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Diagonal and off-diagonal matrix elements of the Green's functions for a face centered orthorhombic 
lattice are presented in terms of integrals of complete elliptic integrals of the first and third kind. These 
Green's functions are also applicable to structures like that of the benzene crystal (space group D ~~, 
interchange symmetry D2)' 

I. INTRODUCTION 

Lattice Green's functions proved to be a powerful tool 
in the determination of impurity states in crystals. 
Considerable difficulties have been encountered in 
numerical calculations even for simple types of Green's 
function matrix elements. 1 Analytical expressions 
simplify the calculation of the Green's function matrix 
element, however these analytical expressions are only 
available for the Simplest type crystal energy disper­
sion relations. Extensive use has been made of the com­
plete elliptic integral of the first kind for the derivation 
of the diagonal matrix elements of the Green's function 
of square and rectangular lattices. 2,3 Green's function 
diagonal and off-diagonal matrix elements were given 
in terms of complete elliptic integrals of the first, 
second, and third kind by Hoshen and Jortner4 for 
square lattices for the energy dispersion relation 
2p cos (x) + 4q cos (x/2) cos(y/2), where p and q are in­
termolecular interaction parameters. Diagonal matrix 
elements of Green's functions for the three-dimensional 
cubic lattice can also be expressed in terms of integrals 
of complete elliptic integrals of the first kind. 5 Expres­
sions for the Green's functions of products of complete 
elliptic integrals are available for fcc and bcc lat-
tices. 3 Horiguchi, Yamazuki, and Morita6 derived 
Green's function expressions for orthorhombic lattices 
in terms of complete elliptic integrals of the first kind. 
In Sec. II of this paper diagonal and off-diagonal 
matrix elements of the Green's function for face cen­
tered orthorhombic lattices will be presented. These 
matrix elements will be given in terms of integrals 
of complete elliptic integrals of the first and third kind. 
The expression derived in Sec. II will be applied in Sec. 
III for a numerical calculation of the Green's function 
matrix elements for some dispersion relations. 

It should be noted that the lattice Green's function 
for the face centered orthorhombic Green's functions 
derived in this paper can be applied to benzene crystals 
belonging to the D~~ space group which contains four 
molecules per unit cell. The application of these 
Green's functions for isotopic impurity clusters in the 
benzene crystal will be given elsewhere. 7 

II. DERIVATIONS OF THE GREEN'S FUNCTIONS 
MATRIX ELEMENTS 

In this section, expressions will be derived for the 
diagonal and three off-diagonal matrix elements of the 
Green's function for face centered orthorhombic crys­
tals. The off-diagonal matrix elements correspond to 
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the three nearest face centered neighbor molecules. The 
energy dispersion relation for this system is 

h(x, y, z) = 4A cosx cosy + 4B cosy cosz + 4C cosz cosx, 

where 

A, B, C are the interaction parameters between a 
molecule at the origin and the three face centered 
molecules, respectively. 

(1) 

The four Green's function matrix elements are given 
by 

1 i~/2 i~ l~ dx 
go(E)=-43 dy dz E-h( ) , 

11" -~/2 -r -r x,y, z 
(2) 

1 1r
/

2 
• fr i~ exp(ix)dx 

gl(E)=-43 dyexp(zy) dz E-h( )' 
11" -r/2 ..... -r x,y,z 

(3) 

1 1~ 12 . i r 
. 1~ dx 

G2(E)=-43 dyexp(zy) dzexp(zz) E-h( )' 
11" -r/2 _~ .., x,y,z 

(4) 

1 i r 
/2 i~ . i~ dx exp(ix) 

g3(E) = -4 3 dy dz exp(zz) E _ h( ) . 
11" _~/2 -r -r x,y,z 

(5) 

It should be noted that the integration limits over the 
y variable can be changed. Thus the following expres­
sion would hold for Eqs. (2)-(5): 

J r 12 J r J ~ J • J r J r (x 2 .r/2dy _.dz _.dxF(x,y,z)= _.dy _~dz _.dxF ,y,z), 

(6) 

where F(x, y, z) represents the integrands in Eq. (2)­
(5). 

