Low-Temperature Heat Capacities and Thermodynamic Functions of Some Palladium and Platinum Group Chalcogenides. II. Dichalcogenides; PtS_2 , $PtTe_2$, and $PdTe_2$

EDGAR F. WESTRUM, JR., AND H. GARY CARLSON

Department of Chemistry, University of Michigan, Ann Arbor, Michigan

AND

FREDRIK GRØNVOLD AND ARNE KJEKSHUS Chemical Institute A, University of Oslo, Blindern, Norway (Received April 5, 1961)

Heat capacities of platinum disulfide, platinum ditelluride, and palladium ditelluride were measured in the range 5° to 350°K. They show the normal sigmoidal temperature dependence with no evidence of transitions or other anomalies. The derived heat capacity equations were integrated. Values of C_p , $S^\circ - S_0^\circ$, $H^{\circ}-H_{0}^{\circ}$, and $-(F^{\circ}-H_{0}^{\circ})/T$ are tabulated for selected temperatures. At 298.15°K the entropies are 17.85 cal gfw⁻¹ °K⁻¹ for PtS₂, 28.92 cal gfw⁻¹ °K⁻¹ for PtTe₂ and 30.25 cal gfw⁻¹ °K⁻¹ for PdTe₂. Thermodynamic values have been estimated for other dichalcogenides and related chalcogenides of the platinum group metals.

INTRODUCTION

S indicated in the first part of this study,¹ no heat-A capacity data have been reported on the chalcogenides of the platinum metals, despite the fact that such compounds exist in great number. Dichalcogenides are especially common (except among the oxides), and the majority of them have either pyrite (C2)-type structure or cadmium hydroxide (C6)-type structure. For a survey of the transition-metal chalcogenides, see Haraldsen.² The cubic pyrite-type structure is found for $RuS_2(a=5.6090 \text{ A})$,³ $RuSe_2(a=5.933)$,⁴ $\operatorname{RuTe}_{2}(a=6.377), {}^{5}\operatorname{OsS}_{2}(a=5.6192), {}^{3}\operatorname{OsSe}_{2}(a=5.945), {}^{4}$ $OsTe_2(a=6.3985)$,⁵ and $\sim RhSe_2(a=6.002)$.⁶ In addition, there are pyrite-like structures with more metal deficit than $\sim RhSe_2$ (the \sim indicates approximate composition). They are found for $\sim \text{RhS}_{2,3}(a=5.58),^7$ $\sim \text{RhSe}_{2.5}(a=5.985), {}^{6} \sim \text{RhTe}_{2.4}(a=6.439), {}^{7} \text{IrS}_{2.67}(a=6.439)$ 5.589),⁸ IrSe_{3.0} (a = 5.9293),⁸ and IrTe_{2.67} (a = 6.393).⁹ The hexagonal cadmium hydroxide-type structure is found for RhTe₂(a=3.92, c=5.41),¹⁰ IrTe₂(a=3.930, c=6.414),⁹ PdTe₂(a=4.0365, c=5.1262),¹¹ PtS₂(a=3.5432, c = 5.0388),¹² PtSe₂(a = 3.7278, c = 5.0813),¹² and $PtTe_2(a = 4.0259, c = 5.2209)$.¹² Orthorhombic structures have been found for $PdS_2(a=5.460, b=5.541,$

⁹ F. Grønvold and J. Krause (unpublished data).
⁴ L. Thomassen, Z. physik. Chem. B2, 349 (1929).
⁶ W. O. J. Groeneveld Meijer, Am. Mineralogist 40, 646 (1955).
⁶ S. Geller and B. B. Cetlin, Acta Cryst. 8, 272 (1955).
⁷ Ø. Steen, thesis, University of Oslo, Norway, 1955.
⁸ L. Søvold, thesis, University of Oslo, Norway, 1954.
⁹ E. F. Hockings and J. G. White, J. Phys. Chem. 64, 1042 1060. (1960).

c = 7.531) and PdSe₂(a = 5.741, b = 5.866, c = 7.691) that might be considered to be deformed pyrite-like structures, with S_2^{2-} (Se₂²⁻) groups, but with square instead of octahedral coordination around the metal atoms.13 Another orthorhombic structure has been found for \sim IrSe₂(a=20.94, b=5.93, c=3.74),¹⁴ for which only half of the nonmetal atoms are bonded as pairs. Iridium might accordingly be looked upon as trivalent. There are indications that ${\sim} IrS_2{}^8$ and $Rh_8S_{15}{}^7$ have related structures.

Among this multitude of dichalcogenides three have been chosen for the present study: PtS₂, PtTe₂, and PdTe2. These have structures of the cadmium hydroxidetype, and might thus most clearly show the influence of atomic mass on heat-capacity behavior and entropy of the platinum group dichalcogenides. By using the information obtained and other available data, entropy estimates have been made for other dichalcogenides and related chalcogenides of the platinum and palladium groups.

EXPERIMENTAL

Preparation of the Samples

The samples were prepared from the same high-purity elements as the monochalcogenides.¹ Platinum disulfide was synthesized from stoichiometric amounts of the elements in an evacuated and sealed silica tube by heating to 750°C for one day. The sulfide was then in the form of a black powder and was annealed at 500°C for seven days and afterward slowly cooled to room temperature over another seven days.

Platinum ditelluride was prepared by reacting the elements at 1000°C for 5 hr. The grey powder thus obtained was annealed at 500°C for seven days and cooled to room temperature over seven more days.

