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The entropies of the formic and acetic acid dimers are used to find a minimum value for 
the force constant of the association bond. With the aid of a normal coordinate treatment the 
probable value is found to be 4 X 104 dynes/em. This agrees with a rough estimate from the heat 
of dimerization. A Raman band in the formic acid spectrum at 200 cm-1 may be due to the 
association vibrations. 

I N earlier papers,1 the calculation of reasonably 
accurate entropies from vapor densities, vapor 

pressures, and thermal data has been described 
for the momomers and dimers of formic acid and 
acetic acid. The dimer entropies, for the hypo­
thetical perfect gases at 25°C and atmospheric 
pressure, were found to be 83.1±0.1 and 101.0 
±0.3 e.u., respectively, for the two acids. 

These entropies may be used to estimate the 
stretching force constant of the hydrogen bonds 
by which the two monomer units are thought to 
be held together in the dimer. The procedure is 
to find the entropy and frequency of the sym­
metrical vibration of extension and compression 
of the association bonds (1'1 in Fig. 1) and from 
this frequency to calculate the force constant by 
means of the familiar relation 

(1) 

where 111 is the mass of the monomer. 
From the total dimer entropy the contribu­

tions of translation and rotation are subtracted 
to give the internal entropy. It is then assumed 
that the internal entropy of the monomer is not 
appreciably changed by combination into the 
dimer, so that the dimer internal entropy is the 
sum of twice the monomer internal entropy plus 
the entropy of six vibrations dependent upon the 
strength of the association bonds. These vibra­
tions are illustrated in Fig. 1. Fbr all the mono­
mer frequencies except the rotational motion of 
the hydroxyl group this assumption is accept­
able without comment. Extension to include the 
torsional motion follows at once from the already 
low entropy (0.75 in formic acid) which could 
only be further lowered to a minor extent by the 
restrictive forces resulting from the dimerization. 

1 J. O. Halford, J. Chem. Phys. 9, 859 (1941); 10, 582 
(1942). 

Table I shows the quantities used to obtain 
the entropy of the association frequencies. The 
monomer internal entropy of both acids appears 
in the first two rows, with the value for hydroxyl 
torsion set in each case at 0.75, as originally cal­
culated for formic acid, because of the relatively 
high probable error in the corresponding quantity 
(1.2) in the acetic acid calculation. This choice 
has no effect on the conclusions reached in this 
paper. The first four rows in the dimer summa­
tion in the lower part of the table contain the 
translational and external rotational entropy, 
with the constant adjusted to permit direct sub­
stitution of the monomer weight in grams for 
M and of 1038 times the principal moments of 
inertia in c.g.s. units for A, E, and C. q is the 
symmetry number. 

A model based upon the original structure 
proposed by Pauling and Brockway,2 rather than 
the newer and less symmetrical one found by 

FIG. 1. Vibrations of the formic acid dimer. 

2 L. Pauling and L. O. Brockway, Proc. Nat. Acad. Sci. 
20, 336 (1934). 
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FIG. 2. Coordinates and distances in the formic acid dimer. 

Karle and Brockway,a is used to calculate the 
principal moments of inertia. The rotational 
entropy does not vary appreciably with minor 
changes in the model. Dimensions used are 
(H-C)=1.09, (C-O)=(C=O)=1.28, and 
(C-C) = 1.54A units, with the O-C-O angle 
set at the rounded value of 120°. The oxygen 
atoms of the individual monomer units are taken 
to be linked through the bonding hydrogen at a 
distance of 2.67A units, with the hydrogen atom 
placed at 1.00 unit from the nearer oxygen. F.pr 
the principal axes it is accurate enough to take 
the common bisector of the two 0 - C - 0 angles 
and its perpendiculars in and at right angles to 
the molecular plane. The two axes in the molec­
ular plane are thus placed slightly out of their 
true positions because of the location of the 
hydroxyl hydrogens. 