Equation (2)- (5) can be recast in the following form: 

2 £.12 i' go (E) = 2 dy dzlo(Y,z), 
11" 0 0 

(7) 

(8) 

2 (,/2 (' 
g2(E)=1I"2J

o 
dycosy Jo dzcoszlo(y,z), (9) 

210'/2 fr g3(E) = "2 dy dzcoszl1(y,z), 
11" 0 0 

(9') 
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TABLE I. Setting signs for A, B, and C. 

Setting signs for: 
Given B, C* A B C 

B>O, C> 0 A B C 
B> 0, C< 0 -A B -C 
B< 0, C> 0 -A -B C 
B<O, C< 0 A -B -C 

*The sign of A can be either positive or negative. 

where 

1 (r dx exp (inx) 
= 27T J.r E - 4(A cosx cosy + B cosy cosz + C cosx cosz) , 

(10) 

and n=O, 1. 

The integral In can be easily evaluated by a complex 
contour integration. When the density of state function 
for the energy dispersion Eq. (1) is nonzero, In(y, z) 
should be treated as a special case. In this case E is 
substituted by E - iE, where E is a small positive num­
ber. E is set to zero when the limit of In( y, z) is taken. 

Substituting u = exp(ix) in Eq. (10) and integrating 
over the unit circle in the complex u plane we obtain 

. i f undu I (v z) = lIm -
n . , € ~+O 7T xu2 - 2 (E - iE - Il)U + X ' 

where 

X = 4(A cosy + C cosz), 

Il = 4B cosy cosz. 

In(y,z) has a real value for 

(E - 1l)2 ~ X2 

and is given by 

InCV,Z)=~lIm//::,.', 

where 

~ = 1 and um = u· for E> Il, 

~=-1 and um=u+ forE<Jl. 

/::,.' is given by 

/::,.' = lim[(E- iE - 1l)2 - X)]1!2. 
€ "+0 

u"' are represented by: 

. E - iE - Il ± /::,.' u' = 11m --=---"---
€ ~+o X 

(11) 

(12) 

(13) 

(14) 

(15) 

It should be noted that for the case represented by Eq. 
(12) it is immaterial whether the limits are taken before 
or after the integration of Eq. (11), since we deal with 
two poles, neither one of which is located on the unit 
circle for E - + O. 

The situation is different for 

(E- Jl)2 <: l. (16) 

The two roots u· lie on the unit circle for which E - + 0, 
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so that the limit is determined after the residues of 
Eq. (11) are calculated. The limiting process is de­
scribed in Appendix A. The complex integral In( y, z) 
is given for this case by: 

(17) 

where ~=-1, and u' and /::,.' are given by Eqs. (15) 
and (14), respectively. Hence for the complex 1m ~ is 
independent of y and z. 

At this point it becomes necessary to assume certain 
relationships between the interaction parameters, A, 
B, and C. Without loss of generality we can assume 
I C I ;-. I B I > I A I. This can be done because the disper­
sion relation (1) is symmetrical with respect to x, y, 
and z. In addition, we may assume that C > ° and B> 0. 
When B or C (or both) are negative they can be set 
positive according to Table 1. This setting leaves the 
Green's functions invariant. 