Palladium ditelluride was prepared by heating a mixture of the elements to 800°C where it was kept

[†]This work was supported in part by the Division of Research of the U. S. Atomic Energy Commission. ¹F. Grønvold, T. Thurmann-Moe, E. F. Westrum, Jr., and E. Chang, J. Chem. Phys. **35**, 1665 (1961). ²H. Haraldsen, Plenary Lecture, XVI Congress of the IUPAC, Division 1057 and the Dereview Superstant WI (Dick

Paris, 1957, reprinted in Experientia Supplementum VII (Birkhaüser-Verlag, Basel, Switzerland, 1958), and Mémoires présentés à la Section de Chimie Minérale, SEDES, Paris, 1958.

³ F. Grønvold and J. Krause (unpublished data).

¹⁰ S. Geller, J. Am. Chem. Soc. 77, 2641 (1955).

¹¹ F. Grønvold and E. Røst, Acta Chem. Scand. 10, 1620 (1956).

¹² F. Grønvold, H. Haraldsen, and A. Kjekshus, Acta Chem. Scand. 14, 1879 (1960).

 ¹³ F. Grønvold and E. Røst, Acta Cryst. 10, 329 (1957).
 ¹⁴ L. B. Barricelli, Acta Cryst. 11, 75 (1958).

	 Т, °К	<i>Cp</i>	<i>T</i> , °K	<i>C</i> _p	<i>Т</i> , °К	Cp	<i>Т</i> , °К	Cp	<i>T</i> , °K	<i>C</i> _p	<i>T</i> , °K	Cp
					PtS₂; gr	am formula	weight $= 25$	9.22 g				
	Serie	es I	193.23	13.108	339.37	16,31	12.38	0.209	11.26	0.165	59.20	3.531
			202.13	13.416	347.31	16.40	13.68	0.269	12.37	0.206	64.36	3.962
	78.16	5.139	211.12	13.748			15.06	0.328	13.65	0.267	70.93	4.512
	84.65	5.758	220.12	14.028	Serie	s II	16.52	0.394	19.12	0.528	78.52	5.187
	91.96	6.418	229.28	14.298			18.11	0.475	20.79	0.625	86.06	5.886
	99 50	7 089	238.66	14.547	51.46	2.912	19.89	0.572	22.97	0.766	98.86	6.628
	107.27	7.750	247.99	14.783	55.22	3.205	21.90	0.693	25.28	0.920		
	115 89	8 474	257 14	15.00	58.99	3.479			27.84	1.102	Seri	$\mathbf{es} \mathbf{V}$
	124 78	9 200	266 19	15 15	63 28	3 859	Serie	-s IV	30.54	1 301		
	133 27	0.838	275 17	15 29	68.26	4 275			33 45	1 522	262 55	15 12
	142 00	10 446	284 07	15 50	73 24	4 606	5 42	0.000	36 68	1 769	262.03	14 00
	151 26	11 026	201.07	15.66	10.21	1.070	6 33	0.002	40 14	2 043	271 08	15 17
	160 30	11.020	301 05	15.00	Sori	ec III	7 53	0.045	44 80	2.013	280.06	15.17
	165 57	11.045	211 11	15.01	Serie		8 61	0.045	40.56	2.401	280.00	15.45
	103.37	12 207	220 57	15.90	10 17	0 122	0.42	0.075	54 22	2.112		
	104 41	12.297	320.37	16.17	11 21	0.152	9.44	0.100	54.00	2 124		
	104.41	12.750	330.17	10.17	11.21	0.104		0.140		3.134		
PtTe ₂ ; gram formula weight=450.31 g												
	Serie	es T	143.70	15.82	12.13	0.340	38.92	4.858	167.91	16.49	260.07	17.74
			161.41	16.31	13.50	0.439	42.90	5.701	161.51	16.34	266.80	17.78
	64.49	9.744			14.92	0.577	47.14	6.589	170.18	16.52	275.73	17.86
	70.99	10.691	Serie	s II	16.36	0.738	51.80	7.512	178.89	16.70	283.06	17.92
	77 99	11 569	50110		17.90	0.927	57.10	8.505	187.73	16.86	201 07	18 00
	85 00	12 369	5 37	0.024	19 62	1 161	63.45	9 595	196 44	17 00	301 00	18 05
	92 84	13 002	6 57	0 047	21 51	1 445	70 39	10 611	205 12	17 11	310 14	18 12
	101 23	13 724	7 48	0 071	23 64	1 788	10105	10.011	213 88	17 25	310 43	18 17
	109.34	14 259	8 22	0 103	26.01	2 228	Serie	NTT 20	222 94	17.36	328 74	18 24
	117 58	14 722	0.02	0 137	28.06	2.220	OUIK	JJ AIL	232 31	17 45	337 87	18 28
	126 02	15.14	0.80	0.187	32 08	3 306	150 33	16.02	241 60	17.60	346 72	18 37
	134.67	15.49	10.89	0.243	35.35	4.079	159.11	16.28	250.92	17.66	540.72	10.52
PdTe ₂ ; gram formula weight=361.62 g												
	Seri	es I	182.89	17.03	282.61	18.20	7.13	0.059	21.00	1.648	60.26	9.743
			192.27	17.16	291.69	18.28	8.07	0.093	23.06	2.069	65.95	10.616
	106.97	14.452	201.40	17.31	300.74	18.34	9.07	0.1403	25.40	2.570	72.16	11.417
	115.44	14.922	210.33	17.44	309.84	18.40	10.14	0.2053	28.00	3.155	79.21	12.237
	123.62	15.34	210.19	17.44	391.07	18.42	11.32	0.2769	28.64	3.299	86 75	12 997
	131.64	15.66	219.26	17.57	328.32	18.52	12.53	0.3757	31.23	3.897	94.35	13.615
	139.67	15.95	228.28	17.67	337.48	18.59	13.73	0.5039	34.08	4.555	102 14	14 144
	147.95	16.22	237 20	17.77	346 37	18.64	13 59	0.4878	37 24	5 286	104.11	11.111
	156 84	16 45	247 17	17 88	010.07	10.01	14 81	0 6206	40 03	6 102		
	166 07	16 60	255 10	17.06	Serie	s II	16 12	0.0290	45 19	7 000		
	175 21	16.88	264 22	18 02	5 42	0.023	17 55	1 026	40.06	7 040		
	173.21	16.82	201.33	18 07	5.42 6 20	0.023	10.15	1 306	54 00	7.9 1 9 8.860		
	113.33	10.02	213,44	10.01	0.30	0.042	19.13	1.300	54.99	0.009		

