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Enumeration of cubic lattice walks by contact class
Gordon M. Crippen
College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109-1065

~Received 28 December 1999; accepted 30 March 2000!

Self-avoiding walks on a three-dimensional~3D! simple cubic lattice are often used to model
polymers, especially proteins. The Hamiltonian is generally taken to be a function of contacts
between sequentially nonadjacent residues. The set of all conformations having a particular set of
contacts occupies the same energy level, and one would like to estimate the degeneracy or chain
entropy of the level. Degeneracies observed in an exhaustive enumeration of short chain
configurations are fitted to simple empirical formulas depending on the length of the chain, the
number of contacts, and statistics related to the particular set of contacts. ©2000 American
Institute of Physics.@S0021-9606~00!51524-4#
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INTRODUCTION

A very simple way to model polymers, particularly pro
teins, is as a self-avoiding walk on a cubic lattice, whe
each of thek residues is represented as a point, and sequ
tially adjacent residues are on adjacent lattice points.
number,N, of such walks is used to calculate the configu
tional entropy of the chain. To model various physical s
tems, different constraints have been imposed on the la
walks, such as unconstrained,1 closed loops,2 or confined to
restricted volumes.3 For short chains, exhaustiv
enumeration1 can be used, but for long chains, Monte Ca
methods are often employed.4 For minimalist statistical me-
chanical models of protein folding, the Hamiltonian is us
ally defined to be a sum over residue–residue conta
where residuesi and j are in contact if they occupy adjace
lattice points but their sequence separationu i 2 j u>3. Thus
the set of chain conformations having exactly certain c
tacts and no others, all have the same energy. To calcu
the free energy of some macroscopic state consisting of
or more of such contact classes, one need only evaluate
energy of a single representative of each class and esti
the number of self-avoiding walks in the classes.

In this study we exhaustively enumerate all self-avoid
cubic lattice walks for short chains, and sort them in
classes according to the number of residuesk and the list of
contacts. In order to extrapolate to longer chains, these
sults are fitted to simple empirical expressions.

RESULTS

Lattice walks are enumerated on an infinite cubic latti
subject only to the self-avoiding constraint and that they
unique up to a rigid translation, rotation, and mirror refle
tion. Thus, in Table I the total number of self-avoidin
walks, Nw , is 2 for k53, corresponding to the straight an
bent conformations, rather than the 30 walks enumerate
Sykeset al.1 that includes six different positions for the se
ond residue and four different positions for the third resid
in the bent conformation. Fork54, the six walks include
11060021-9606/2000/112(24)/11065/4/$17.00
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only one nonplanar conformation and not its mirror imag
Figure 1 shows that the trend is very smooth and linear
k.4, fitting

ln Nw524.4811.514k. ~1!

Of course, the number of self-avoiding walks havingk steps
and no contacts,N0, has a somewhat smaller scaling exp
nent. Taking into account the curvature in Fig. 1 for smallk,
the empirical equation

ln N0525.808 4911.462 66k17.1365/k22.787 42/k2

~2!

fits the data for 1<k<16 with a standard deviation of 0.0
log units.

The next level of detail is to take into account the nu
ber of contacts,c, without regard to their arrangement alon
the chain, as summarized in Table I, columns 4–11.~TheN8

column is missing because there are no self-avoiding cu
lattice walks having eight contacts for 1<k<12.! Since Eq.
~2! is a good fit for lnN0 that can be confidently extrapolate
to somewhat greaterk, we fit the difference, lnN(k,c)
2ln N(k,0), for the 49 nonzero entries 1<k<12 and 0<c
<9 from Table I to a functional form that reduces to Eq.~2!
whenc50,

ln N~k,c!2 ln N~k,0!5c~0.143 726214.2448/k2

215.2842c/k2!. ~3!

The standard deviation of the fit is 0.23 log units. One sho
not attach a lot of significance to the magnitudes of the
efficients or the particular types of terms because they w
selected automatically from ten simple functional forms
forward stepwise linear regression.5 Figure 2 shows the fit
for three values ofc. When Eq.~3! predicts lnN(k,c),0, it is
equivalent to predictingN(k,c)50. Most of the errors in the
fit arise for many contacts relative to the chain leng
whereas the behavior for longer chains having few conta
is smoother. This still falls short of addressing the origin
motivation for the study, because when modeling h
5 © 2000 American Institute of Physics



0
0
73

11066 J. Chem. Phys., Vol. 112, No. 24, 22 June 2000 Gordon M. Crippen
TABLE I. For chain lengthk, the number of self-avoiding lattice walks total,Nw , and numbers havingc
contacts,Nc .

k Nw N0 N1 N2 N3 N4 N5 N6 N7 N9

1 1 1 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0
3 2 2 0 0 0 0 0 0 0 0
4 6 5 1 0 0 0 0 0 0 0
5 22 16 6 0 0 0 0 0 0 0
6 92 57 27 8 0 0 0 0 0 0
7 402 218 128 52 4 0 0 0 0 0
8 1832 854 602 270 103 0 3 0 0 0
9 8453 3432 2812 1446 646 99 18 0 0 0

10 39 640 13 856 12 954 7578 3597 1413 160 82 0
11 186 296 56 522 59 276 38 473 20 222 8741 2460 506 96
12 881 147 230 340 268 043 191 154 110 762 51 136 22 287 5388 1964
13 4 162 866 943 077
14 19 721 230 3 852 153
15 93 250 730 15 773 323
16 441 549 914 64 430 202
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eropolymers with specified sequences, the energy of a
formation depends on which contacts are formed, not
how many.

