Morphological stability of a heterophase interface under
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The evolution of the interface between two mutually insoluble metallic phases, under the influence
of a strong electric field is examined. A slight perturbation of the interface away from a plane
y=h(x) leads to a component of the electric field along the interface. This creates a diffusion flux
of the individual atoms along the interface which, in turn, leads to an increase in the amplitude of
the initial perturbation and thus to an interfacial profile instability. The processes is expected to be
controlled by interface diffusion in response to three distinct driving forces: the electric field,
internal stresse@vhich arise due to the accumulation or depletion of matter at the interfaoe the
interfacial curvature. The stress distribution along the interface was found from a self-consistent
solution of the elastic problem. For the instability to occur, differences in effective atomic charges,
elastic moduli and/or atomic mobilities of the two constituent metals are required. Small sinusoidal
corrugations are shown to grow with time for a range of wavelengths. The corrugations can grow
monotonically or vary in oscillatory manner, depending on their wavelength19@6 American
Institute of Physicg.S0021-89706)06608-3

I. INTRODUCTION assumption by explicitly accounting for the evolution of
&tresses within the material and coupling these stresses back
to the material flux.

In the present work, we perform a self-consistent analy-

Instabilities of planar interfaces have been investigate
in many different contexts, including solidificatidrghemi-
cal reactiong;® and mechanical deformatidn’ The present _ " e
work focuses on the morphological instability of an initially sis of the_ morphological S_tab'"ty of an |n|t_|all_y flat het-_

rophase interface separating from two immiscible solids in

planar heterophase interface in a strong, perpendicular elef

tric field. A related instability has been observed at a het&" orthogonal electric field evolving under the action of in-

erophase interfaces in an ionic systéiis strong electric terfacial diffusion. We consider electromigration, the Kirk-

field, commonly causes an electric current. In metallic sys—endatl)I el(‘jf_?]f:t(smce tzetﬁtom'c mofb|I|t|§? n the}ftwg matﬁrlals
tems, the resulting electron current interacts with the atom§an be di erent and the case of arbitrary effective charge

in the solid causing an atomic flux known as electromigra-On the atoms. Using this approach, we derive the conditions

tion. This atomic flux will be discontinuous across an inter-under Wh'_Ch su_ch_ an m_t_erface will be unstable_, predict the
face between two materials provided that the effective charg te at wh|c_h this instability develops, and predict the wave-
on the atoms or the atomic mobility in the two materials is ength that is expected to grow the fastest.
different. This discontinuity can lead to the destabilization of
such an initially flat heterophase interface. A steady state
analysis of this problem was presented in Ref. 9.
Instabilities in interfacial morphology generally require
either material transport or a phase change. Focusing on the The interaction of metal ions with the “electron wind”
former situation, the interface velocity is controlled by the . ,ses a diffusion flux of the atoms alofeg opposite ththe
relatives rates at which matter is attached to the phases melciron current. At high temperatures this can lead to bulk
ing at the interface. In the case of fluid—fluid or solid—fluid g5 mic transport, while at low and intermediate temperatures
interfaces, this addition of material volume at the interfaceyitsjon occurs primarily along grain boundaries, interfaces,
causes fluid flow. At solid—solid interfaces, on the otherynq/or surface? The present work focuses on an initially
hand, this material accumulation or depletion at the 'merfac‘f)laner interface ag=0 between two distinct metallic phases

can set up stresses within the solids that create a reverse 3 composed of mutually insoluble atomic speclesind
driving force that opposes the initial atomic flux. Typically, B, respectively. The electric current densityis oriented

this is accounted for in interfacial problems by postuIatingperpendicu|ar to the initially flat interfacesee Fig. 1 For

that an accumulation of material on one side of the interfac%implicity we assume that matter transport is diffusive and
is accompanied by depletion of material from the opposing,.cyrs solely along this heterophase interface. The electric
side of the interface such that there is no net material acCl;eq does not affect the interface when it is plartgr=0)
mulation or depletion. In the present paper, we relax thig,gyever, any perturbation to the flat surface h(x) results

in a component of the electric field along the interface. This,
dElectronic mail: srol@umich.edu in turn, causes a diffusion flux of the chemical components