TABLE I. Heat capacities of platinum and palladium dichalcogenides; in calories/(gram formula weight °K).

molten for about 2 hr. After cooling the sample was fragmented to tin-white metallic, molybdenite-like scales. The sample was sealed into a new silica tube, annealed at 500°C for seven days and cooled to room temperature over a period of two days.

X-ray powder photographs were taken of the samples in cameras with 11.46 cm diam and asymmetric film mounting. The lattice constants corresponded within the limits of experimental error to those reported earlier for these compounds,^{11,12} and no lines from foreign phases could be observed.

Calorimetric Procedure

The Mark I cryostat and its operation for lowtemperature calorimetric measurements¹⁵ and calorimeter of laboratory designation $W-9^{16}$ have been described previously. Only $PtTe_2$ was determined in calorimeter $W-7.^1$

The platinum resistance thermometer (laboratory designation A-3) used in these measurements was calibrated by the National Bureau of Standards from 10° to above 373° K. Below 10° K a provisional scale for temperature was generated. The thermometer is considered to reproduce the thermodynamic scale within 0.1° from 4° to 10° K, 0.03° from 10° to 90° K, and within 0.04° above 90° K. Sample weights of 155.969 g of PtS₂, 197.380 g of PtTe₂, and 253.471 g of PdTe₂ were used. Helium gas at 8 cm Hg pressure and 26° C was added in the sample space for thermal

¹⁵ E. F. Westrum, Jr., and A. F. Beale, Jr. (to be published).

¹⁶ E. Greenberg and E. F. Westrum, Jr., J. Am. Chem. Soc. **78**, 4526 (1956).

