Theory of transient self-focusing of a CO, laser pulse in a cold dense plasma
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The self-focusing of laser pulses in a plasma is theoretically investigated for the situation in which
the refractive index change is not in equilibrium with the pulse. In particular, the analysis models
a CO, laser—plasma interaction experiment in which the ponderomotive and thermal conduction
dominated mechanisms of self-focusing are dominant. The moment method and the Gaussian
shape ansatz are used to describe the laser pulse propagation. Threshold powers are derived for
the transient self-focusing process, which reveals that self-focusing can occur even for times much
less than the characteristic dielectric relaxation time. Because of the behavior of the pulse
heating, thermal conduction dominated self-focusing is inherently a transient phenomenon
without a true steady state limit. The governing equations are also numerically solved, revealing
the existence of ion acoustic waves created by the action of moving focal spots. These transversely
propagating waves may be responsible for breakup or filamentation of the laser pulse.

PACS numbers: 42.65.Jx, 52.40.Db, 52.35.Mw

I. INTRODUCTION

The nonlinear interaction of laser light with plasmas
has been of intense interest recently, mainly because of its
relevance to laser fusion research. One of the simplest non-
linear effects that can occur for a laser pulse with transverse
variations is the self-focusing or filamentation instability.
The self-focusing of light in matter has long been studied, as
it was one of the earliest nonlinear optical effects to be ob-
served.! Since then it has been investigated in connection
with the interaction of laser light with many types of solids,
liquids, and gases.? In plasmas, self-focusing theory has ap-
plications in ionospheric propagation of waves and the inter-
action of pulsar radiation in space plasmas as well as in laser
fusion research.

In laser fusion applications, the self-focusing or fila-
mentation of the light can destroy the symmetry of illumina-
tion needed for proper implosion of the target, as it reduces
the scale length and increases the magnitude of the trans-
verse beam nonuniformities. Because of the complex electro-
magnetic character of the plasma, there are many conse-
quences to this effect. The higher intensities achieved in the
focused spots can reduce the thresholds needed to drive oth-
er nonlinear processes, such as parametric instabilities. In
this way, it has been shown that the self-focused filaments
can alter the energy deposition profile in the axial direction
by spreading the absorption and plasma heating over a wider
range of densities.” The presence of such filaments can thus
cause a major change in the character and magnitude of the
laser—plasma interactions.

Because of the profound effect on the character of the
interaction, self-focusing in plasmas has been the subject of
several previous studies. Kaw, Schmidt, and Wilcox* first
analyzed the plasma filamentation instability with a pertur-
bation approach, and then investigated the nonlinear self-
trapped state in a planar configuration. The stability of these
solutions was successively analyzed, and it was found that
such filaments can be unstable to kink,” necking,® and modu-
lational type’ perturbations.

The steady state propagation of cylindrical beams in

3003 J. Appl. Phys. 54 (6), June 1983

0021-8979/83/063003-09802.40

plasma under the influence of the ponderomotive force has
been analzed by Max® and Sodha ez al.,° using the paraxial
ray formalism. In recent years, two other approaches, the
moment method'® and the variational method,'' have been
shown to be more accurate than the paraxial ray method
when compared to more complete numerical analyses.'? In
addition, self-focusing due to plasma heating and relativistic
effects have been analyzed with all of these methods. As a
rule, these steady-state analyses have predicted stable and
periodic propagation of the laser beam in homogeneous plas-
mas.

It is not clear how such stable self-focusing behavior is
established during the transient regime, nor is it clear on
what time scales state is achieved. The behavior of the light
propagation before steady state occurs, or transient self-fo-
cusing, is a subject that merits more investigation. In tran-
sient self-focusing, the plasma is not in equilibrium with the
pulse, and the character of the focusing changes as the inter-
action progresses. Because laser pulses are often comparable
to or shorter than the hydrodynamic response time of the
plasma (which determines the nonlinearity response time in
all cases except the relativistic nonlinearity), this is a relevant
topic.