Equations (7)- (10) can be recast in the form 

21'/2 !o'~d7 g (E)=- dv ~ o 7T2 0 . 0 /::,.' , 

2 r'/2 r' (E )d 
gl (E) = 7T 2 J

o 
dy cosy J

o 
~ X-:, z 

2 1,/2 i' dz - - dv cosy --==---
7T2 0 . . 0 4(A cosy + C cosz) 

(18) 

2 {" 12 d (" HE - 4B cosy cosz) dz 
=~Jo :}'cosy J o 4(Acosy+Ccosz)/::,.' , 

(19) 

2 r' 12 r' ~ cosz dz 
g2(E) = 7T2 J

o 
dy cosy J

o 
- /::,.' , (20) 

(E)= 1. ['12 d' i' ~cosz(E-Il)dz 
g3 7T 2 :} X/::,.' o 0 

2[,/2 l' COSZ dz - - dy 
1T20 . o4(Acos}'+Ccosz) 

E A B 1 
= 4C go(E) - c gl(E) - C g2(E) - 4(. . (21) 

The Green's functions matrix elements, Eqs. (18)­
(21) are real for the inequality Eq. (12) and complex for 
the inequality Eq. (16). g3(E) is given in terms of go(E), 
gl(E), and g2(E). Thus we shall limit the discussion only 
to those three Green's functions matrix elements. 

Substituting t=cosz in Eqs. (18)-(21), the gi(E) 
functions, i = 0,1,2, can be expressed in the form 

gi(E)=j~d2 Hi(:,')dy, 

where 

j
.l 

Hi(y)= .jui(t)dt 

and the lli(t) are given by 

2~ 
llo(t) = -2- , 

1T A 

(
t) _ 2B (co~2H (PI - t) 

Uj - 1T2C(p_t)/::,. , 

2 (cosy) st 
112 (t) = 1j'2 A ' 

J. Hoshen and R. Kopelman 

(22) 

(23) 

(24) 

(25) 

(26) 
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TABLE II. Boundaries for R. . 

A< 0 A<O 
C>B-A C<B-A 

Boundary Case (i) Case (ii) 

At 4(A-B-C) 4(A-B-C) 

~ -4C -4C 
As 4(B-C-A) 0 

A4 0 4(B-C-A) 
A5 -4AB/C -4AB/C 
A6 4(C-A-B) 4(C -A-B) 
A7 4C 4C 
As 4(A +B +C) 4(C+A+B) 

where 

p = - A cosy/C, P1 =E/4B cosy, 

~ = [16(C2 - B2 cos2y)(t - 1)(t + 1)(t - y)(t - 5)]1/2, (27) 

and y and 5 are 

_ E +4Acosy ( 
y - 4B cosy - 4C ' 28) 

. E- 4Acos'Y 
5= ~ 

4Bcosy +4C 

The following relationships hold for y and 5: When 
E>rthen5>y, whenE<rtheny>5, where 

(29) 

r=-4ABcos2y/C. (30) 

By utilizing Eqs. (28)- (30), it can be shown that for 
the real part of gj (El ~ is independent of z, and depends 
only on Y and is given by 

~ = sgn(E - r). (31) 

The integrals over y of Eq. (22) take different forms in 
each of the nine R j energy regions. The Rj regions for 
i= 2, 3, ... ,8 are defined by Ai > E>A i _i , Ri is defined 
by E < Ai and R 9 is defined by E > As. The Ai are the 
boundaries of these regions. There are four cases for 
these boundaries, and they are specified in Table II. 

The gi(E) can be represented in term of the integrals 
Vi ( Yi' Yz), where the Vj are defined by: 

0;Il( Y., Yi) = f2 H~ll (y) dy (32) 

where 

The index I denotes six energy regions 5 p specified in 
Table III, for which Hi ( y) assumes a different form for 
each of the six regions. Hence Eqs. (22) are given as 
follows: 

For the Rt Cases: (i), (ii), (iii), (iv) , 

gi(E) = 0;S)(O, 1T/2). 

For the Rz Cases: (i), (ii), (iii), (iv) , 

gj(E) = 0;5)(0, Yt) + Vj6)( Yt, 1T/2). 