-					-	-				
<i>Т</i> , °К	$\begin{array}{c} C_p \\ (\mathrm{cal/gfw} \ ^\circ\mathrm{K}) \end{array}$	$\frac{S^{\circ} - S_{0}^{\circ}}{(\text{cal/gfw }^{\circ}\text{K})}$	$H^{\circ}-H_{0}^{\circ}$ (cal/gfw)	$\frac{-(F^{\circ}-H_{0}^{\circ})/T}{(\text{cal/gfw }^{\circ}\text{K})}$	Т, °К (C _p cal∕gfw °K)	$\frac{S^{\circ} - S_{0}^{\circ}}{(\text{cal/gfw }^{\circ}\text{K})}$	$H^{\circ}-H_{0}^{\circ}$ (cal/gfw)	$\frac{-(F^{\circ}-H_{0}^{\circ})/T}{(\text{cal/gfw }^{\circ}\text{K})}$	
PtS ₂ ; gram formula weight = 259.22 g					PtTe ₂ ; gram formula weight=450.31 g					
5 10 15 20 25	0.013 0.120 0.325 0.577 0.900	$\begin{array}{c} 0.004 \\ 0.038 \\ 0.124 \\ 0.250 \\ 0.413 \end{array}$	0.016 0.291 1.38 3.61 7.29	$\begin{array}{c} 0.001 \\ 0.009 \\ 0.032 \\ 0.069 \\ 0.122 \end{array}$	160 170 180 190 200	16.29 16.52 16.72 16.90 17.05	18.176 19.171 20.121 21.030 21.901	1587.7 1751.8 1918.1 2086.2 2256.0	8.253 8.866 9.465 10.050 10.621	
30 35 40 45 50	$\begin{array}{c} 1.260 \\ 1.642 \\ 2.031 \\ 2.416 \\ 2.800 \end{array}$	$\begin{array}{c} 0.608 \\ 0.831 \\ 1.076 \\ 1.338 \\ 1.612 \end{array}$	12.66 19.93 29.13 40.25 53.29	$\begin{array}{c} 0.186 \\ 0.262 \\ 0.348 \\ 0.443 \\ 0.547 \end{array}$	210 220 230 240 250	17.19 17.32 17.44 17.55 17.65	$\begin{array}{c} 22.737\\ 23.539\\ 24.312\\ 25.056\\ 25.775\end{array}$	2427.2 2599.8 2773.6 2948.5 3124.5	11.178 11.722 12.253 12.771 13.277	
60 70 80 90 100	3.593 4.426 5.321 6.238 7.132	$\begin{array}{c} 2.192 \\ 2.808 \\ 3.457 \\ 4.136 \\ 4.840 \end{array}$	85.20 125.26 173.99 231.75 298.58	$\begin{array}{c} 0.772 \\ 1.018 \\ 1.282 \\ 1.561 \\ 1.854 \end{array}$	260 270 280 290 300	17.74 17.83 17.91 17.98 18.05	26.469 27.140 27.790 28.420 29.030	3301.5 3479.4 3658.1 3837.5 4017.6	13.771 14.254 14.726 15.187 15.638	
110	7.987	5.561	374.28	2.158	350	18.33	31.835	4927.6	17.76	
130	9.593	7.029	438.45	2.472	273.15	17.85	27.35	3536	14.40	
$\frac{140}{150}$	$10.30 \\ 10.95$	$7.766 \\ 8.499$	650.1 756.3	$3.123 \\ 3.457$	298.15	18.03	28.92	3984	15.56	
160 170 180	11.53 12.05 12.53	9.224 9.940	868.7 986.7	3.795 4.135	PdTe ₂ ; gram formula weight=361.62 g					
190 200	12.33 12.97 13.36	10.042 11.332 12.007	1237.2 1368.9	4.477 4.820 5.163	5 10 15	(0.017) 0.185 0.653	(0.006) 0.056 0.208	(0.022) 0.432 2.38	(0.002) 0.013 0.049	
210 220 230	$13.71 \\ 14.03 \\ 14.32$	12.668 13.313 13.943	$1504.3 \\ 1643.0 \\ 1784.8$	$5.504 \\ 5.845 \\ 6.183$	20 25	1.459 2.482	0.200 0.499 0.931	7.54 17.32	0.122 0.238	
240 250	$14.58 \\ 14.82$	$14.558 \\ 15.159$	$1929.4 \\ 2076.4$	6.519 6.853	30 35	$3.612 \\ 4.768$	$\begin{array}{c} 1.483 \\ 2.127 \end{array}$	$32.54 \\ 53.50$	0.398 0.598	
260	15.03	15.744	2225.6	7.184	40 45	5.895 6.961	2.837 3.594	80.17 112.35	0.833	
270 280	$15.22 \\ 15.42$	$16.315 \\ 16.872$	$2376.9 \\ 2530.2$	7.511 7.836	50	7.955	4.380	149.69	1.386	
290 300	15.61 15.78	$17.417 \\ 17.949$	$2685.4 \\ 2842.3$	$8.157 \\ 8.474$	60 70	9.713 11.16	5.991 7.601	$238.32 \\ 342.91$	$2.019 \\ 2.702$	
350	16.43	20.432	3648.2	10.009	80 90	12.32 13.27	9.169 10.677	$460.51 \\ 588.6$	$3.413 \\ 4.137$	
273.15	5 15.29	16.49	2425	7.61	100	14.01	12.114	725.1	4.863	
298.15	5 15.75	17.85	2813	8.42	110	14.63	13.480	868.5 1017 5	5.585	
$PtTe_2$; gram formula weight = 450.31 g						15.59	16.008	1171.3	6.997 7.683	
	(0, 010)	(0,006)	(0.024)	(0,001)	140 150	16.28	18.289	1490.4	8.353	
10	0.184	0.057	0.439	0.013	160	16.55	19.349	1654.6	9.008	
15 20	0.587 1.215	0.199 0.449	2.25 6.67	0.049	180	16.97	20.339	1989.9	10.268	
25	2.019	0.804	14.70	0.216	190 200	17.13 17.29	$22.245 \\ 23.128$	2160.5 2332.6	10.874 11.465	
30 35	$2.970 \\ 4.007$	$1.254 \\ 1.789$	$\begin{array}{r} 27.11 \\ 44.54 \end{array}$	$\begin{array}{c} 0.350 \\ 0.516 \end{array}$	210	17.43	23.975	2506.2	12.041	
40 45	5.087	2.395	67.29 95.30	0.713 0.936	220 230	17.57 17.70	24.789 25.573	2681.2 2857.5	$12.602 \\ 13.149$	
50	7.162	3.756	128.69	1.182	240 250	17.81	26.329 27.058	3035.1 3213.6	$13.683 \\ 14.203$	
60 70	9.014	5.230	209.79	1.733	260	17.99	27.762	3393.2	14.711	
80	11.82	8.234	420.00	2.984	270	18.07 18.16	28.442 29.101	3573.5 3754.7	15.207 15.692	
90 100	12.84 13.64	9.087 11.082	545.4 676.0	3.049 4.323	290 300	18.24 18.32	29.740 30.360	3936.6 4119.5	16.165 16.628	
110	14.30 14.85	12.415 13.684	815.8 961 7	4.998 5.670	350	18.66	33.211	5044.5	18.798	
130	15.31	14.891	1112.6	6.333	273.15	18.07	28.65	3630	15.36	
140 150	15.09	16.040	1426.2	0.986 7.626	298.15	18.31	30.25	4086	16.54	

TABLE II. Thermodynamic properties of platinum and palladium dichalcogenides.

conduction. Since the same quantity of helium gas was used for measurements on the empty calorimeter, no correction was necessary.

RESULTS

The actual experimental heat capacity values for the three dichalcogenide samples are presented in Table I in chronological order after the application of the analytically determined curvature correction. The temperature increments of individual determinations may usually be estimated from adjacent mean temperatures in the table. For most of the points the deviation from a smooth curve was less than 0.009 cal gfw⁻¹ °K⁻¹ above 25°K. Below 25°K the fractional deviations become larger because of the smaller absolute heat capacity, smaller temperature intervals, and decreased sensitivity of the thermometer.

The data are presented in terms of an ice point of 273.15°K and the thermochemical calorie defined as 4.1840 abs j. The gram formula weights of PtS₂, PtTe₂, and PdTe₂ are taken as 259.22, 450.31, and 361.62, respectively. Experimental densities of the dichalcogenides were found to be 7.80 g cm⁻³ for PtS₂, 10.16 g cm⁻³ for PtTe₂ (both by pycnometric measurement), and 8.306 g cm⁻³ for PdTe₂ (from x-ray diffraction data).