Il. INTERFACE DIFFUSIONAL FLUX
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FIG. 1. Schematic illustration of a sinusoidal perturbatiohwave number
k) to an initially flat interface separating phaseandB. The surface profile
amplitudeh(x,t) evolves under the action of the flux AfandB atoms,J,
andJg , respectively, which are driven by the electric current fjux

along the interface, which may increase the amplitude of th
interface perturbatiorisee Fig. 1 and thereby lead to an
instability in the interface morphology.

The volume diffusional fluxi.e., the volume of atoms
passing through a unit length of boundary per unit jime

along the interface is proportional to the gradient of the

chemical potential along the interface

oD
_ %y
kT v

J

7 (7=A,B)

ity (1)
where D, is the interface diffusion coefficient of atomic
componenty, §is the diffusional width of the interfacé, is
Boltzmann'’s constanfl is the temperature, ar¥; u.,, is the

gradient of the chemical potential of atomic component

along the interface. We consider three distinct causes for the dug  dJg

change of the chemical potentials along the interface

/L,]—,(L%ZZ.”QD‘F(U,?O'I&)”’)/K (n=A,B) (2

where ,u?, is the chemical potential of the flat, stress free
interface in zero electric field. The first term on the right-
hand side of Eq(2) is the chemical potential change due to
the electric fieldz, andzg are the effective atomic charges,
¢ is the electric potential A divergence of the diffusion

fluxes at the interface will lead to the accumulation or deple-

accumulation or depletion of matter at the interface and the
concomitant development of stress. Therefore, the stress dis-
tribution must be determined self consistently with respect to
the atomic fluxes.

We can determine the elastic state of the interface in
terms of the accumulation—depletion of matter at the inter-
face and the overall motion of the interface itself. The rela-
tionship between the stresses, atomic fluxes, and boundary
positions are discussed in detail in Ref. 12. If the phases on
either side of the interphase boundary were decoupbed
separateq then the displacement of the surfdome side of
the boundary at any point would simply be related to the
éiivergence of the volume interfacial flux at that point. In the
case of an interface, however, the two surfaces are joined.
This joining operation displaces the interface from its origi-
nal position such that the interface liesyath instead of
y=0. The elastic displacemenis.e., those that produce
stressesat the interface is simply the difference between the
displacement of the decoupled boundary due to matter
accumulation—depletion and the displacement of the joined
interphase boundary. Therefore, the elastic displacement of
the two phasesi, andug evaluated at the interface can be
written as

VN dJs  oh
X a e
on 4b

o x at (40
where h(x,t) is the interface profile. Introducing
U=u,+uUg, Egs.(4) can be rewritten as

&u_ J 143 5

T ax Jatde) (53

é’h— i J 1 J 5b

ST o LA (17 8)J6] (5b)

tion of matter there and thus produce concomitant internal _
stresses. The influence of these stresses on the chemical pghereé=ug/(ua+ug). In the AppendiXEq. A13, we show

tential is expressed by the second term in &), wherew,
and wg are the atomic volumes associated withand B

atoms, andr is the normal stress acting across the interface.

The third contribution to the chemical potential along the

that &£ can also be written as

Ga

= (GatGo)

(50

interface is associated with the curvature of the interface in &hereG, andGg are elastic moduli of thé andB phases

manner akin to its affect at gas—solid interfatks is the
interfacial energy per unit area ardis the interface curva-
ture. The sign of the curvature term in E8) is opposite for
the materials on either side of the interfage phasesy and
B). For thea phase, the “~" sign is chosen and for th&
phase, we chose thet+" sign. Substituting Eq(2) into Eq.
(1) yields