Transient self-focusing has been previously analyzed
with the paraxial ray method.'*'* However, as in the steady
state case, this method overemphasizes the near-axis in-
fluences and ignores the important off-axis effects'? (as we
shall see, these off-axis factors are particularly relevant to
transient self-focusing). More rigorous analysis can be per-
formed with a numerical study but this requires huge
amounts of computer time and storage for the transient
problem.'>'® Recently, a numerical treatment of laser pulse
propagation in plasma with both pondermotive and relativ-
istic nonlinearities was performed.'” This type of study is
difficult to generalize to other situations or regimes, how-
ever.

The analysis here seeks to improve upon the paraxial
ray method without sacrificing the generality and applicabi-
lity of the approach as a full numerical study would. We
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extend the moment method approach to consider the tran-
sient propagation of laser pulses in plasmas due to the pon-
deromotive and heating nonlinearities. This method is then
used as the basis of a simpler numerical treatment that inves-
tigates the qualitative features of transient self-focusing. In
addition, the method allows analytic investigation of the
transient focusing. In particular, we find expressions for the
scalings and thresholds of each focusing mechanism. Final-
ly, we find that the off-axis variations of the dielectric con-
stant (not accounted for in previous paraxial studies) may
give rise to breakup or futher filamentation of the laser pulse.

The analysis begins in Sec. II with the development of
the moment method description of transient propagation of
laser pulses in nonlinear media. To utilize this description,
the Gaussian ansatz for the pulse radial distribution is as-
sumed and simplified equations describing the radius of the
pulse result.

In Sec. I1I, the plasma response to the laser pulse is
derived. This derivation is performed in the context of mod-
eling a particular experiment conducted at the University of
Michigan.'® Briefly, a CO, laser pulse was focused into a
Helium z-pinch plasma characterized by 7,~7,~20 eV,
and n, = 510" cm~>. The laser pulse (without self-focus-
ing) attained an intensity of 10''-10'> W/cm? in a 125-um
diameter focal spot. Particulars of the experimental set up
and plasma target have been previously published.'®? The
laser pulse duration of 4 nsec is comparable to the plasma
hydrodynamic time of 2 nsec (the time during which a sound
wave propagates across the laser focal spot). Of particular
relevance to this experiment are dielectric constant varia-
tions that arise from the electromagnetic field’s ponderomo-
tive force and the inverse bremsstrahlung heating. These two
mechanisms are analysed in detail in this section.

The results of Sec. II and III are joined for analysis in
Sec. IV, and both the analytic and numerical results are pre-
sented and discussed there.

Il. THE LASER PULSE PROPAGATION

The electric field of the electromagnetic wave in the
plasma is governed by the wave equation

2
12 a ! 4727' d J (1)
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The second term on the left hand side can be ignored if
V(E-Ve/€)<k 5 E, where k, is the electric field wave vector
and € is the dielectric constant of the plasma. This will be
valid if V,(V, e/€)¢k}, i.e., the transverse gradient of the
dielectric is small compared to the laser wavelength. This
implies that either the transverse dielectric variation is weak,
or that the plasma is significantly underdense. We assume
that this term can be ignored. The current density on the
right side of Eq. (1) is derived from the high frequency mo-
tion of the electrons,

V’E — V(V-E)

2
—a—Jz—eneive—w”E (2)
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Equation (1) now becomes the scalar wave equation
14 o,
VZE——~—E=-%E 3
&t ? G)
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Since we are concerned with the slow time and space
variations of the pulse, we will separate them from the high
frequency time and space behavior by the substitution

E = y(x1) explitkoz — w5t )] + c.c., (4]
where k, and o, obey the dispersion relation in the undis-

turbed plasma, k, = w, €,*/c, and #(x,t) is the pulse enve-
lope. This transforms Eq (3) into the form
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where we have used the slowly varying envelope approxima-
tion (SVEA), which requires that 3%/9z2°<k ? and 3%/
3t2<w? ¥. Equations (5) can be cast into a simpler form
through a few mathematical manipulations. First, nondi-
mensionalize the independent variables: z' = kyz/€,
' = wyr/c,andt’ = wyt. Then transform Egs. (5) to the pulse
framewith thevariabletransform{ =z’ — ¢t',7 = ¢ . Finally,
the imaginary part of the dielectric constant is removed
through the transformation ¢ = ¢ exp( — 1 §7 d7 €;), where
€, is the imaginary part of the dielectric constant. The non-
linear part of €, is assumed negligible. These operations
transform Egs. (5) into a canonical form of the parabolic
wave (or quasi-optic) equations,