The contribution of the empty calorimeter to the total heat capacity when filled with the PtS₂ sample reached a maximum of 59% at 68°K and a minimum of 31% at 10°K. At 6°K the value was 42% and at 350°K the value had dropped to 46%. In contrast the contribution of the calorimeter with the PtTe₂ sample reached a maximum of 38% at 350°K and a minimum of 17% at 10°K. At 6°K the calorimeter accounted for 24% of the heat capacity measured. The behavior of the calorimeter filled with the PdTe₂ sample was similar to this latter case; the maximum of 40% occurred at 350°K and the minimum of 19% at 18°K. At 6°K the value was 27%.

Large-scale plots of heat capacity vs temperature were made over the entire region of investigation. In addition, a least squares polynomial in temperature fit to the data above 25°K with an IBM digital computer gave essentially identical results. The heat capacities at selected temperatures in Table II were taken from the drawn curve below 25°K and calculated by the polynomial representation above 25°K. A Debye T^3 extrapolation was used below 6°K. Values for $H^{\circ} - H_{\circ}^{\circ}$, $S^{\circ} - S_0^{\circ}$, and $(F^{\circ} - H_0^{\circ})/T$ at the selected temperatures listed in Table II were obtained by integration. For internal consistency the values in Tables I and II are given to one more figure than is justified by the estimated experimental precision. In general the thermodynamic functions are believed to have a probable error less than 0.1% above 100°K.

The plots of the experimental heat capacities vs temperature are presented in Fig. 1. No anomalous deviations from the usual sigmoid form are seen.

FIG. 1. Heat capacities of the dichalcogenides on a gram formula weight basis: O represents PtS2; 🔴 represents PtTe2, and represents PdTe2.

DISCUSSION

The entropy value found here for platinum disulfide, 17.85 cal gfw⁻¹ °K⁻¹, compares well with that estimated by Kelley,¹⁷ 17.4 cal gfw⁻¹ °K⁻¹, on the basis of decomposition pressure measurements on PtS₂ by Biltz and Juza¹⁸ and available data on the entropies of the elements. Just as in the PtS/Pt range,¹ Biltz and Juza apparently have included some low-pressure values in the PtS_2/PtS range also (those for $PtS_{1.06}$, $PtS_{1.01}$, and $PtS_{1.05}$), which probably should have been omitted. Furthermore, the estimation of the partial pressure of the diatomic sulfur molecules in the vapor was based upon the work by Preuner and Schupp¹⁹ which has since been shown to be considerably in error,^{20,21} and a reevaluation of the thermodynamic functions has therefore been made. It appeared possible to obtain consistent data using the available heat-capacity equations for PtS¹ and S₂ gas²² and assuming the following heatcapacity equation, which satisfies the present data at 300 and 350°K and reaches the value 20 cal gfw⁻¹ °K⁻¹ at 1000°K, for PtS₂,

$C_p = 16.39 + 3.77 \times 10^{-3} T - 1.57 \times 10^{5} T^{-2}$.

¹⁷ K. K. Kelley, "Contributions to the data on theoretical metallurgy. VII.," U. S. Bureau of Mines Bulletin 406, Washington (1937); cf. K. K. Kelley, "Contributions to the data on theoretical metallurgy. XI.," U. S. Bureau of Mines Bulletin 477, ¹⁸ W. Biltz and R. Juza, Z. anorg. u. allgem. Chem. 190, 161

- (1930)
- ¹⁹ G. Preuner and W. Schupp, Z. physik. Chem. 68, 129 (1909);
 cf. G. Preuner and I. Brockmöller, *ibid.* 81, 129 (1912).
 ²⁰ W. Klemm and H. Kilian, Z. physik. Chem. B49, 279 (1941).
 ²¹ H. Braune, S. Peter, and V. Neveling, Z. Naturforsch. 6a, 32:

(1951). ²² K. K. Kelley, "Contributions to the data on theoretical metallurgy. XIII.," U. S. Bureau of Mines Bulletin 584, Washing-

The heat-capacity change for the reaction

$$2 \operatorname{PtS}_2(s) = 2 \operatorname{PtS}(s) + S_2(g)$$

is then

$$\Delta C_p = -4.12 + 0.84 \times 10^{-3} T + 0.78 \times 10^{5} T^{-2}$$

A graphical evaluation of the derived function

$$(\Delta H_0/T) + I = -4.57 \log P_{s_2} - 9.49 \log T + 0.42 \times 10^{-3} T + 0.39 \times 10^5 T^{-2}$$

assuming P_{s_2} to be 40, 100, and 250 mm Hg at 889° 924°, and 964°K, respectively, leads to $\Delta H_0 = 45000$ and I = -72.35. The constants needed for calculating enthalpy, free energy, and entropy data for the decomposition of PtS₂ are thus available, and the values at 298.15°K are

$$\Delta H^{\circ} = 44.1 \text{ kcal}, \ \Delta F^{\circ} = 30.5 \text{ kcal}, \ \Delta S^{\circ} = 44.6 \text{ cal}^{\circ} \text{K}^{-1}.$$

Incorporating the earlier data for PtS,¹ and taking orthorhombic sulfur as the standard state of sulfur instead of the diatomic gas, the following values for the standard heat of formation, free energy of formation, and entropy of PtS₂ are found at 298.15°K;

$$Pt(s) + 2S(rh) = PtS_2(s)$$

 $\Delta H f^{\circ} = -26.3 \text{ kcal}, \qquad \Delta F f^{\circ} = -24.0 \text{ kcal},$
 $S^{\circ} = 18.1 \text{ cal} \circ K^{-1}.$

There is good agreement with the enthalpy and free energy values of Kelley¹⁷ ($\Delta H f^{\circ} = -26.64$ kcal, $\Delta F f^{\circ} =$ -24.28 kcal), while another enthalpy estimate²³ $(\Delta H f^{\circ} = -27.8 \text{ kcal})$ seems to be somewhat low.

