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In its original form, Glauber scattering theory achieves a considerable simplification by neglecting several 
factors of modest consequence in atomic scattering but of importance in molecular scattering. These 
include, in particular, the spread of the shadow cast by a scatterer as a wave propagates downstream in the 
t~rget. AI~hough such effects do not matter in the original range of validity of the theory, the characteristic 
distances m molecules restrict the unmodified theory to an excessively small angular range. The present 
treatment mtroduces phase factors to take into account the distribution of scatterers in the incident 
direction and the propagation of the scattered waves in the target. This appreciably extends the formal 
range of applicability. 

I. INTRODUCTION 

Electron diffraction has become an increasingly pow­
erful tool in studies of structures and conformations of 
molecules. Indeed, the accuracy with which intensity 
measurements can now be made exceeds that of the dif­
fraction theory used in interpreting the measurements 
in certain cases, most notably those in which heavy at­
oms are present. A resolution of the perSistent discrep­
ancies between vapor-phase experiment and applied the­
ory has been sought in "intramolecular multiple scatter­
ing" or "dynamic scattering, " and a number of theoret­
ical treatments have appeared in recent years. 1-10 

These have been tested mainly by comparison with the 
data for a single example, 11 ReFs. where all treatments 
gave rather similar results. The agreement between 
theory and experiment was encouraging for this particu-
1arly simple molecule in which bond angles are all either 
900 or 1800 and in the similar case of XeOF4.12.13 
Poorer results were obtained in unpublished studies14 

of ReF 7 and IF 7, and an application to the problem of dy­
na~ic scattering. corrections for very small, randomly 
oriented crystalhtes revealed serious deficiencies. 15 
The reasons for these deficiencies are discussed in the 
following. 

The first treatments1- S of multiple scattering made 
use of the second Born approximation and involved dif­
ficult numerical integrations or analytical integrations 
of expansions in which truncation errors of uncertain 
magnitude were introduced. The more recent treat-

t 7-10 hi' S men save exp olted Glauber's approachl to high en-
ergy scattering. The Simplicity and transparency of 
model in this eikonal theory are great virtues in reduc­
ing to tractability the six-dimensional integrals encoun­
tered in the general theory in the orientational averaging 
of products of three -dimensional integrals representing 
scattered amplitudes. The preliminary successes, un­
fortunately, maSked the fact that the eikonal model was 
applied beyond its range of validity. It is the purpose 
of the present article to show how to extend the range of 
validity of theoretical expressions at a trivial increase 
in complexity. 

II. PHYSICAL INTERPRETATION 

Before introducing a mathematical treatment, it is 
helpful to present the phYSical interpretation of the cor-

rections required for the standard kinematic treatment 
of the elastic scattering of electrons. In kinematic the­
ory, it is considered that a plane wave passes through 
the target, undistorted in phase by previous encounters 
with atoms, unattenuated by previous scatterings, and 
unaugmented by scatterings from other regions of the 
target. Electrons are not conserved. In a more real­
istic treatment of small systems, an important consider­
ation is that each atom encountered by the incident wave 
casts a shadow. The depletion of flux downstream of the 
encounter in the forward direction exactly balances the 
flux scattered away from the incident direction of prop­
agation. Subsequent scatterings by downstream atoms 
are more feeble than scatterings given by kinematic the­
ory, and, hence, the kinematic intensity corresponding 
to scatterings from nearly eclipsed atoms must be cor­
rected downwards, to conserve energy. If the target is 
more than a few atoms deep, the extra (scattered) inten­
sity arriving at certain sites from directions other than 
the original incident direction must also be taken into ac­
count. In the present cases of small molecules and very 
small crystallites, however, this complication can be 
neglected. 