259 y=av+ p, (6a)
oar
29y A g+ fur, (6b)
or

where f=e, — €, is the nonlinear induced dielectric vari-
ation. This is of the same form as the nonlinear Schrédinger
equation (NLSE), which has been widely studied in recent
years. It differs somewhat from the normal interpretation of
the NLSE, because the nonlinear potential f'is explicitly de-
pendent upon the variable 7 as well as the local field intensity
Y.

Equations. (6) have two invariants. These constants of
the motion are

szfﬁ@W% (7)
= [ [, wp— [ arrZwr)

The first invariant is merely a statement of the conservation
of the pulse energy. The second invariant relates the phase
front curvature of the pulse to the plasma nonlinearity.

These two invariants can be used to construct an equa-
tion governing the radius of the pulse distribution, whichisa
measure of the self-focusing. Define the pulse radius a(7) as
the square root of the second moment of the pulse radial
distribution (a*(r)) = § dA4,P|Y|*/f dA,|¢|*, where d4, is
the differential transverse area. Then using Egs. (6)—(8), we
find the following relation:
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Equation (9) allows us to predict the behavior of the
pulse radius a(r), knowing just the nonlinear potential and
the pulse intensity. The nonlinear potential, i.e., the induced
dielectric constant change, is determined by the nature of the
response of the plasma to the laser pulse. We shall discuss
this in the next section. Aside from a knowledge of f, we will
also need a relation between a*(7) and |¢(r,7)|. Postulating a
unique relation between the pulse radius and the intensity
distribution is equivalent to assuming that the distribution
has a constant radial shape. However, this can be a reasona-
ble approximation for many cases of interest.

It is known, for instance, that a pulse with a Gaussian
radial profile at 7 = 0 will propagate in the shape of a Gaus-
sian if the nonlinear potential is quadratic in »r:
S=/Fo7) + (7). Tt has also been shown that for self-
trapped light beams [a(7) = constant] in plasmas under the
influence of a ponderomotive force, the radial shape is ap-
proximately an Airy function.?* The Airy function has a cen-
tral peak that contains most of the pulse energy, and is well
approximated by the Gaussian function in this region.
Therefore, we shall assume the pulse intensity to vary as

2

TP = s expl = r/a). (10
This ansatz allows the radius to change under the action of
Eq. (9), and ensures that the power is conserved as the radius
changes. The function s(¢ ) in Eq. (10} is a form factor, or the
envelope shape, of the pulse; its magnitude varies between
zero and unity.

Using Eq. (10} in Eq. {9) and performing the radial inte-
grations results in a simplified form for the governing equa-
tion:

d? ,
L pm=2_g 2 arl % 4, 1
dea(T) a? 7’a or a(r’) (1)

J= ~fw drrexp[ — r*/a*(1)14, f. (12)

Ill. THE PLASMA RESPONSE

There are a variety of mechanisms in a plasma which
can result in the dielectric constant being altered by the laser
pulse. We are concerned here only with the change in € due
to plasma heating and the ponderomotive force. These pro-
cesses cause the plasma density to be decreased in the inter-
action region, altering the nonlinear potential through the
relation

2
foe —e= 2 (Bl (13)
o) no

To study the self-focusing process, we must therefore inves-

tigate the response of the plasma density to the laser pulse.
We assume that the Debye length is much smaller than

the characteristic scale lengths of the interaction (i.e., the

plasma is quasi-neutral) and use a two temperature fluid
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model. The equations of continuity and momentum are

9 4 Vejnu) = 0 (14)
ot
E i
i Viu= ——V
at"+(" o mn;
2
X [1ky(ZT, + T,)] — ———V|y|>.