Although high temperature decomposition data are also available for other palladium and platinum group disulfides, heat-capacity data are not. The thermodynamic functions for RuS₂ have already been estimated by Kelley¹⁷ assuming the heat-capacity change to be $\Delta C_p = -5$ cal gfw⁻¹ °K⁻¹ for the reaction

$$\operatorname{RuS}_2(s) = \operatorname{Ru}(s) + \operatorname{S}_2(g)$$

studied by Juza and Meyer²⁴ in the temperature range 1396° to 1481°K. A supposedly better estimate can be made by assuming the heat capacity of RuS₂ to have the same values as FeS₂ (pyrite)²⁵ at 300 and 350°K (14.90 and 15.66 cal gfw⁻¹ °K⁻¹, respectively) and reaching the value 19 cal gfw⁻¹ °K⁻¹ at 1000°K according to the equation

$$C_{p} = 16.38 + 2.83 \times 10^{-3} T - 2.10 \times 10^{5} T^{-2}$$

For Ru, the alleged allotropy^{26,27} has not been confirmed

by other investigators, and x-ray photographs up to 1600°K showed only the presence of the hexagonal close-packed form.28 Therefore, the heat-capacity equation derived by Kelley, $^{22}C_{p} = 5.25 + 1.50 \times 10^{-3}T(298 - 10^{-3}T)$ 1308°K), has been assumed valid up to 1481°K. The heat-capacity change for the reaction is then

$$\Delta C_p = -2.41 - 1.17 \times 10^{-3} T + 1.20 \times 10^{5} T^{-2}.$$

Since the degree of dissociation of the diatomic sulfur gas into sulfur atoms under the experimental conditions of Juza and Meyer does not exceed 2% according to the data giving the highest values,²⁹ the P_{S_2} values are taken to be 2.8, 5.4, 10.0, and 15.3 mm Hg at 1396°, 1426°, 1457°, and 1481°K, respectively. A graphical evaluation of the derived function

$$(\Delta H_0/T) + I = -4.57 \log P_{s_2} - 5.55 \log T - 0.59$$

×10⁻³T+0.60×10⁵T⁻²

leads to $\Delta H_0 = 85\ 000$ and I = -68.08. The enthalpy, free energy, and entropy values for the decomposition of RuS₂ at 298.15°K are accordingly,

$$\Delta H^{\circ} = 83.8 \text{ kcal}, \ \Delta F^{\circ} = 68.4 \text{ kcal}, \ \Delta S^{\circ} = 50.9 \text{ cal}^{\circ} \text{K}^{-1}.$$

The related enthalpy and free energy values for the reaction

$$Ru(s)+2S(rh) = RuS_2(s)$$

and the entropy of RuS₂ at 298.15°K are

$$\Delta H f^{\circ} = -53.0 \text{ kcal}, \qquad \Delta F f^{\circ} = -49.5 \text{ kcal},$$

 $S^{\circ} = 10.4 \text{ cal} \circ \text{K}^{-1}.$

All three values are lower than those of Kelley¹⁷ ($\Delta H f^{\circ} =$ -46.99 kcal, $\Delta Ff^{\circ} = -44.11$ kcal, $S^{\circ} = 12.5$ cal $^{\circ}K^{-1}$). Another enthalpy estimate²³ based upon the same data is also higher $(\Delta H f^{\circ} = -48.1 \text{ kcal})$. The uncertainty in the entropy value is rather large, since the equilibrium temperatures were high and no heat-capacity data are available for RuS₂. For ruthenium the value $S_{298}^{\circ} = 6.82$ cal gfw⁻¹ °K⁻¹ by Clusius and Piesbergen³⁰ was chosen.

A corresponding calculation for OsS_2 (using the same heat-capacity equation for the compound as for RuS₂ and the available data²² for the elements) yields a heatcapacity change of $\Delta C_{p} = -1.97 - 1.79 \times 10^{-3} T + 1.20 \times 10^{ 10^5 T^{-2}$ for the reaction

$$O_sS_2(s) = O_s(s) + S_2(g)$$
.

A graphical evaluation of the derived function

$$(\Delta H_0/T) + I = -4.57 \log P_{s_2} - 4.54 \log T - 0.90$$

 $\times 10^{-3}T + 0.60 \times 10^{5}T^{-2}$

 ²³ Selected Values of Chemical Thermodynamic Properties,
 U. S. National Bureau of Standards Circ. No. 500 (U. S. Government Printing Office, Washington 25, D. C., 1952).
 ²⁴ R. Juza and W. Meyer, Z. anorg. u. allgem. Chem. 213, 273 (1923)

^{(1933).}

¹⁵ F. Grønvold and E. F. Westrum, Jr., (unpublished data).
²⁶ F. M. Jaeger and E. Rosent ohm, Proc. Acad. Sci. Amsterdam 34, 808 (1931); Rec. trav. chim. 51, 1 (1932).
²⁷ F. M. Jaeger and E. Rosenbohm, Proc. Acad. Sci. Amsterdam 44, 144 (1941).

 ²⁸ E. O. Hall and J. Crangle, Acta Cryst. 10, 240 (1957).
 ²⁹ W. H. Evans and D. D. Wagman, J. Research Natl. Bur. Standards 49, 141 (1952).