For the R3 Cases: (i), (ii), (iii), (iv) , 

gj(E) = 0;5)(0, Y2) + 0;4)( Y2' 1T/2). 
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(33) 

(34) 

(35) 

A>O A>O 
C>B+A C<A+B 

Case (iii) Case (iv) 

4(A -B -C) 4(A -B - C) 
-4C -4C 

4(B-A - C) 4(B -A- C) 
-4AB/C -4AB/C 

O. 4(C -A-B> 
4(C -A-B) 0 

4C 4C 
4(C+A+B) 4(C+B+A) 

For the R4 Cases: (i), (iii), (iv) , 

gi(E) = 0;4) (0, 1T /2). 

For the R.4 Case: (ii), 

gj(E) = 0;5) (0, Y2) + 0;4) (yz, Y3) + 0;3) (Y3, 1T/2). 

For the R5 Cases: (iii) and (iv), 

gj(E) = V;3)(O, Y3) + 0;4)( Y3, 1T/2). 

For the R5 Cases: (i) and (ii), 

gj(E) = 0 4) (0, Y3) + 0 3) (Y3, 1T/2). 

For the Rs Cases: (i), (ii) , and (iii), 

gi(E) = 0;3)(0, 1T/2). 

For the R6 Case: (iv), 

gl(E) = Vj2)(0, Y4) + 0;3)( Y4, Y3) + 0;4) (Y3, 1T/2). 

For the R7 Cases: (i), (ii), (iii), and (iv), 

gj(E) = Vj2) (0, Y4) + 0;3) (Y4, 1T /2). 

For the R.s Cases: (i), (ii), (iii), (iv) , 

gj (E) = VP) (0, Y5) + 0;1) (Y5, 1T /2). 

For the R 9 Cases: (i), (ii), (iii), (iv) , 

gj(E) = Vj1)(0, 1T/2). 

The Yt> Y2' Y3, Y4, and Y5 are 

E+4C 
Yl =arcos 4A _ 4B ' 

E+4C 
Yz =arcos 4B _ 4A ' 

TABLE III. The 5i regions. 

(36a) 

(36b) 

(37a) 

(37b) 

(38a) 

(38b) 

(39) 

(40) 

(41) 

(42a) 

(42b) 

5 I regions Definition of energy 
regions* 

Relationships for y 
and 6 

5( E>a 

52 a>E>b 

53 b>E>r 

54 r>E>c 

55 c>E>d 

56 E<d 

6>1; -1>y 

1>6>-1>y 

1>6>y>-1 

1>y>6>-1 

y>1>6>-1 

y>1; -1>6 

*a = 4(A +B) cosy +4C; b= -4(A +B) cosy +4C; c=4(B -A) cosy 
-4C; d=4(A-B)cosy-4C; r=-4ABcos2y/C; a>b>r>c>d. 
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TABLE IV. The Y parameters of Eqs. (57) and (5S). 

51 regions Y Y 
Real part Imaginary part 

Range 1 Range 2 

1 1 -1 -1 
2 1 -6 -1 
3 -y _yt _ ot 

4 -6 -of -yf 
5 -6 -6 -1 
6 -1 -1 

t, 'see the footnotes to Table V. 

(43)-(45) and ul(t), Eqs. (24)-(26), for the imaginary 
part of the Green's functions: 

ui' (t) = - iU i (t). 

Let us define two auxiliary functions W(tlo t2) and 
W"(tlo t2): 

and 

Wi (tlo t2 ) = J t2 U l (t) dt 
t1 

W/,(t1, t2) = J/2 ul'(t) dt, 
1 

wheret2 >tlo t1 =-I,y,0, andt2 =y,0,1. The Hill(y) 
are given for each of the 51 regions in the form 

(47) 

(48) 

(49) 

(
_ EC)1/2 

Y3 = arc os 4AB ' (42c) H?)(Y) = Wi (-I, 1), (50) 

H?)(y)=Wi (-I,o)+iW"(o,I), (51) 
4C-E 

Y3=arcos 4A +4B ' (42d) HP)(y)=WI (y,o)+i(Wj'(-I,y)+Wj'(o,I)], (52) 

E-4C 
Y5=arcos 4A +4B (42e) 

It should be noted that V:j)(Yk'YJ) and ViS)(Yk'YJ) are 
real and have no imaginary component. 