4dm,m wj

(15)

These equations have been averaged over the high frequency
time variation of the electromagnetic pulse so that only the
slow time variations remain. Thus the effect of the laser pulse
fields is manifested in the ponderomotive force term on the
right hand side of Eq. (15). Linearizing these equations in the
variable u, combining, and neglecting the second-order
VT-Vn term, we obtain

2
(8— —C2A )m L (ZT, + T;)
or? n, m,
e 2

g AW (16)
where C, = [k,(ZT, + T,)/m,]"’? is the ion acoustic wave
speed. This is the ion acoustic wave equation, driven by tem-
perature and laser intensity gradients, respectively. Thus,
the plasma density, or the nonlinear potential in Eq. (13), will
obey an inertial-type time dependent differential equation.
This can be contrasted to the more extensively studied diffu-
sive type of nonlinearity,” in which the transient nonlinearity
is governed by a diffusion type equation.

The temperature gradient that drives the wave equation
(16)is found by considering the energy balance equations for
the ions and the electrons. They both obey equations of the
form
Sk, ST = vk, — M

2 at m,

XVei”Ikb(T/‘Tk)+1jl‘E|s (17)

where the subscript / denotes electrons or ions and the sub-
script & denotes ions or electrons, respectively. This energy
balance accounts for temperature change due to thermal
conduction losses, collisional losses/gains, and Joule heating
(inverse bremsstrahlungp The heating term is a result of the
high frequency part of the electric field acting upon the part
of the induced current that is in phase with the field (due to
collisional drag on the oscillating particle). The induced cur-
rent is

' TR o (13
= —enyvy=——un— (v, —in,),
1 o my(wg + v2,) °
which gives rise to the heating term:
o v,
GE=""2 |y, 19
I P ¥ (19)

We have assumed v,; <w;. It can be immediately seen that
the electrons, because of their much smaller mass, are heated
much more strongly than the ions. The only other source of
ion heating occurs via collisions with electrons, in the second
term of Eq. (17) for the ions. The important parameter affect-
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ing this energy transfer is the electron—ion energy equilibra-
tion time, 7,, = m;/m, v,;. In the experiment under investi-
gation here, this energy equilibration time is initially 5 nsec,
on the same order as the total interaction time. However, as
the plasma rapidly heats, 7,; (varying as 7, ~3/?) increases
quickly to an order of magnitude larger, so that the ions gain
relatively little energy from the electrons in the time of inter-
est. Thus, we ignore the ion energy balance equation, and
assume the ion temperature to be constant. This leaves only
the electron energy balance.

Depending upon the state of the plasma, either elec-
tron—ion collisions or thermal conduction will play the
dominant role in transferring energy away from the heated
electrons in the interaction region. The ratio of the conduc-
tion loss to the collisional loss is given by the parameter
R=m, v}, /m, al V2, where vy, =(k, T,/m,)"/? is the
electron thermal speed. If R> 1, the electrons escape from
the heated region before they lose appreciable energy in colli-
sions with ions, and conduction losses will be dominant. In
the CO, laser-plasma experiment under consideration,
R~10 before the plasma is significantly heated, and in-
creases rapidly (as 7'%) as heating occurs. It is therefore quite
reasonable to ignore the collisional loss term in comparison
to the conduction losses.

Now consider the effect of the time derivative term on
the left hand side of Eq. (17). In the presence of conduction
losses, the equilibration time for the temperature distribu-
tion is determined by the characteristic time t,, = r’n,/k,.
This equilibration time is dependent upon the distance r
from the heating source. Since it takes a finite time for a
temperature disturbance to propagate from its point of ori-
gin to any given distance, the temperature gradient at small
radii equilibrates quickly, whereas at some radius 7., = («,
t/n,)'?, the temperature is still changing. At arbitrarily
large times, there are always some distant points still under-
going some temperature change. Since the temperature mag-
nitude at all points is dependent upon the magnitude at these
distant points (through boundary conditions), the absolute
temperature never equilibrates. Only the gradients at points
r < re, will equilibrate.