Glauber theory in its simplest variant conserves en­
ergy by the Simple expedient of not allowing the incident 
electron trajectories to be diverted from their original 
directions by scattering until the electrons emerge from 
the target. A semiclassical phase shift of electrons in­
duced by the passage of the beam through the atomic po­
tentials is computed, however, and this distorts the 
wave front emerging from the target. After emerging, 
the wave front is allowed to propagate properly from tar­
get to detector. In effect, the target potential has been 
projected into a thin film perpendicular to the incident 
beam. 17 The advantage of this approach is that it sim­
plifies a difficult integral over target volume to a two­
dimensional integral over the emerging wave front. Re­
sults are quite good within the fundamental limit of valid­
ity for scattering angle, namely, 16 

e2 « l/kd , (la) 

or 

(Ib) 

where d is the distance over which the potential energy 
varies and s = I s I, with s = kino - kaoatt . 
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Since atomic potentials responsible for scattering to 
large s are only a few hundredths of an angstrom unit 
across, Glauber theory gives a satisfactory representa­
tion of the scattering by single atoms out to fairly large 
s. Its limitations in the case of molecules are twofold. 
First, interatomic distances ranging from 2 to 10 A, 
say, would restrict s for 40 kV electrons (k '" 1 00 A -1) to 
values much less than 3 A-I, according to Eq. (1b), 
whereas experimental studies commonly go out to 30-
60 A-l. Atoms that are eclipsed (the important configu­
ration in multiple scattering corrections) give intensity 
interference features of the form cos(s • KoR), where Ko 
is the unit vector in the incident direction and R is the 
atomic separation. These features are absent in the 
variant of Glauber theory we modify in the following. 
Secondly, the shadow cast by an atom spreads as it prop­
agates downstream. This has the following crucial ef­
fect on the multiple scattering corrections: 

Consider the group of three atoms, i, j, and k illus­
trated in Fig. 1. The most important dynamic correc­
tion term for polyatomic molecules is of the type corre­
sponding to a wave scattered by atom j interfering with 
a wave scattered by atom k when atom j is in the shadow 
of atom i. The associated interference pattern, aver­
aged over all orientations of atom k about the ij axis, is 
a zeroth-order Bessel function, JO(srk), the pattern char­
acteristic of an annular slit with a radius rk • This par­
ticular (i eclipsing j) contribution to the total orientation­
al average is incorrectly calculated by the kinematic the­
ory because kinematic theory neglects any attenuation or 
phase shift induced in the wave incident upon j by passage 
through i. Dynamic corrections simply alter the coef­
ficient of the JO(srk) term to compensate for the neglect. 
The JO(srk) component is damped (as a function of s) by 
the delocalization of the projected k to j distance when 
intensities are averaged over orientations including those 
in which j is not exactly eclipsed by atom i. Standard 
Glauber theory in Ref. 9 handles correctly that part of 
the allowed deviation from perfect eclipsing which arises 
from the natural breadths of the atoms. Atoms partially 
overlap even when their nuclei are not exactly eclipsed. 
A significant source of modulation of JO(srk) is left out 
by Glauber theory, however, owing to the fact that no 
true shadow is allowed to be cast by atom i because the 
phase-shifted wave is not allowed to spread as it prop­
agates from ito j. The spread of a bona fide shadow in-

x 

FIG. 1. Three-atom group i - j, k illuminated from the left 
by a plane wave. Atom j lies in the shadow cast by atom i 
when angle 8 is small. Origin 0 is chosen to make angle 
k-o-ij = 90°. 

creases the range of deviation from perfect eclipsing of 
j by i over which the three-atom correction is Significant. 
For some structures this results in a much faster atten­
uation of the three-atom JO(srk) interference ripples than 
given by Glauber theory. 