Jn:_Ln(i‘yViK—i_ani@—i_Vig) (77:A,B) (3)
where L

»= 6D ,0,/KT is the volume mobility,D, is the
diffusivity of atomic componentn at the interface and
d,=2,/w, is the volume charge of atomic componenptlf
the volume fluxes of components and B are equal and

opposite, then no matter is accumulated or depleted from thg
interface and hence no stresses develop. In general, however,

a divergence of the total diffusion fluxJ{+Jg) leads to
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defined in the Appendix, respectively.

lll. INTERFACE EVOLUTION

We now analyze the temporal evolution of a small, sinu-
soidal perturbation to the interface profile of wavelength
27k

h(x,t) =H(t)sin(kx) (6)

where Hk<1. In this small slope limit, the fluxes, elastic
displacements and interface profile are periodic with the
same period. The gradient of the curvature is
k®H coskx). The electric field gradientIs

Vie=—kFH cogkx) (7)
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whereF =2jpaps/(pat pr); pa @ndpg are the specific elec-

tric resistivities of the phaseg, and 8. Denoting the ampli- (a) H
tude of the elastic displacememtasU (t) yields 7
u(x,t)=U(t)sin(kx). G) //4(
The stress normal to the interfacecan be determined U
from the solution of the relevant elastic problem, as de-
scribed in the Appendix,
o(x,t)=GkU sin(kx) 9
® 1

whereG is a function of the elastic moduli of the and 8
phases(see the Appendix Substituting Egs(6)—(9) into

Egs.(3)—(5) yields a set of two linear differential equations

for the amplitudes of the surface profit(t) and the elastic
displacements at the interfati(t)

H
. allH + ale y

T (109

du

a9t =a,H+ayU (10b

where the coefficients of the matria;; , are

ap =~k [ELa+ (1= L] - K (1-£)gsle
—&galalF, (119

a;,=k*G[(1—é)Lg—ELal, (11b)

a3 =k*y(Lg—La) +k*(qglg+0ala)F, (119

ay=—k3G(Lp+Lp). (110

N

FIG. 2. Schematic illustration of the temporal evolution of the amplitudes of
the interface profile perturbatidd and the interface elastic displaceméhnt

due solely to the differences in atomic charges, as indicated by the arrows,
for (a) k>k, and for(b) k<k,.

Note that the asymmetry in these results with respect to the
two phases is associated with the vector nature of the electric
current(see Fig. 1 If, however, either one or both of these
conditions(16) are not satisfied, then ranges of wavelengths
exist for which perturbations to the interface profile will
grow (i.e., the flat interface is unstableThe instability re-

The temporal evolution of the interface profile and theduires either a difference in atomic chargeg £d,), a dif-

stresses can be determined by solving @€). The general
solution to Eqs(10) is

H(t)=H(0)[ae’ '+ (1—a)e’] (123
U(t)=U(0)[be’+'+(1—b)e’!] (12b)

where{a,b} is the eigenvector and_ andp, are the char-

acteristic values of matrig;; . The characteristic values are

2

ajtag
— (@182~ a1227)-

:a11+ a2 \/
pi 2 b 2

The flat(H=0) and unstressedJ =0) interface is stable
provided that the determinant of the matay is positive
and the trace of the matria; is negative, i.e.,

13

apqd—ag,a,1>0 andaj;+ay<0. (14

Inserting the expressions for the coefficieats from Eg.
(112) into these expressions yields

118z~ 18,1 =K’LaLgG[2yk?+ (gg—0ga)F]>0, (159
a1+ axm=— KA (ELa+ (1 €)Lp)(yk?+2GK)
+((1-§)gglg—£dala)F]<0. (15b)

Examination of expressior85a and(5c) show that the

interphase boundary will be stable against perturbations fi

any wave number provided that

0g=0a and Gggglg=Ga0al A - (16)
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or

ference in the atomic mobilitied. <L ,), or a difference in
elastic moduli Gg<G,). We analyze these cases below.