By analogy to the properties of ordinary 
valence bonds, Pl and Pa should represent con­
siderably higher frequencies than the remaining 
four vibrations. It is safe to assume therefore 
that the entropy of the first frequency is less 
than one-sixth of the total shown in Table I for 
the association vibrations. Thus S1 is less than 
2.53 e.u. for formic acid, and, from the Einstein 
function, PI is greater than 162 cm-l. The corre­
sponding value for K is 1. 7 X 104 dynes/cm. 
Similarly, for acetic acid, 51 is less than 3.09, PI 
is greater than 121, and K is above 1.1 X 104. 
The minimum is therefore determined by the 
more accurate formic acid entropy. 

The probable value is considerably larger be­
cause at least one of the bending motions would 
be expected to have a much larger entropy, 
leaving less for Pl. It is more difficult to estimate 
a maximum. From symmetry considerations Pl 

8 J. Karle and L. O. Brockway, J. Am. Chem. Soc. 66, 
574 (1944). 

should be active in Raman scattering but there 
is no way of predicting how intense the effect 
should be. It seems improbable, even if the 
intensity is low, that the Raman line would 
have escaped detection if the frequency were 
greater than 250 cm-I, for which K for formic 
acid is 4.2 X 104• For acetic acid the constant 
derived from this frequency would be higher. 

The result of this estimate, K=3.0±1.3X104 , 

can be supported in two independent ways, and, 
in addition, by a more detailed interpretation of 
the entropy by means of the normal coordinate 
method. A Raman band has been reported for 
liquid formic acid at 180±135 by Edsall,4 at 200 
by Kohlrausch, Koppl, and Pongratz,5 and at 
197 cm-l by Morino and Mizushima. 6 According 
to Hibben 7 this may be analogous to a similar 
scattering observed for water, for which he sug­
gests as a possible cause a hindered rotation in 
the liquid state. It is also possible that the effect 
may be due to the vibrations under discussion 
here. If so, a frequency of 200 cm-l would indi­
cate for the hydrogen bond a stretching force 
constant of 2.7 X 104 dynes/cm. 

A second independent supporting estimate is 
based upon the assumption that the ratio of 
force constant to energy of dissociation is about 
the same for the association bond as for ordinary 
hydrogen valence bonds. For the CH, OH, ClH, 

TABLE 1. Entropy of association vibrations at 25°C. 

Formic acid Acetic acid 

Monomer 
Vibration 0.60 3.60 
Hydroxyl torsion .75 .75 
Methyl torsion 2.99' 

Internal entropy 1.35 7.34 

Dimer 
Constant 49.87 49.87 
!Rln2M 13.48 14.27 
!R In ABC 3.22 5.04 
-R In tT -1.38 -1.38 
Internal, monomer 2.70 14.68 
Association bonds 15.21 18.56 

83.10 101.04 

4 J. T. Edsall, J. Chem. Phys. 4, 1 (1937). 
6 K. W. F. Kohlratisch, F. Koppl, and A. Pongratz, 

Zeits. f. physik. Chemie 21B, 242 (1933). 
6 Y. Morino and S. Mizushima, Sci. Pap. Inst. Phys. 

Chem. Research (Tokyo) 32,33 (1937). 
7 J. H. HibbeR, The Raman Effect and Its Chemical 

Applications (Reinhold Publishing Corporation, New York, 
1939), p. 180. 
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TABLE II. Molecular constants of monomer units. 

Formic acid Acetic acid 

1022 M 0.7593 0.9906 
1038D 0.7906 1.6053 
1038E 0.6685 0.7214 
1038 p 0.1221 0.9365 
108a 1.109 1.109 
108b 1.183 1.675 
108e 0.183 0.675 
108d 1.518 2.010 

and BrH bonds this ratio has an average value 
near S.7 dynes/cm/cal. The heat of dissociation 
of the formic acid dimer, 71S0 cal. per hydrogen 
bond, is taken to be near enough to the energy of 
dissociation and is multiplied by the above ratio 
to give K=4.1X104. 