III. GLAUBER SCATTERING BY POL YATOMIC 
MOLECULES 

In order to construct the new model for polyatomic 
molecules and compare it with various previous treat­
ments' it is necessary to outline essential features of 
Glauber scattering theory. The Glauber scattering fac­
tor for a plane wave exp(ik. r) encountering a system of 
atoms iS16 

l(k',k)= - 421T~2 f d2pdzexp[i(k-k'). (p+Kz)] 

x V(p+Kz)exp[iZ(p, z)], 

where the semiclassical phase shift Z is given by 

Z(p, z) = - (l'iV)"l f~ dz 'V(p + Kz') • 

(2) 

(3) 

In the simplest variant (SG) of Glauber theory the unit 
vector K = Ko is chosen to lie in the direction of the in­
cident momentum k and the small quantity (k - k ') • KoZ 
in the first exponential function of Eq. (2) is disregarded. 
A modified variant (MG), representing an improvement 
in some respects, is to choose K to lie in the average 
direction k + k' of incident and scattered direction. This 
rigorously makes (k - k 1 . Kz vanish. In either approach 
the impact parameter P is perpendicular to, and z is 
taken along, the chosen K vector. In either case, Eq. 
(2) reduces to 

I(s') = - ~! J d2pexp(iS' • p){exp[iX(p)] -1} , (4) 

where X(p) is Z(p,z) of Eq. (2) evaluated at z=oo and, in 
MG theory, s' = S = k - k', while in SG theory, s' with 
magnitude k9 is represented adequately by s' '" k - k' = 8 
over the range of validity of the theory. A given pair of 
atoms i and j with V = Vi + Vi and, hence, X = Xi + Xi' pro­
duces single and double scattering amplitudes in accord 
with the identity 

[exp(ix) -1]= exp[i(Xi +Xi)]-1 

:= [exp(iXi) -1] + [exp(iXi) - 1] 

+ [exp(iXI) -1][exp(iXi) -1] . (5) 

This result applied to Eq. (4) yields 

1(8) =11 exp(is. PI) + Ii exp(i8 . Pi) + Iii' (6) 

where the scattering factor Iii stemming from the last 
rhs term of Eq. (5) represents the nonkinematic contri­
bution. If a third atom k is also present, the single­
double scattering i- j, k averaged in orientation over the 
hemisphere with j in the lee of i, then, is 

(da/dG)'_i,k= 2 Re(N exp(-i8. P~)/ii) (7) 

with the Eulerian angles characterizing the molecular 
orientation taken over the ranges 0 < a < 21T, 0 < y < 21T, 
0< f3 < 1T/2. The key to a simple evaluation of Eq. (7) is 
to pivot the molecular fragment shown in Fig. 1 about 
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the special point 0 in the rotational averaging and to in­
troduce the coordinate transformation a, f3, y, p- b j , 

bJ, cp detailed in Ref. 9. We adopt the definitions 

r, =01, l=i,j,k 

b,=p-p, 

sj=(r/rjJ)s, rJ=K. r J (at (3=0) 

sJ=-(rj/rjJ)s, ri=K.r j (at (3=0) 

and 

or, identifying atomic scattering factors by means of Eq. 
(4), to 

(d(J/dn).~J.~= - (1/k~j)Jo(8r~)Im[j:(8)fj(8j)fj(8J)] • 

(10) 

The other hemisphere with k, j- i, receives a corre­
sponding treatment. It is instructive to examine the sig­
nificance of the arguments 8 j and 8 J (rather than 8 or 0) 
of scattering factors fj and fJ' The modulation of the 
Bessel function by Im[j:(8)fj(sj)fJ(sJ)] expresses the in­
fluence of the averaging of the (i- j, k) term over all or­
ientations of effective eclipsing of j by i accessible with­
in the natural breadths of atoms i and j. When atom j 
is far removed from atom k in the z direction, for ex­
ample, 8. greatly exceeds 8 and If(sj)1 is much smaller 
than !t(8)1. This extra damping action of If(8.) 1 embod­
ies the greater physical delocalization of the perpendic­
ular interference distance (r~ - z J sin{3 sinl;) between 
atom k and atom j for a given angular delocalization i3 
from perfect eclipsing of i and j. 