In order to carry the integration of Eq. (23) for Hi(Y) 
[or rather H?)(y)], we have to separate the real and 
imaginary parts of Hi(y). This can be done by defining 
ul'(t) functions, where: 

uo' (t) = 1/fl" , (43) 

(44) 

(45) 

where fl" is given by 

fl" = [16(C2 - B2 cos2y)(t - l)(t + l)(t - y)(o - t)J1 /2 

=ifl (46) 

and fl was given by Eq. (27). 

The following relation holds between ul' (t), Eqs. 

Hi4)(y) = Wi(o, y) + i[Wi'(- 1, 0) + Wj'(y, 1)], 

Hi 5)(y) = Wi(o, 1) +iWj'(-I, 0), 

H!S)(y) = Wi (-I, 1). 

(53) 

(54) 

(55) 

The Wi and Wi' functions can be expressed in terms of 
complete elliptic integrals of the first and third kind, 8 

and are given by 

WQ(tlo t2) = ~dK(k), 

I ( ) _ B cos2v (P1 + Y) ( 2 2 
W1 tlo t2 - - ~d C(p + Y) T k, 04, 0'3), 

W:W1o t2)=- ~dcosyYT(k, ai, a~), 

where Wi represents either Wi or Wi'. 

(56) 

(57) 

(58) 

For Wi' = Wi, ~I = 1; and for Wi = Wi, ~I = 1 in the 
regions 510 52, 53, but ~1=-1 for the regions 54,55, 
5 S (see Table III). The parameter Y in Eqs. (57) and 
(58) is given in Table IV. K(k) in Eq. (56) denotes a 
complete elliptic integral of the first kind with a 
modulus k. The T functions in Eqs. (57) and (58) are 
given in the form8 

T(k, 0'2,132) = (1/ 0'2)[ (0'2 - f32)n (k, 0'2) + f32K(k)]. (59) 

TABLE V. Parameters for the imaginary parts of the Green's functions. 

51 region k'2 Range 0'2 I O'j 0'2 
3 

0'2 
4 

2 
V2 - Em (1- 6) (6 -1) (1 - 6)(£1 + 1) (1 - 0) (f!.1 + 1) 

Sq -2- 26 2(PI +6) 2(PI + 6) 

t y+l o (y+ 1) (f!.1 - 6) (y+1) (f!. - 6)(6 + 1) 

3 Em - V 
1 6 + 1 y(6 + 1) (PI - y) (6 + 1) (p-y)(y+l) 

Ep- W 
2 

1-6 y(1-0) (1:.1 - y) (1 - 6) (f!. - y) (1 - 6) 

l-y o(l-y) (PI - 6) (1 - y) (p -6)(1 -y) 

t 6+1 y(6 +1) (f!.1 - y) (6 + 1) (f!. - y) (6 + 1) 
1 y+1 o (y + 1) (PI - 6) (y+l) (p - O)(y+l) 

4 Ep- W 
Em - V 2 

l-y 6(1- y) (f!.1 - 6) (1 - y) (f!. - 0) (1 - y) 

1-6 y(l- 6) (PI-y)(1-6) (p -y)(1 - 0) 

5 
Ep- W 0+1 6 + 1 (0+1)(f!.!-1) (6 + 1) (f!. -1) 

Sq -2- ""2'6 2(Pj - 0) 2(p - 6) 

tn) parameters for Wj'(-I,y); (2) parameters for W;"(6,l) f(l) parameters for W;" (-1 ,0); (2) parameters for Wi' (y, 1) 
(see Eq. 52). (see Eq. 53). V, W, Em' 'P' q are defined in the footnote to 

Table VI. 
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TABLE VI. Parameters for the real part of the Green's functions. 