Finally, to provide support for the assumption 
that the entropy of vI.should be considerably less 
than the average for the six association fre­
quencies, a normal coordinate treatment is un­
dertaken to determine what spread of frequencies 
is consistent with a simplified but reasonable 
potential function. In addition to its application 
to the present problem, this study of a planar 
system with a center of symmetry but no other 
symmetry elements is of interest for itself. 

The molecular model is shown in Fig. 2 which 
gives part of the symbolism including the co­
ordinates applied to one monomer unit in setting 
up the initial equations. Because it has been as­
sumed that the association vibrations are inde­
pend en t of other molecular motions, the model 
consists of two rigid bodies vibrating against 
each other. For such a system the kinetic energy 
may be conveniently expressed in terms of the 
translation and rotation of the individual rigid 
bodies. X, Y, and Z represent linear displace­
ments of the centers of mass, while a, (3, and 'Y 

are angular displacements about the principal axes. 
The kinetic energy is given by the following 

equation: 

2T= M(XI2+ 1\2+Z I2+X22+ Y 22+Z22) 
+D(aI2+a22) + E(~12+~22)+F('Y12 +'Y22). (2) 

Subscripts distinguish the two monomer units. 
D, E, and F are moments of inertia about the 
axes PZ, PX, and PY, respectively, of Fig. 2. 

For the potential energy, 

2 V =K[(XI-X2)2+(Xa-X4)2] 
+ 2k(YI2+Y22+yl+Y42 

+ZI2+Z22+Za2+Z42). (3) 

TABLE III. Equations for association frequencies. 

10-22)0. (formic acid) 

5.268K 
2.497k 

6.223K +3.625k 
21.941k 
26.605k 
4.228k 

10 .... )0. (acetic acid) 

4.038K 
2.900k 

3.065K +4.063k 
5.645k 
9.593k 
4.193k 

Here the subscripts indicate the terminal points 
of the association bonds, with even numbers 
applying to one monomer unit and odd numbers 
to the other, as shown in Rg. 2. To obtain Eq. 
(3) the general quadratic potential function has 
been simplified by eliminating all cross products 
except the XIX2 and XaX4 terms and reducing the 
number of constants to two. For this form, K is 
evidently the stretching valence force constant, 
while k, which is concerned with lateral displace­
ments, must be a bending force constant. Bend­
ing constants defined in this way are about one­
fifth to one-tenth as large as stretching constants, 
and may be converted to angular valence force 
constants by multiplying by the squares of the 
appropriate bond lengths. When, as in the pres-

. ent problem, the same constant is used for all 
the angular displacements, the factor required 
for this conversion is not evident, and the rela­
tion to any specific angular valence forc~ con­
stant is not definite. The product k(b2+C2) in 
Eqs. (7) and (8) should have about the right 
magnitude for an angular valence force constant 
because band c are of the correct order for inter­
atomic distances. Equations (8) show the correct 
form for the angular vibration between like rota­
tors with the reduced moment of inertia D /2, etc. 
These solutions were put into this form by intro­
ducing the factor 2k rather than k into Eq. (3). 

Six of the twelve coordinates in the kinetic 
energy equation are eliminated by means of the 
following linear and angular momentum con­
ditions: 

X=XI= -X2 
Y=Y1 =-Y2 
Z=Zl = -Z2 

~=~I= -~2 
2MdY =D(al+a2) (4) 
2MdZ=F('YI+'Y2). 

The substitutions al = ()1 + ()2, a2 = ()I - ()2, 'Yl = 'PI 
+ 'P2 and 'Y2 = 'PI - 'P2 are then made, leading to 
the expression 

2T=2MX2+2D(1+D/Md2)012+2D022 
+2E~2+2F(1+F/Md2)r,012+2Fr,022. (S) 
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TABLE IV. Trial solutions. 