³⁰ K. Clusius and U. Piesbergen, Z. Naturforsch. 14a, 23 (1959).

using the data by Juza,³¹ P_{s_2} equal to 27.8, 84.5, 213, and 490 mm Hg at 1217°, 1267°, 1317°, and 1367°K, respectively, leads to $\Delta H_0 = 67\ 000$ and I = -63.61. The enthalpy, free energy, and entropy values for the decomposition of OsS₂ at 298.15°K are accordingly,

 $\Delta H^{\circ} = 65.9 \text{ kcal}, \ \Delta F^{\circ} = 51.3 \text{ kcal}, \ \Delta S^{\circ} = 49.2 \text{ cal}^{\circ} \text{K}^{-1}.$

The enthalpy and free energy values for the reaction

$$Os(s) + 2S(rh) = OsS_2(s)$$

and the entropy of OsS₂ at 298.15°K are then

$$\Delta H f^{\circ} = -35.1 \text{ kcal}, \qquad \Delta F f^{\circ} = -32.1 \text{ kcal},$$

 $S^{\circ} = 13.1 \text{ cal} {}^{\circ} \text{K}^{-1}.$

The enthalpy value is about 4 kcal lower than Juza's³¹ estimate, but agrees completely with a more recent one²³ also based upon his data ($\Delta H f^{\circ} = -35$ kcal).

For \sim IrS₂ the evaluation is dependent upon assumptions regarding the properties of the lower sulfide Ir₂S₃. Decomposition pressures have been measured for both sulfides by Biltz et al.32 The evaluation is made here on the assumption that the heat capacities of the compounds are equal to those of PtS₂ and PtS+ PtS_2 , respectively. The heat-capacity change for the reaction

$$\frac{2}{3}$$
Ir₂S₃(s) = $\frac{4}{3}$ Ir(s) + S₂(g)

is estimated as

$$\Delta C_{p} = -1.44 - 3.20 \times 10^{-3} T + 0.63 \times 10^{5} T^{-2}.$$

A graphical evaluation of the derived function

$$(\Delta H_0/T) + I = -4.57 \log P_{s_2} - 3.32 \log T - 1.60$$

 $\times 10^{-3}T + 0.32 \times 10^5 T^{-2}$

leads to $\Delta H_0 = 70\ 100$ and I = -61.35. The enthalpy, free energy, and entropy values for the decomposition or Ir₂S₃ into the elements according to the above equation at 298.15°K are

$$\Delta H^{\circ} = 69.3 \text{ kcal}, \ \Delta F^{\circ} = 54.3 \text{ kcal}, \ \Delta S^{\circ} = 50.4 \text{ cal} \ ^{\circ}\text{K}^{-1}.$$

The corresponding enthalpy and free energy values for the reaction

$$2Ir(s)+3S(rh)=Ir_2S_3(s)$$

and the entropy of Ir₂S₃ at 298.15°K are

$$\Delta H f^{\circ} = -57.7 \text{ kcal}, \qquad \Delta F f^{\circ} = -52.7 \text{ kcal},$$

 $S^{\circ} = 23.2 \text{ cal }^{\circ} \text{K}^{-1}.$

Earlier estimates of the enthalpy^{23,32} were -51 kcal. In deriving the entropy the value $S_{298}^{\circ} = 8.50$ cal gfw⁻¹ °K⁻¹ for iridium determined by Clusius and Losa³³ was used.

Assuming the decomposition of $\sim IrS_2$ to take place according to the simple stoichiometric equation

$$4IrS_2(s) = 2Ir_2S_3(s) + S_2(g)$$

the heat capacity change is

$$\Delta C_p = -4.12 + 0.84 \times 10^{-3} T + 0.78 \times 10^{5} T^{-2}.$$

A graphical evaluation of the function

$$(\Delta H_{\rm O}/T) + I = -4.57 \log P_{\rm S_2} - 9.49 \log T + 0.42$$

 $\times 10^{-3}T + 0.39 \times 10^{5}T^{-2}$

gives $\Delta H_0 = 53\ 800$ and I = -69.8. The corresponding values of the enthalpy, free energy, and entropy of decomposition at 298.15°K are

$$\Delta H^{\circ} = 52.3 \text{ kcal}, \ \Delta F^{\circ} = 39.8 \text{ kcal}, \ \Delta S^{\circ} = 42.0 \text{ cal} \circ \text{K}^{-1},$$

which lead to the following values for the enthalpy, free energy, and entropy of IrS₂ at 298.15°K

$$Ir(s) + 2S(rh) = IrS_2(s)$$

 $\Delta H f^{\circ} = -34.2 \text{ kcal}, \qquad \Delta F f^{\circ} = -31.5 \text{ kcal},$
 $S^{\circ} = 14.7 \text{ cal} {}^{\circ}K^{-1}.$

An earlier value of the enthalpy of formation²³ is about 4 kcal higher ($\Delta H f^{\circ} = -30$ kcal).

For the disulfides of rhodium and palladium only estimates relative to the lower sulfides can be made. but since no heat-capacity data are known for any of the compounds in question, no attempt to evaluate their entropies will be made here.