51 region f k2 (l!2 
I (l!~ (l!2 

3 
(l!2 

4 

4 ~ 2 2 2(el-Y) 2(e-Y) 
1 712 (Ep _ W)lh Ep- W 1-1' 1'-1 (1 - 1') (PI + 1) (1- y)(p+l) 

2 l.- (3.y2 
Ep- W 6 +1 1'(6 + 1) (6 +1) (el- 1') (6 +1)(e - 1') 

11"2 q 8q 6-1' 1'-6 (6 - Y)(PI + 1) (6 - y)(p+l) 

3 
4 ~ 6-1' 1'-6 (6 - y)(el + 1) (6 -1')(£ +1) 

71 2 (Ep - W)!/2 Ep- W 6 +1 1'(6+1) (6+1)(PI-Y) (6 +1)(p - 1') 

4 
4 ~ 1'-6 6-1' (1' - 6)(£1 + 1) (1'- 6)(e +1) 

11"2 (Em - V)1/ 2 V-Em 1'+1 6(1'+1) (y+l)(PI- 6) (1'+ 1) (p - 6) 

1/2 ~ 1-6 (6 -1) (1 - 6)(el + 1) (1-6)(e+ 1) 
5 

8q 
-2- -2- 2(PI- 6) 2(p -6) 

4 ~ 2 26 2(el- 6) 2(£-6) 
6 11"2 (Em - V)17 2 V - Em 1-6 6-1 (1 - 6) (PI + 1) (1- 6)(p + 1) 

V= 16(A + B)2 cos2y, W= 16 (A _B)2 cos2y, q=8ABcos2y+2CE, Em =(E-4C)2, Ep = (E + 4C)2. Em = (E - 4C)2 , Ep = (E +4C)2. 

The modulus k, and the parameters aL aL a~, and a~ 
and f are given for Wj in Table VI and for Wi' in Table 
V. II denotes a complete elliptic integral of the third 
kind. It should be noted that the modulus k of WI' is 
the complementary modulus k' of Wi' 

The following relationships hold for the parameters 
of II (k, (1'2) for WI and W2 (real case): 

0< (1'1 <k2, 

(I'~ > 1. 

(60) 

(61) 

This is known as the hyperbolic case for II, where II 
can be given in terms of the Jacobian zeta function Z. 

The relationships for the parameters of II (k, (1'2) for 
Wi' and Wf' are (imaginary case) 

k 2 < (1'1 < 1, 

(I'~ < O. 

(62) 

(63) 

This is known as the circular case for II, where II can 
be given in terms of the Heuman lambda function Ao. 

III. NUMERICAL CALCULATIONS 

The Green's function matrix elements go, gj, and g2 
can be evaluated utilizing the integration formulas Eqs. 
(33)- (41). g3(E) can be simply determined from Eq. 
(21), after go, gl, and g2 are evaluated. The integra­
tions Eqs. (33)-(41) as defined in Eq. (32) can be de­
termined numerically. There are no available analyti­
cal expressions for these integrals. The integrand of 
Eq. (32), Hill includes both a real and an imaginary 
component for 1= 2, 3, 4,5 (see Table III). The Hill 
functions are defined by Eqs. (50)- (55) in terms of the 
Wi and Wi' functions. The Wi and WI! functions are given 
in terms of complete elliptic integrals of the first and 
third kind [see Eqs. (56)- (59)]. The various parameters 
of Eqs. (56)- (59) are displayed in Tables IV, V, and 
VI. The complete elliptic integrals of the third kind can 
be given in terms of Z or Ao functions. 8 The Z and Ao 
functions can be represented in terms of both complete 
elliptic integrals of the first and second kind, and in­
complete elliptic integrals of the first and second kind. 
All these complete and incomplete elliptic integrals 
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can be calculated utilizing standard computer 
programs. 9 

The integrations in Eqs. (33)-(41) are somewhat 
complicated due to the existence of a logarithmic singu­
larity in K(k) for k = 1. However, the singularity will be 
located at one of the integration limits of Eq. (32), when 
they occur. To avoid the singularities, a Gauss 
quadrature was applied for the numerical integrations 
of Eqs. (33)- (41). It was determined that the singulari­
ties do not have a Significant effect on the calculations. 
This effect was explored by removing the singularity 
from the integrand of Eq. (32) for Wil' and Woo An 
example of such a process is given in Appendix B. It 
was found that the singularities could be safely ignored, 
since removal of the Singularities changed the final re­
sults by 0.1 % at most. 