More detailed classification of walks according to co
tact patterns is much harder to fit. For example fork56,
there are nine walks having only the single contact 1-4,
only one walk having the single contact 1-6. The discr
combinatorics of the cubic lattice gives rise to much mo
complicated restrictions than just requiring thatu i 2 j umust be
odd for any contact. Defining classes of conformations
terms of an exact set of contacts implies that avoiding ot
contacts is sometimes a significant constraint. For exam
there are 844 walks of 12 residues having exactly the th
contacts 1-4, 1-6, and 9-12, but there is only one walk of
same chain length having the three contacts 1-6, 1-10,
5-12 ~see Fig. 3!. Because the number of contact class
increases so rapidly with chain length, exact enumerati
were restricted to 1<k<12, as shown in Table I. Variou
schemes for fitting the data were tried, such as exploiting
general trend that contacts closing small loops are less

FIG. 1. Total number of self-avoiding walks,Nw ~diamonds!, the fit toNw

by Eq. ~1! ~solid curve!, the number of walks having no contacts,N0

~crosses!, and the fit toN0 by Eq. ~2! ~dotted curve!.
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strictive than ones with large sequence separations. Thus
the number of walks ofk steps and a particular set$c% of c
contacts,

ln N~k,c,$c%!50.361210.1005k20.044 62c12.422k0

10.2394k110.1162k223.035k0 /k

10.4384k3 /k21.181f ~4!

fits the data for the 11 908 contact patterns in the rang
<k<12 with a standard deviation of 0.81 log units. Th
terms k0 ,k1 ,k2 ,k3 refer to the numbers of residues in th
chain falling within the ranges of 0–3 contacts, respective
In addition,f is the total number of residues on either end
the chain that are unconstrained by contacts. For exampl
k512, c52, and $c%5$2 – 5,7– 10%, then k054, k158, k2

5k350, and f 53.
Figure 4 shows the fit of Eq.~4! to the observed number

of walks for the different contact patterns. The scatter in
plot shows a better fit would require a more detailed desc
tion of the contact set than the parameters used in Eq.~4!.
The improved description would not simply involve mo

FIG. 2. Use of Eq.~3! for calculatingN(k,c), the total number of self-
avoiding walks of lengthk havingc contacts~Table I! for c51,3, and 5.
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terms likekn for n.3, because the contact set for Fig. 3 i
poorly fit, yet it involves no higher order features of this
type. It is clear that Eq.~4! provides only a convenient way
to estimate the much more complicated function lnN(k,c,$c%)
for 1<k<12. In order to test whether Eq.~4! provides any
useful extrapolation to longer chain lengths, lnN0 was calcu-
lated by Monte Carlo fork525, 50, 100, and 200. The
Rosenbluth and Rosenbluth6 Monte Carlo calculation of
chain entropy agrees very well with the values obtained fro
exhaustive enumeration, and the error bars are scarcely
ible in log plots such as Figs. 5 and 6. Note that forc50, Eq.
~4! reduces to

ln N0'22.673811.3415k, ~5!

which turns out to be the slight underestimate shown in Fi
5 ~standard error 5.6 log units!. For long chains covering the
sizes of small to moderate proteins, a better fit is lnN0

FIG. 3. An example fork512 residues of a class of self-avoiding lattice
walks having only three specified contacts~dashed lines! and yet only a
single configuration.

FIG. 4. A log-log plot of the number of walks observed in an exhaustiv
enumeration vs the calculated number@Eq. ~4!#. Points are shown for every
50th set of contacts out of the full list of 11 908 patterns.
is-

.

'24.4111.40k. Any least squares fit is the consequence
its training set, so although Eq.~4! was trained on all
ln N(k,c,$c%) for 1<k<12, it is surprising that it comes any
where near fitting lnN0 for longer chains.

In order to test Eq.~4! for longer chains andc51, 2, and
3, Monte Carlo determinations of lnN were made fork
550 and some 20 different choices of$c%. Clearly it is im-
practical to evaluate the number of walks for all possib
choices of contacts for such a chain length, so the samp
shown in Fig. 6 is by no means exhaustive, nor is it suppo
to be representative. The main point is that even at four tim

FIG. 5. lnN0 for k525, 50, 100, and 200 as determined by Monte Car
The solid line is the extrapolation from Eq.~4!, and the dotted line is a leas
squares fit to the four points.

FIG. 6. A log-log plot of the number of walks fork550 and various choices
of contactsc51, 2, 3, as determined by Monte Carlo vs the calcula
number@Eq. ~4!#.
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the chain length of the cases used to determine Eq.~4!, it
provides overestimates and underestimates and a few c
approximations. The underestimates arise from a few c
tacts spanning 10 or 20 chain points but leaving free e
( f @0), and the one substantial overestimate was from$c%
5$1 – 4,47– 49%.

In summary, it is possible to develop a simple regress
expression that approximates the number of self-avoid
walks on a cubic lattice having a given chain length a
exactly a given set of close contacts. Although this provid
only an approximate fit for short chains, it can be used a
convenient estimate for longer chains at similar error lev
In the process, some interesting examples have been fo
of large deviations from the regression fit. These may p
vide clues for a more insightful expression and a better fi
se
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