To illustrate this behavior clearly, consider the follow-
ing simple model of the laser beam heating. The heating
gives rise to a cylindrical heat sourte of radius a, in the plas-
ma, emitting a {constant) heat flux of magnitude g, given by
4o = 5§ drr (&’ v, |¢|*/4mw] k,a,). The temperature dis-
tribution resulting from this situation is known to be* (for
r>a)

T,(rt)=T, +-J; du(l — exp[ — 2«,1u*/3n,)]

X (Jo(ur)Y,(uao) - Yo(“'Vl(“ao)) 29, ] (20)
w’[ J3(uag) + Yi(uay)] K

where J,,(x) and Y (x) are Bessel functions of the first and

second kind of order a. This solution exhibits two important

characteristics. First, it is known that for large times (¢» 2., ),

the solution behaves in the asymptotic manner

e

9080 k.t
T,irt)=T,, +>1In| 1.46
(nt) 0T % ( n,r

e €

)+0(teq/t). (21)
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Secondly, this shows that the asymptotic solution depends
only upon the characteristic relaxation time t,, that we
found previously. Note that the temperature at any point
increases monotonically to infinity; no equilibrium is found.
However, the spatial derivatives of the temperature distribu-
tion do equilibrate for times ¢ /7., > 1, behaving as:

VI T,(rt)=constantXr ™" + O (t.,/t). (22)

Thus, for ¢ /1.,> 1, the temperature gradients and the tem-
perature magnitude become uncoupled; the gradients equili-
brate and the magnitude does not.

In the formulation here, we are concerned primarily
with the temperature gradients in the light propagation re-
gion, r<a. The equilibration time in this region (~ 100 um
across) is much smaller than the characteristic variation time
of the laser pulse envelope: £, ~100 psec, and z, = 4 nsec. In
addition, this equilibration time decreases rapidly as the
plasma is heated, since t,, « 7,” ¥2. Thus, the temperature
gradients in the interaction region can be considered to be in
instantaneous equilibrium with the inverse bremsstrahlung
heating:

kyVek VT, = @ v, |/ 470} (23)

In contrast, the temperature magnitude in this region (upon
which the coefficients «,, v,;, and C, depend parametrically)
must be found through solution of the full nonlinear time
dependent temperature balance equation

%nekb % T — _ Vi VA, T, +
Equation (23) can be directly substituted into the wave equa-
tion (16) if the temperature dependence of the conductivity
coefficient (k, « T >’?) can be ignored in the region r<a. This
requires the temperature change across the pulse region to be
small, which can occur if the plasma heating is either very
small or very large. This condition can be quantified by solv-
ing Eq. (23) in the following manner: approximate the colli-
sion frequency as constant, evaluated at the temperature 7,
(r =a,t) (this slightly overestimates the heating and thus
gives a small overestimate of the resulting change). Integrate
Eq. (23) usingx, =k, T,(rz)?and v,, = v T,(a,t) >3
in terms of the boundary temperature T (a,t ) and the pulse
power ¢/°, one finds

2
(l)pV

=P 24

TW,

102 Ve0 VPG
Nrwdk,k, Tolat)’?

X [Ei(l) — Ei(’z)”m, (25)

(12

T,(rt)= Te(a,t){l +

where Ei(z) = 7 dt[1 — exp( — 7)]/¢is the Exponential inte-
gral.? In order that the temperature difference satisfy the
condition [ T,{r =0,¢) — T,(a,t)]/T, (a,t)<]1, theboundary
temperature 7, (a,f ) must obey the relation:

2% 107294 ¥ m)n? (cm )P (Watts)/& < T 3(a,t J(eV). (26)

This will be satisfied if the heating is weak (the power P is
small) of if the heating is strong (the boundary temperature is
large). If this inequality is validated, Eq. (23) can be linear-
ized and directly substituted into Eg. (16) to yield
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where B = o, v,,/4mm k0 and a =e’/4m ,m0}. Eq.
(27), along with the pulse radius governing Eq. (11), forms
the basis of this study of transient self-focusing. The com-
plete temperature balance Eq. (24) is an auxiliary equation
that affects the basic set Eqs. (11) and (27) parametrically.