In estimating entropies for chalcogenides for which no data exist, the additivity principle of a chalcogen and a metal contribution can be used. Justification for this is seen in the data presented here and will be discussed more thoroughly in a forthcoming paper.25 The values chosen are 10.5 cal g atom⁻¹ $^{\circ}K^{-1}$ for the metal (Me²⁺, Me³⁺, Me⁴⁺), 3.0 both for S²⁻ and S₂²⁻, 7.0 for Se²⁻, 10.0 for Se₂²⁻, and 9.5 for Te²⁻ and 13.5 for Te22-. Estimates in cal gfw-1 °K-1 are then as follows: RuSe₂, OsSe₂, 19.5; RuTe₂, OsTe₂, 24.0; RhTe₂, IrTe₂, 29.5; PtSe₂, 24.5; \sim IrSe₂, 22.5; $\frac{1}{8}$ Rh₈S₁₅, 15.0. These values are probably reliable to about 0.8 cal g atom⁻¹ °K⁻¹. For the deformed pyrite-like structures of PdS₂ and PdSe₂, and those of the rhodium and iridium chalcogenides, corresponding estimates would probably give entropy values that would be too low, because the compounds are hyperelectronic with regard to forming pyrite-type structures, just as CoS₂, NiS₂, and NiSe₂. An increase in entropy of about 3.0 cal gfw⁻¹ °K⁻¹ for the rhodium and iridium chalcogenides and about 5 cal gfw⁻¹ °K⁻¹ for the palladium chalcogenides would seem necessary. For platinum only tetravalent dichalcogenides are known, and the entropy of PtSe₂, for example, is thus expected to be lower than that of PdSe₂ by 5 cal gfw⁻¹ °K⁻¹.

³¹ R. Juza, Z. anorg. u. allgem. Chem. **219**, 129 (1934). ³² W. Biltz, J. Laar, P. Ehrlich, and K. Meisel, Z. anorg. u. allgem. Chem. **233**, 257 (1937). ³³ K. Clusius and C. G. Losa, Z. Naturforsch. **10a**, 545 (1955).

1676

ACKNOWLEDGMENTS

The authors thankfully acknowledge the generosity of The International Nickel Company (Mond) Limited for the loan of platinum and palladium metal. They thank Torkild Thurmann-Moe for assistance with making the tellurides, and Bruce H. Justice, Shu-Sing

Chang, and Elfreda Chang for cooperation with the heat-capacity measurements and calculations. One of the authors (F.G.) wishes to thank the Nansen Foundation for financial assistance. The partial support of the Division of Research of the U.S. Atomic Energy Commission is gratefully acknowledged.

THE JOURNAL OF CHEMICAL PHYSICS

VOLUME 35, NUMBER 5

NOVEMBER, 1961

Transport Properties of Polar Gases*

L. MONCHICK

Applied Physics Laboratory, The Johns Hopkins University, Silver Spring, Maryland

AND

E. A. MASON

Institute for Molecular Physics, University of Maryland, College Park, Maryland

(Received February 13, 1961)

A model is proposed for the calculation of viscosity, diffusion, thermal diffusion, and the translational part of the heat conductivity of dilute polar gases. It is assumed that the molecular-collision trajectories are negligibly distorted by transfer of internal rotational energy, and that the relative orientation of two colliding dipoles remains fixed throughout the significant portion of the collision trajectory around the distance of closest approach. For this model, the Chapman-Enskog theory retains its usual form, but the collision integrals which appear must be averaged over all possible relative orientations occurring in collisions. Collision integrals have been calculated for the Stockmayer (12-6-3) potential,

$$\varphi(r) = 4\epsilon_0 [(\sigma_0/r)^{12} - (\sigma_0/r)^6 + \delta(\sigma_0/r)^3],$$

for kT/ϵ_0 from zero to 100 and for δ from -2.5 to +2.5, and averaged over all orientations (assumed equally probable). Sufficient collision integrals are tabulated that the convergence error of the Chapman-Enskog theoretical expressions is not a problem.

Experimental viscosities and dipole moments of a number of polar gases have been used to determine the potential parameters ϵ_0 , σ_0 , and δ , which were then used to calculate other properties for comparison with experiment. The over-all agreement between experiment and this model for polar gases is comparable to that of the Lennard-Jones (12-6) model for nonpolar gases.

I. INTRODUCTION

AS kinetic theory has been most completely worked U out for particles interacting with central forces,^{1,2} and has proved rather successful for those molecules which can be considered to have spherical symmetry and no internal degrees of freedom.² In the important case of polar gases, however, the facts that the molecules have an angle-dependent potential and that rotational-energy transfers are possible on every collision must be taken into account. Although several treatments have been developed for particles with internal degrees of freedom (Taxman³ for the classical

case and Wang Chang and Uhlenbeck⁴ for the quantum case), they would tax even the present generation of computing machines if carried out rigorously. In light of this, we are limited to approximate treatments.

The interaction potential which has been used almost exclusively for polar gases (and which will be used here) is the Stockmayer potential,

 $\varphi(r) = 4\epsilon_0 [(\sigma_0/r)^{12} - (\sigma_0/r)^6] - (\mu_1 \mu_2/r^3)\zeta,$

where

$$\zeta = 2\cos\theta_1\cos\theta_2 - \sin\theta_1\sin\theta_2\cos\phi, \qquad (2)$$

(1)

and μ_1 and μ_2 are the dipole moments of the two interacting molecules, θ_1 and θ_2 the angles of inclination of the axes of the two dipoles to the line joining the centers of the molecules, and ϕ is the azimuthal angle between them. In the limit as μ_1 or $\mu_2 \rightarrow 0$, $\varphi(r)$ is just the Lennard-Jones (12-6) potential with a potential-

^{*} This work was supported in part by the U. S. Navy, and in

¹S. Chapman and T. G. Cowling, *The Mathematical Theory of Non-Uniform Gases* (Cambridge University Press, New York,

^{1952), 2}nd ed. ² J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, *Molecular* Theory of Gases and Liquids (John Wiley & Sons, Inc., New York, 1954). Hereafter referred to as MTGL. ³ N. Taxman, Phys. Rev. 110, 1235 (1958).

⁴C. S. Wang Chang and G. E. Uhlenbeck, University of Michigan Engineering Research Report No. CM-681 (July, 1951). See also MTGL pp. 501-506.