Formic acid, K=5k 

vlvI v (em-I) S298 

1.000 229 1.89 
0.308 71 4.13 
1.148 263 1.65 
0.913 209 2.06 
1.005 229 1.89 
0.401 92 3.62 

K=3.5X104 15.24 

Formic acid, K = 10k 

1.000 293 1.46 
0.218 64 4.35 
1.118 328 1.28 
0.645 189 2.24 
0.711 208 2.06 
0.283 83 3.82 

K=5.7X104 15.21 

Acetic acid, K = 5k 

1.000 193 2.21 
0.379 73 4.07 
0.980 189 2.24 
0.529 102 3.42 
0.689 133 2.91 
0.456 88 3.70 

K=3.3X104 18.55 

Acetic acid, K = 10k 

1.000 246 1.76 
0.268 66 4.27 
0.927 228 1.89 
0.374 92 3.61 
0.482 120 3.11 
0.322 79 3.92 

K=5.3X104 18.56 

For the transformation of the potential energy 
the required equations are 

Xz= -X -acxz yz= -ccxz Zz= -a{3-C'Y2 
(6) 

X3=X +acx1 Y3=CCX1 Z3= -a{3+c/'l 
x4=-X+acxz Y4=-CCXZ z4=a{3-b/,z, 

together with the definition equations for 01, Oz, 
IPI, and 1P2. After the transformation the potential 
energy has the form 

2 V = 8KX2+4k(bz+cZ) (012+ 1P12+ 1P2Z) 
+4[2Kaz+k(b2+c2)]Oz2 

+8ka(b - c){3lPz+8ka2{32. (7) 

The solutions for A = 471'2J12 for the first four 
vibrations of Fig. 1 take the forms 

A1=4KjM A2=2k(b2+c2)j[D(1+D/Md2)] 
A3=[4Ka2+2k(b2+c2)]/D (8) 

A4 = 2k(b2+C2) /[F(l + F / Md2)]. 

For As and A6, 

I 
EA-4ka2 

-2ka(b-c) 
-2ka(b-c) I 

FA-2k(b2+C2) =0. (9) 

The masses, moments of inertia, and distances 
required for numerical solution of the above equa­
tions are collected in Table II. .The moments 
D, E, and F have been calculated with the aid 
of the dimensions listed earlier for the dimer and 
are subject to a similar but relatively larger error 
because of the deviation of the selected rotational 
axes from the principal axes. The error is again 
taken to be negligible. The distances a, b, and c 
are coordinates referred to the axes PX and PY, 
as shown in Fig. 2, and d is the distance between 
0, the center of mass of the dimer, and P, that 
of the monomer unit. 

Substitution of the constants of Table II into 
Eqs. (8) and (9) yields the simplified expressions 
of Table III. 

In principle the two potential constants could 
be found by trial from the two entropy totals of 
Table I, but the result so obtained would have 
little meaning because of the relatively large un­
certainty in the acetic acid entropy. It seems 
better to assign a reasonable value to K/k, to 
evaluate from this the ratios A/AI and JI /Jl1I and 
to find by trial from the entropy-frequency curve 
a set of frequencies in the corresponding ratios 
which will yield the correct entropy. Table IV 
shows in successive columns the frequency'ra­
tios, the frequencies, and the entropy summation 
for four such trial solutions. 

The assumed ratios of 5 and 10 for K/k are 
of the order usually found for ordinary valence 
bonds. For each ratio the spread of the calculated 
frequencies is several-fold and Jl1 appears at 9r 
near the maximum, accounting for considerably 
less than one-sixth of the entropy of the asso­
ciation frequencies. It is therefore probable that 
Jl1 for formic acid lies in the region between 200 
and 250 cm-1 and that K is not far from 4 X 104 

dynes/cm. 
In the absence of a more accurate method of 

evaluation this provides a satisfactory approxi­
mation to the stretching potential constant of the 
association bond in the carboxylic acid dimer. 