IV. ANALYSIS

A. Threshold determination

The self-focusing threshold is given by the self-trapped
propagation condition. The pulse is self-trapped when the
radius remains constant and the pulse neither diffracts nor
focuses. This occurs when the first two terms on the right
hand side of Eq. (11) cancel each other, J = 2/a,, and the
pulse enters the plasma with da/dr = 0. When self-trapping
occurs, the density change in the propagation region is small,
and we can linearize the wave equation (27) in the density by
expanding the logarithm. J can then be found through inte-
gral transform techniques; the result is

_wp¥iaan) (*  sir—u)(, d
J= [ aw g G S|

eoa)oc: x=u/7,
20 4

C2(71'2 E('xz + [3x — 2x3)D (X)] |x= u/7,’
2 72 (28)

where 7, = [a*(7) + @*(r — 4)C2]"/? and D (x) = exp( — x?)
Js dt exp( — ¢ ?)isDawson’sintegral.2® We have assumed for
convenience that the change in C, due to plasma heating is
negligible. Next, assuming that the radius of the pulse has
experienced little change previous to self-trapping, we can
replace a() by a,, the characteristic pulse radius in the
trapped region. Then taking the pulse envelope shape to be a
step function [s(¢) = 1 for #>1; = 0 otherwise], the integral
in Eq. (28) can be analytically performed to yield.

_ @ ¥

= {3 BID(t) + [12 + (3¢ —26D (1)1}, (29)
26005 C§

where t =t /7, = tC, /\2a,. This can now be used, along
with the self-trapped condition, to determine the power nec-
essary to achieve self-trapping at the time z. We find these
threshold powers to be

PT(t)=PT/2D(f), (30a)

PP(t)=PL /(12 + 31+ 213D (1)), (30b)
for the thermal heating and the ponderomotive force me-
chanisms, respectively. PL and P/, are the corresponding
steady-state power thresholds.

(31a)

PJ =2¢* Ci’mm,w} /02, (31b)
The transient thresholds [Eq. (30)] are shown in Fig. 1. Self-
focusing is thus possible for 1<1, if the power levels are suffi-
ciently far above threshold.

Also, note the extreme temperature dependence of the
thermal self-focusing threshold, which varies as T'2. Since

2 4
Pl =2pel? Cic’mux,a}/aiv 0},
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FIG. L. Transient self-focusing power thresholds as a function of the inter-
action time, 7, = 2a,/C;, and the steady-state power thresholds P,, are giv-
en by Eq. (28) in the text. The solid line corresponds to the thermal mecha-
nism, the dashed line corresponds to the ponderomotive mechanism.

this mechanism is responsible for heating the plasma, it will
saturate and turn itself off as the temperature in the interac-
tion region rises. Since there is no equilibrium temperature,
we conclude that thermal self-focusing has no true steady
state existence; it is inherently a transient phenomenon.

B. Numerical analysis

To illustrate the transient self focusing process and
study the propagation of the pulse, Egs. (11), (24), and (27)

. were numerically solved (details appear in the Appendix).

The parameters used as input for these calculations corre-
spond to the experiment described previously,'® except that
the pulse length used in the calculations is 1.5 nsec instead of
4 nsec. The change in pulse radius due to the self-focusing is
shown in Fig. 2, for a pulse power of 6.5 X 10'!/W/cm?.

The peak pulse power in this simulation is initially far
above threshold for both mechanisms: 1.3 X 10* times the
steady-state thermal threshold and 13 times the steady-state
ponderomotive threshold, evaluated at the initial conditions
(T, =T, =20 eV). However, the plasma is very rapidly
heated from classical inverse bremsstrahlung (see Fig. 3).
The plasma heating increases the threshold power levels of
the mechanisms, especially in the case of the thermal self-
focusing process. At the pulse peak the power is only just
above the ponderomotive threshold and below the thermal
threshold, as shown in Fig. 4. Although the thermal mecha-
nism is quite dominant at the low initial temperature, the
rapid heating reduces the power below threshold and the
ponderomotive force becomes the dominant self-focusing
mechanism.