IV. SHADOW PROPAGATION MODEL 

Glauber theory applied to a polyatomic fragment ijk 
corresponds mathematically to (a) condensing V,(P, z) 
for atom I into a projected potential 

vf(p, z,) = o(z - Z,) i~ dz 'V,(p, z ') (11) 

contained, as it were, in a thin film perpendicular to K 
and passing through the nucleus of atom I, and (b) con­
straining electron trajectories to be parallel to K while 
within the target. In the shadow propagation model, con-

where z J~ = z~ - Z J for the exactly eclipsed configuration. 
It can be seen that the coordinate transformation has 
placed the burden of taking into account the delocaliza­
tion of (PJ - p~) over the shadow amplitude from atom i 
entirely into the bj integral of Eq. (12), namely, the 
scattering factor 

It follows from the definitions and considerations of ge­
ometry for both the SG and MG approaches that 

S • p = Sj • b i + S j • b J • (8) 

Except for higher order terms found numerically to be 
unimportant in the present problem, the coordinate 
transformation outlined above reduces Eq. (7), after in­
tegration over the azimuthal angle cp, to 

(9) 

dition (a) above is retained but condition (b) is replaced 
by a less severe one. The wave scattered by atom i is 
allowed to propagate normally in the interfilm force­
free space between i and j until it encounters the plane 
through j. The shadow amplitude experienced by atom 
j, of course, weights the orientational average 
(d(J/dn)j~J.~' 

If the new model is to make physical sense, the shad­
ow cast by atom i cannot be arbitrarily bent to run with 
its axis parallel to k + k' instead of to k. This means 
that it is more appropriate to patch SG theory than to 
graft an implausible condition onto MG theory. Fortu­
nately, the patching of SG theory yields a result with 
proper momentum reversal symmetry while the MG 
graft does not. The approach is as follows. Condition 
(a) above, via Eq. (11), is fed back into Eq. (2). Impact 
parameters P, to the various atomic nuclei in Eq. (6) 
and subsequent equations are replaced by the radial vec­
tors r, =p, +Koz, in order to allow for interference ef­
fects arising from scattering centers spaced along Ko. 
Although this interference is correctly treated by MG 
theory, it is absent in SG theory, as mentioned earlier. 
Because of the above changes, the pair scattering factor 
fji acquires a new phase factor exp(is . Koz J) shown be­
low. The introduction of a proper propagation condition 
for the wave scattered by atom i requires a replacement 
of the function {exp[iX4(p)] -I} with X; real by {exp[i~j(p, 
z)] -I} where ~j is a complex function representing the 
amplitude shift as well as phase shift for the wavefront 
as it progresses from atom i to atom j. With these 
changes and the assumption that only small deviations 
from perfect eclipSing are important, Eq. (9) becomes 

This is the only term whose 8 dependence is not evident 
upon inspection •. Clearly, fi propagates onward to the 
detector to become the scattering factor of atom i but 
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it includes an interference phase factor that has not yet 
been determined. 

For one extreme limit of approximationf~(si) can be 
evaluated easily. If v,(b, z) is a potential of nearly zero 
range, ~(b, z) corresponds to a well-developed spherical 
wave by the time it reaches atom j. If r jJ is large com­
pared with the characteristic breadth of Vi' the wave­
function for an electron passing through atom i is, at Z J' 

1J!(r) = exp(ikz J) exp(i~j) 

- exp(ikz J}+ f, (s)r-1 exp(ikr) , 

or, at a point in the vertical plane through atom j, 

[exp(i~,) -1]- (zij)"1fl exp[ik(r-zIJ)] 

'" (zlj)"1fi exp[ (ik/2z iJ )b:] 

by virtue of the pythagorean theorem 

2 2 b22 b2 r =ZIJ+ I=TjJ+ , 

(14) 

(15) 

for b,« ziJ. Wavefunction (14) extinguishes flux in the 
forward direction to compensate for laterally scattered 
radiation. Substitution of Eq. (15) into Eq. (13) yields 

f~ (s,) = fi(S,) exp[ - i(rl/2k)sn (16) 

and establishes the zero -range limit phase factor 
exp[ -i(r,/2k)sn Note also that the other phase factor 
of Eq. (12) can be written 

exp[is. KoZ Jk ]= exp[i(r,/2k)s,s] , (17) 

in which s, is positive or negative depending upon the 
Sign of (zJ -z/r)' Therefore, in this limit, the dynamic 
differential cross section correction (d(J/dG)'~J,/r of Eq. 
(12) is the same as the Glauber result of Eq. (10) con­
taining 