A. Instability due to the difference in the atomic
charges: g,—gqg=AQq>0; Lg=L,=L

As follows from Eq.(158), the range of wave numbeks
over which the interface is unstable is

k<AQF/2y. (17)

If G > {yAqgF, as is common, Eq15b) can be simplified
and the characteristic values of the matix,p.. are found
to be

p.=k?’L(AQF—2yk?)
and
p_=—k°GL. (18b

The rate of the growth of the interface profile perturbation is
controlled byp., sincep_ is negative.

This analysis shows that interface profile perturbations
with wave numbers greater thém = AqF/2y will decay
and those wittk<<k. will grow. Similarly, the amplitude of
the stresses at the interface will grow for<k. and other-

(183

wise decay. In other words, the stresses and the profile per-
turbation both grow or both decay, as indicated in Fi@) 2
and(b), respectively. The rate at which the profile and stress

Klinger, Levin, and Srolovitz



amplitudes grow fok<k_ initially increase withk ask? and
decay for largek ask*. The perturbation which grows the () H
fastest has a wave numbgr = VAqF/4y.

This same result was previously obtained in an analysis
that explicitly assumes that there is no net matter accumula-
tion or depletion anywhere on the interfattndeed, it fol-
lows from the conditiord , + Jgz=0 and thai,,H + a,,U =0.
Substituting the latter expression into Ed0g yields

dH— H 19
E_DJ’ ( )

NS
AR

=

()
wherep, is defined in Eq(183.

B. Instability due to the difference in the mobilities
and/or the elastic moduli: gg=qg,=¢q and
(GALA_ GBLB)/(GALA+ GBLB)EA>O

We now examine the case where the effective charges of
the two components are equal and show that even in this
case, the interface can still be unstable., will not remain
flat), depending on the relative magnitudes of the atomic (©)
mobilities and the elastic moduli of the two phases. The con-
ditions for interface stability were given in E¢L4). In the
present case, whesga,,— a1,8,;=2k’L \LgG>0, we find
that the interface is unstable provided tlat+a,,>0. Us-
ing Eq. (15b), we find that the interface is unstable provided
that

any
=

T

)
=

k<k,=—Gly+\(Gly)2+qFAl 7. (20)

In the limit thatG > yqFA, Eq.(20) simplifies to
FIG. 3. Schematic illustration of the temporal evolution of the amplitudes of
gqFA the interface profile perturbatidd and the interface elastic displaceméhnt
~ f (21 due to differences in atomic mobilities and/or the elastic moduli of phases
and B, as indicated by the arrow$a) corresponds tk<<k,— ék, (b) to

In terms of this definition ok,, we can rewrite the expres- Ki—k<k<ki, and(c) tok,<k<k,+ sk and the case in whick, + sk<k
. .. Rk is identical with that shown in Fig.(B).

sion for the characteristic values of the matax [see Eg.

(13)] as

P+ =KALG((ky—K) = (ks — k)= 6k*¥/G) @2 tions. The perturbation witk=2k,/3 grows at the maximum
where L=[&éLg+(1—-€)LAl/2, and 60=2L,Lg/[éLg  rate and, therefore, will likely be the perturbation wave num-
+(1—€)LAl% ber that is observed.

We now examine the structure of the characteristic val-
ues ofa;; . The expression under the square root in @)
is positive at smalk, implying that the interface is unstable 2 k, — sk<k<k,
against perturbations of small or large wavelength. If
0k3y/G>(k,—k)?, then the characteristic valugs. are
complex. Expanding Eg22) aboutk neark,, we find that
p- is complex in the range df; — sk<k<k,+ 6k, where

k<k,

In this interval,p,. and p_ are complex and the real
parts are equal and positive. This implies the amplitudes of
the stress and the interface perturbation oscillate and grow
with time, as shown in Fig. (®). The period of these oscil-