Results for the computation of the go(E), gl (E), g2(E), 
and g3(E) are given in Figs. 1 and 2 for the real and 
imaginary parts of the Green's function. The A, E, and 
C parameters in Fig. 1 are taken from Kopelman and 
Laufer,10 corresponding to case (iii) whereas the pa­
rameters in Fig. 2 are arbitrary, and correspond to 
case (iv). 

A specific example for determining a Green's function 
matrix element is given in Appendix C. The complete 
program for calculating the Green's function matrix 
elements for the various A, E, and C interaction pa­
rameters has been coded in FORTRAN, and is available 
upon request from the authors of this paper. 

APPENDIX A 

utilizing a binomial expansion of the radical 1::.' of 
Eq. (14), and returning the term linear in E we obtain 
for the complex case of Eq. (15) 

u' = HE - iE - )J. ± i(x2 
- (E - /l)2)1/2 (1 + xf~~; ":~)2)} 

= H[E - /l ± i(x2 
- (E - )J.)2)1/2] (1 ± (XL (~_ ~)}. 

(AI) 
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E 
2 

= w 
~o 

~ 

~ 

o.06~----------------' 

-008 
0.32 

0.16 

0. 
-6 18 30. 

[1 -0.0.2 

-0..10. 1----..J.....---'-----'-----1 
0..12 

[1 -0.0.4 

'" 0: 

-0.20. L-----,,,l,,----;I;---~,,.______:;_;' 
-20. 0. 20. 40. 

FIG. 1. Real and imaginary parts of the Green's functions 
matrix element gj (E). Bottom figures denote diagonal element 
go(E). Top figures denote off-diagonal elements 
gj(E): --- gl(E), -gz(E), ---g3(E) for interaction parameters 
A ~ O. 7 em-I, B = 0.9 em-I, C =4.1 em-I (see Eq. 1). 

To determine whether u· or u- lies within the unit circle 
the absolute value of the poles is taken: 

lu<I=IE-J.1.±ix2 -(E-J.1.)211 1 'f E I 
X (X2 - (E - J.1.)112 

=1·ll'f(xL (EE_J.1.)2)1/ 2 1. (A2) 

Since E is a positive number, I u· I < 0 and I u-I > O. 
Hence I u· I lies within the unit circle and contributes 
to the residue. 

It should be noted that the choice of E to be positive is 
required by the physical situation. The density of states 
function p(E) given by! 

1 
p(E) = - Imgo(E) 

11 
(A3) 

must be positive. If E is taken to be negative, u- would 
lie within the unit circle, and the p(E) would be 
negative. 

APPENDIX B 

The effect of the Singularities of the integral given by 
Eq. (32), can be best illustrated by treating an example 
of such an integraL Let us look at the imaginary part of 
Eq. (37a) for i = 0, 

1m go (E) = 1m Vri3)(0,Y3) + 1m VJ4)(Y3' 11/2) 

= JO
Y3 

f3K(k3) dy + J
y

: 12 f4K(k4) dv, (B1) 

f3 and f4 denote the f parameters for regions 53 and S 4, 
respectively. The values of f3 and f4 are given in Table 
V. For Y =Y3 we shall definef': 

(B2) 

2072 J. Math. Phys., Vol. 17, No. 11, November 1976 

The moduli k3 and k4 are given by Table VI and for 
Y = Y3 both approach the value of one. 