(18) 

except for a phase factor that, in bookkeeping, can be 
ascribed to atom i. Hence, Eq. (10) can be used pro­
vided the phase 11,(s,) is replaced by an effective phase 
H,(s,) given by 

H,(s,)=l1, (s,)+ (r,/2k) (ss, -s:) • (19a) 

Presumably, in the other hemisphere with i in the shad­
ow of j, the correction (d(J / dO, ) k, J~' uses an augmented 
phase for atom j of form 

(19b) 

Therefore, the shadow propagation model is no more 
cumbersome to use in routine diffraction analyses than 
the Glauber model. 

Writing the corrections in the above form obscures a 
more fundamental symmetry. The SchrOdinger equation 
implies a dynamic reversibility such that f~/, k) is iden­
tical tof(-k, _k /).16 Therefore, if a molecule is re­
flected across a plane perpendicular to a vector k+k/, 
the scattering factor is unchanged. It follows that the 
rotational averaging in the i - j, k hemisphere must be 
identical to that in the k, j - i hemisphere, taking the po­
lar axis along k + k I. Inasmuch as this symmetry holds 
both for the kinematic and the exact expressions, it 
should also hold for suitable dynamic corrections and, 
indeed, it does hold for the intensities corresponding to 

Eqs. (19a) and (19b) as well as Eq. (9) and its counter­
part. Although MG theory must and does obey this sym­
metry' SG theory is not expressed in a way to preserve 
such a symmetry. Nevertheless, the present extension 
of SG theory should follow the symmetry closely enough 
to make it a helpful guide. This guide suggests a way to 
evaluate the "shadow amplitude" 

f}(s J);: f/s J) exp(io J) 

for a scattering potential more general than the zero­
range model of Eqs. (14)-(19). Let the quantities per­
taining to the k, j - i hemisphere be identified by circum­
flexes and let V, be a zero-range potential. If 
(d(J/dG)'~Jo/r and (d(J/dG\.J~1 are set equal, it follows 
that 

Imft (s)fHsJfis J) exp[iS. K(zJ -z/r)] 

=Imf:(s)fl(s,)f~(sJ) exp[is. K(z, -z/r)] , (20) 

or, because zJ-z/r=rJ and Zi -z/r= -r" 

[11, (s,) + 11 J(s J) -l1k(S) + 0, (s,) + (r,/2k)ss,] 

= [l1l(s,)+l1J(sJ) -l1/r(s) + 0J(sJ}+ (rl /2k)ssJ]' (21) 

If - (r,/2k)s~ is substituted for 0, (s,) from Eq. (16) 
and s, is replaced by (s - s J) according to the definitions 
of Sl and s J, it is found that 

° /s J) = - (r,/2k)s~ , 

or 

(22) 

for a general atom, in the shadow propagation model. 
This result also secures the proper form for Single-scat­
tering, single -scattering interference terms computed 
from waves emanating from an arbitrary vertical plane 
displaced from atom j. 

Taking the above considerations into account, the dy­
namic correction for the ij, k group over the entire range 
of orientations can be written 

(23) 
If molecular vibrations are to be taken into account, the 
entire dynamic correction of Eq. (23) must be multiplied 
by the thermal factor exp(-1~s2/2) discussed in Ref. 9. 