[ak i i :
Sk=k, aGly< K. 23 lations 7 can be estimated from EQ2) as follows:
2 (24)
i iti - T —.
We are now in a position to analyze the temporal behav Lk, 0k, yG

ior of the interface profile and the stresses. There are four
distinct types of behavior in thg,=qgg andA>0 case:
yp 9= e 3. ky<k<k,+ &k

1. k<k,— ok In this interval,p,. and p_ are complex and the real

In this interval,p, and p_ are both real and positive. parts are equal and negative. This implies the amplitudes of
This implies that the magnitude of both the stress and théhe stress and the interface perturbation oscillate and decay
interface perturbation increase with time, as indicated in Figwith time, as shown in Fig. ®). The period of these oscil-
3(a). The actual sign of each depends on the initial condidations is7.
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4. ki + 6k<k Fv PP FA)

In this interval,p, andp_ are both real and negative. T oyZ TwT T T T T gy

This implies that the magnitude of both the stress and the

interface perturbation decrease with time without oscillation. 92z~ V(ouct ayy) (A2)

This is the same type of decay of both the stress and interfagghere v is the Poisson ratio.

profile amplitude as was shown in Fig(b2 Since the surface elastic displacement has the form indi-
These results suggest that differences in mobilitiescated in Eq(A1), we consider a solution to the biharmonic

and/or moduli of the two phases meeting at the boundary cagquation of the forniy >0)

produce a rich variety of morphological phenomena. We are _ Cky o

unaware of any experimental examples in which this type of ¥=(at+by)e ™ sinkx (A3)

oscillatory phenomena have been observed, however, weherea andb are constants. Substituting E@3) into Eq.

hope that these results will inspire new experiments on eleqA?2) yields

tromigration across heterophase interfaces. - K2(a-+by)e~* sin kx (Ad)

IV. CONCLUSION and the qther components of the_stress tensor have similar

forms. Using Hooke’s law, the strain tensor can be expressed

A planar interface separating two materials may be unin terms of the stress tensor

stable in an electric field which has a component normal to 1+

the interface. We have considered the case of the growth of ey=— [~ k?(a+by)+2kvb]e™ Y sin kx (A5)

an initially small amplitude sinusoidal perturbation to the E

interface profile, where matter transport occurs by interfacgynere E is Young’s modulus. Assuming that the interface
diffusion. This instability has two distinct physical origins, gjips, we apply the boundary conditian,=0 at the inter-
either of which is sufficient to destabilize the interface. Thesgace (y=0) and find thab = ka. Inserting t)his result into Eq.

are associated wittl) the difference in the effective charges (A5) yields
on the atoms in the two materials af@) the difference in

i iliti i i i (1+v)
the atomic mobilities or elastic moduli of the_ two materials. €yy=— [1+ky—2v]e Yo (AB)
Each of these phenomena can lead to a build up of stress at E
the interface as a result of the net flux of atoms into or out of
) . where
the interface. Such stresses can be relieved by the develop-
ment of interfacial corrugations, much in the same way as (rz—ayy(y:O):ak2 sin kx. (A7)

O(r:]curs for the 'Tterface (;).r suE‘ace of lany Etreissd_ééllc:. The straineg,, is equal todu/dy, thus, the elastic displace-
The pregent anaysis pre Icts the wavelengt S0 t e.".]ter acr%entuB at the interface can be found from

corrugations which are expected to grow and identifies the

wavelength that should grow the fastest. The wavelengths at 0 2(1-v?)

which this instability occurs decreases with increasing elec- BT fo €y dy= —E 7 (A8)

tric field, effective charge difference, atomic mobility differ-

ence, and decreasing interfacial energy. When the atomigquation(A8) provides the link between the stress and dis-
mobilities or elastic moduli of the two phases differ, a rangePlacement at the boundary in each phase. Therefore, we can
of wavelengths exist for which the amplitudes of both theWrite

stress and the interface profile oscillate. o
u,=r= Wwhere G,=

7 KG,

E
(1_—]}2)} ) 7]=A,B. (Ag)
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