Utilizing the limitl 

limK(k) =ln k
4
" 

k -1 

we obtain for Eq. (B1), 

Imgo(E) = JO
Y
3 (f3K(k3) - f'ln(- q)] dy 

(B3) 

J. • 12 [ ] J' • 1 Z I I + Y3 hK (k 4) - f'lnq dy + f' 0 In q dy, 

(B4) 

where q is given in Table VI. 

For the limits 

limk3 = limk4 = 1, (B5) 

the following expressions are obtained: 

By utilizing Eq. (B6), we may observe that the singu­
larities have been removed from the first two integrals 
of Eq. (B4). The Singularity exists only for the integral 
J 1 = fO 12 In I q I dy. However, this integral has an analyti­
cal expression 

= (7T/2)k 12CE 1+ Jo•
/2 1n11 +P2cos2y I, 

where pz is given by 

pz=4AB/CE. 

The integral 

Jz = J~'/zln 11 + pz cosZy I d::,' 

is given by 

(
1 + (1 + Pd /Z

) Jz =7T In 2 . 

(B7) 

(B8) 

(B9) 

0.0.2.------------------, C.~\6.------------------, 

,J -0.03 

] 

~ 

-O'o.81--__ ..J..... __ -'-__ ---" __ --j 
0..16 

0.0.8 

0. 
-10. 50. 

FIG. 2. Real and imaginary parts of the Green's function ma­
trix elements !{i (E) [for notations see footnotes to Fig. 1 J for 
interaction parameters A c 2 em-I, B -, 3 em-I, and C ~ 4 em-I. 
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APPENDIXC 

The representation of the Green's function matrix 
elements q i (E) for the crystal structure and interac­
tions, under consideration, are numerous and complex. 
These representations change with the relative mag­
nitude of the interaction parameters A, B, and C, as 
well as the interactions signs, and energy value E. A 
specific example for determining the appropriate 
representation, using the prescription given above 
would be illustrative. 

We shall assume.A=2, B=3, C=4, and that we are 
looking for the imaginary part of q2(E), where E = - 10 
(see Fig. 2). In order to elucidate the form of Img2(E), 
we shall envoke the following steps: 

(a) utilizing Table I, we observe that the signs of 
A, B, and C remain unchanged, because B> 0, and 
C> O. 

(b) Inspecting Table II, we find that Case (iv) is 
applicable for our parameter set, and that Aa < E < A 4, 

implying E ER 4' 

(c) The Green's function matrix element Img2(E), 
which corresponds to Case (iv) and region R 4, is given 
by Eq. (36a). Hence, 

Img2(E) = 1m VJ4) (0,71/2) = Jo~ /2 ImH~4)(y) dy. (C1) 

(d) The superscript (4) in H~4) of Eq. (C1) denotes 
energy region 54, defined in Table III. ImH~4)(E) is 
expressed by the auxiliary function W:!' given by Eq. 
(53). Taking the imaginary part of Eq. (53), we obtain 
for Eq. (C1): 
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Irng2(E) = Jo'/2 W2'(-l, o)dy + Jo'/2 W:!'(y, l)dy, 

where y and 0 are given by Eqs. (28) and (29), 
respectively. 

(C2) 

(e) The W2' functions are given by Eq. (58) for which 
~, = 1. Thus, the Wf' functions given by Eq. (C2) can be 
represented in the form: 

W2' (tj, t 2) = f y ai2
[ (a~ - a~)l1 (k', an + aIK(k ')] cosy. (C3) 

The parameters f and (k ')2, for the region 54, are 
displayed in Tables VI and V, respectively. Similarly, 
the parameters a~ and a~ of Eq. (C3), for range (1) of 
region 54, corresponding to the function W"(-l, 0), 
and for range (2) to the function W"(l, y), are given in 
Table V. The Y parameters for ranges (1) and (2) of 
region 54 are given in Table IV. 
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