Correction terms cubic in s are missing from the ar­
gument of the Bessel function of Eq. (23) because of the 
neglect of terms linear in (3 from the expanSion of (z J 

- z/r) and terms quadratic in f3 from the expansion of 
P/r(f3) of Eq. (7). Such terms either do not arise or are 
less important in simple Glauber theory where delocal­
ization over the angle f3 is smaller. In order of mag­
nitude the neglect of these terms restricts Eq. (23) to 
values of s such that 

(24) 

where r, is r, or r J• So, for 40 kV electrons with r/r 
'" rlJ and r,- 2 A, s must be rather less than 26 A -1. 
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Higher order expansion terms may be treated analytical­
ly as outlined in Ref. 9. 

v. DISCUSSION 

It may be asked whether there is anything special 
about the ReF6 and XeOF4 cases found to be in approxi­
mate accord with the Glauber basis result of Eq. (9) and 
with the Bonham and Peixot05 and yatesB approxima­
tions. The answer is that for 90° kij bond angles the 
principal (ij, k) terms in the new equations reduce to the 
previous Glauber result. 9 Moreover, for 90° the prod­
uct [jj(sj)fj(sj)] in Eqs. (10) and (23) becomes Ltj(s)iJ(O)] 
which is similar to the corresponding quantity 

occurring in the leading term expressions of Bonham 
and Peixoto, and Yates. It is identical if atoms i and j 
are the same kind of atom. 

Another type of scattering considered by Bonham and 
Peixot05 and by Yates and TenneyB,lB is the case where 
atoms k and i are the same atom. This term is less in­
teresting to structural chemists than the i '" j '" k terms, 
for it is virtually devoid of structural detail. If r ll is 
set equal to zero in Eqs. (10) and (23) (naturally leading 
to Sf =S, Sj =0), these equations give the same result as 
the previously published expressions. 

An identification of the role of the new corrections in 
terms of the discussion of Sec. IT is as follows. The 
modulation exp(is ' Koz jll) of Eq. (12) and subsequent 

5 

n=8 

n=4 

FIG. 2. l05(du/d'~ )!j,k 
~- (du/ dQ)atomtc for three-
atom clusters of argon with 

n=2 various configurations de-
pic ted over Fig. (b), d 

=3.76 A. (a) Theory of Bon-
ham and Peixoto, and Yates. 
(b) Glauber thoery. (c) 

n=' Shadow propagation model. 

(c) 

10 15 
s-

equations simply represents the interference resulting 
from the z component of the separation of the jk pair of 
scatterers. The complex Gaussian modulation 
exp[ - (iri /2k)sn of Eq. (16) expresses the effect of de­
localization of the perpendicular component Pjk of the jk 
interference distance as weighted by the complex Gaus­
sian shadow amplitude function exp[ - (k/2irlJ)b~] experi­
enced by atom j in the wake of atom i. This modulation 
is formally equivalent to that of the real Gaussian damp­
ing function exp[ - (12 /2)s2] included in conventional dif­
fraction equations to account for the delocalization of an 
internuclear distance over a Gaussian distribution func­
tion exp[ - (1/2l2)(~r)2]. 

The effect of the present modification is quite small 
if atom k has a z -coordinate close to that of atoms i or 
j but drastic if atom k is far removed. This behavior 
is illustrated in Fig. 2 for a series of three-atom frag­
ments struck by 40 kV electrons. In the computation of 
curves for Fig. 2, the scattering factors used were not 
Glauber f,(s) but were partial wave factors published by 
Schafer, Yates, and Bonham. 19 A comparison of Figs. 
2(b) and 2(c) reveals that the Glauber curves 2(b) begin 
to differ significantly from the shadow propagation 
curves beyond the Glauber limit of Eq. (lb) with 
d = (n + 1 )ao/ {2, except for the 90° bond angle special 
case (n = 0). Presumably, then, the new expreSSions 
will appreciably modify the dynamic corrections calcu­
lated for very small, randomly oriented crystallites. 
The virtue of the present theory is that it can be applied 
to tiny clusters of atoms with arbitrary, irregular sur­
faces, and with any desired structure defects, It will be 
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illuminating to discover whether the present theory, ex­
tended to its upper limit of validity in crystallite size 
(that for which single-double scatterings become a mar­
ginally adequate account of the total multiple scattering) 
interfaces with the Blackman-Fujimoto theory20,21 ext rap -
olated downwards from large, regular arrays of atoms. 
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