolated spins again each 
create four broken bonds, i.e., E, = 12 + 8m J. This scheme 
is particular convenient as the configurations associated 
with each class are easily visualized as a collection of in- 
dependent excitations. Very many other choices of subsets 
are, of course, also possible. 

The number of states g(E), where E= -2NJ+e, or 
-2NJ+e,, were readily obtained from simple counting 
program and combinatorial analysis. The procedure to ob- 
tain g(E) directly from simulation, then is to examine the 
configurations generated in a Monte Carlo simulation at 
temperature T and record whether they are elements of the 
special subsets, thereby determining the probability func- 
tion f(E) and, hence, g(E). The simplicity of the classi- 
fication scheme permits easy subdivision of the total set of 
configurations into subsets. 

The method was first applied to an N=36 Ising spin 
system on a square lattice at T= 3.20 J/kB. The trajectory 
consisted of approximately 2.40X lo7 Monte Carlo steps 
sampled from a total of 1.20X lo* in four independent 
runs. The values of f(E), along with g(E) as calculated 
from the counting program, for several excitation energies 
E are summarized in Table I. As is evident from the table, 
even though g(E) can be ,quite large for some energies 

( - lo”), it can be accurately determined by regarding it as 
a product of g(E) and l/f(E). Figure 1 (a) shows the 
histogram p(e) obtained in a simulation at T=3.20 J/kB 
and that predicted by using the calculated density of states, 
p(E) =g(E)e -BE/Z(B). The histog ram p(e) for 
T=2.40 J/k;, as obtained in a simulation at that temper- 
ature, and as predicted by using the density of states de- 
termined from the T=3.20 J/kB simulation are compared 
in Fig. 2. The complex behavior of this curve at small E/J 
is attributable to the finite lattice size and the fact that 
T=2.40 J/kB is very near the critical temperature. As is 
apparent from Figs. 1 and 2, the agreement between the 
two histograms for each temperature is excellent, and, con- 
sequently, thermodynamic averages can be accurately cal- 
culated over a wide range of temperature. The Helmholtz 
free energy per spin and the entropy per spin, calculated 
from the partition function in Eq. ( 1) for T= 3.20 J/kB, 
are F/NJ= -22,5638~0.0008 and S/Nk,=0.5532 
~0.0014, respectively. The free energy as a function of 
temperature over a wide range of temperature, as calcu- 
lated from Eq. ( 1 ), is shown in Fig. 3 along with the exact 
solution for the finite size, 2-D Ising model.12 The agree- 
ment between these thermodynamic functions and their 
exact values is excellent, thereby indicating the power of 
the present approach. 

For large systems, it becomes increasingly difficult to 
calculate the density of states g(E) for all excitation en- 
ergies. This is because some excitations, particularly in the 
wings of the histogram, are sampled comparatively rarely 
and because the counting algorithm becomes less efficient 
for large excitation energies, as evidenced by small values 
of f( E&see Table I. Nevertheless, it is still possible to 
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FIG. 1. The energy histograms, p(e), for N=36 spins as obtained in 
simulations at T=3.20 J/k, (0 ) and as calculated using the density of 
states g(E) determined at T=3.20 J/kB (x). 

FIG. 2. P(E) as obtained at T=2.40 J/k, (0) and calculated by using 
the g(E) determined at i”=3.20 J/k, (X). The number of spins 
N=36. 
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FIG. 3. The free energy per spin F/NJ vs temperature, T, for N=36 as 
calculated using the density of states ( + ). The exact result is shown as a 
solid line. 

accurately calculate the frp energy by using Eq. (2). To 
do this, choose an energy E that is n$ far out + the wings 
of the histogram and obtain both g(E) and p( E) from the 
trajectory generated in the simulation. The “absolute” free 
energy per spin F/NJ was determined for systems at 
T=3.20 J/kB with N=16, 25, and 36 calculating g(E) 
and using Eq. (1) and for large; systems wjth N=49, 64, 
aAnd 100 by obtaining both g(E) and p(E) for a single 
E= - 2NJ+48 J. The results of these calculations are 
shown in Fig. 4 along with the exact results.12 These results 
indicate that E$. (2) can be used to accurately determine 
the partition function an: free energy directly from a sim- 
ulation provid_ed that g(E) is known for a single, relatively 
large energy E. 

Figure 4 shows that the calculated free energy per spin 
is within 0.06% of the infinite size system value. Therefore, 
we conclude that while there are some size limitations to 
the counting scheme presented here, the method for deter- 
mining thermodynamic properties described is sufficient to 
obtain accurate data on effectively infinite systems. In 
short, if the length scale of the system is much greater than 
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FIG. 4. The free energy per spin F/NJ vs l/N for N= 16,25,36,49,64, 
and 100. For Ng36, F/NJ was determined from the entire histogram 
generated by the calculated density of states, while for N> 36, F/NJ was 
calculated by using Eq. (2) with E= Eo+48 J. The exact result is shown 
as a solid line. Error bars were determined from the variance in f(E) as 
calculated from independent runs. 

the correlation length g, then the system can be regarded as 
a collection of nearly independent, smaller subsystemsI 
and the extrapolation to large system size is justifled. The 
application of our approach to more complex systems with 
multiple time scales, as in the case of polymers, is, how- 
ever, currently problematic in practice. Although it is pos- 
sible to obtain information on the density of states, follow- 
ing the long-time trajectories in these systems is 
impractical. 

IV. CONCLUSIONS 

In the present paper, we develop a new method for 
determining the density of states, partition function, free 
energy, and all other thermodynamic properties directly 
from a simulation. The partition function is, of course, the 
central thermodynamic quantity of interest since other 
thermodynamic quantities are derivable from it. The den- 
sity of states results determined from a single simulation at 
a single temperature may be used to predict the thermody- 
namic properties of the system at any temperature. There- 
fore, this approach may be used to predict the properties of 
the system near critical points, based on simulations at T 
far from T, . As an example, this procedure as applied to a 
two-dimensional Ising model. The free energy vs tempera- 
ture of this model was determined from a single simulation 
and was shown to agree with the exact result to within 
0.02%. A method for obtaining the free energy for large 
system sizes was described and shown to agree with the 
exact, infinite system size results to within 0.06%. 

The application of our procedure to systems with con- 
tinuous potentials is somewhat more involved. In these 
cases it is more difficult to identify a subset of states with a 
given energy. One possible approach to overcoming this 
problem is to record a series of configurations and their 
corresponding energies during the course of a simulation, 
and then perform a second simulation wherein a compar- 
ison is made between configurations generated in the set- 
ond simulation and those generated in the first. This will 
undoubtedly require long simulations in order to generate 
a large number of states for the comparison. The applica- 
tion of this approach to determine accurate thermody- 
namkdata from simulation trajectories in other discrete 
models and in fluids is the subject of ongoing research. 
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