The qualitative behavior of the pulse propagation is also
of interest. After quickly self-trapping, the pulse forms one
and successively more focal spots, which move upstream.
After a short while, the pulse forms only a single tight focus,
and the other foci are lost in the large diffraction of this post
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FIG. 2. Variation of the pulse radius in the plasma at different times during
the interaction. (a) £ =0; (b) t = 0.147,; (c] ¢ = 0.277,; (d) ¢ = 0.347,; (e)
t=0417,; (f) t =0.487,; (g) t =0.547,; (h) 1 =0.687,; (i) t = 0.827,; (j)
t=0.957,.
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FIG. 3. Average pulse region electron temperature vs time, at different
points in the plasma.

3008 J. Appl. Phys., Vol. 54, No. 6, June 1983

100
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FIG. 4. Laser pulse power at z = 0 vs time, normalized to the steady-state
self-focusing threshold powers, P,,. P, changes in time due to the changing
electron temperature. The solid line is the pulse power normalized to the
thermal threshold, the dotted line is normalized to the ponderomotive
threshold.

focal region. The large angle this diffracted light forms with
the centerline may explain some of the anomalous decrease
in energy transmission observed in some experiments, when
the incident power level is raised.'®?>*” Only the light in a
relatively small angle of the forward direction is captured by
the detection apparatus, so transmitted light at larger angles
escapes detection. Since the angle of this diverted light in-
creases as the focal spot size decreases, the energy collected
and measured will decrease as the pulse power (or self-focus-
ing) increases.

This decrease of (detected) transmitted energy with in-
creasing input energy has been calculated in the numerical
analysis, and the results are shown in Fig. 5. The calculation

mlrn
- 1O

o _
N

O'O1 ) n n e | I 1 " 2
10° 10" 102

FIG. 5. Total transmitted energy fraction (detected in a 14° forward angle)
vs incident power. Solid dots are computational results; open dots are ex-
perimental results.

A. Schmittand R. S. B. Ong 3008



agrees with the qualitative behavior of the experimental
curve,'® as well as approximating the correct turning point at
about I,,. = 10'""W/cm? [The energy fraction increases
with incident power in the lower power regime because the
average plasma temperature increases and the absorption
(~ T, ~3/?) decreases.] However the calculation consistently
predicts higher transmission levels at all powers. This may
be due to several other nonlinear mechanisms that can be
present with the higher intensities produced in the self-fo-
cused regions. For instance, parametric instabilities such as
stimulated Brillouin scattering can either scatter light out of
the detection angle or cause increased absorption of the light
by the plasma. The modeling here does not include these
competing effects.

The transition of the propagation behavior from period-
ic focusing, Fig. 2(e), to the singular focus/large diffraction
behavior, Fig. 2(g), can be explained by studying the details
of the plasma density dynamics. Figure 6 shows the density
distribution changing in time at different points along the
propagation path. The action of the moving focal spots
creates ion acoustic waves in the pulse region which propa-
gate radially outward. Each time a focus passes a given
point, it provides an impulse at the centerline which pro-
duces another wave. The wavelength of the ion acoustic
wave is approximately equal to the focal spot size. These
waves cause a net diffractive effect on the Gaussian pulse
propagating through this region.

The moment method approach fails in this region. Since
the density distribution in the propagation area is no longer
close to quadratic, distortion of the pulse from the Gaussian
profile ansatz is expected to be significant. The wave troughs
act as separate lenses, and one expects that the pulse would
break up radially into discrete, separate sections. In this way,
the filamentation of the pulse may begin. Some evidence of
radial breakup in numerical simulations (that allowed for
pulse distortion) has been seen before.!” However, the results
of that simulation are not relevant here, since the time scales
considered were very small (r,/7,<1, so that the wave
troughs had no chance to form) and the nontransient relativ-
istic nonlinearity played a dominant role.

It is interesting to speculate how these ion acoustic
waves will interact with the filamenting pulse on a longer
time scale. After the waves propagate from the interaction
region, will the density in the region remain oscillatory {and
the pulse remain filamented), or will the density distribution
smooth out and reduce or stop the filamentation? To fully
study the transition from transient to steady state, the Gaus-
sian ansatz assumption must be discarded and an analysis
which allows for changes in the radial shape of the pulse
must be performed. Such a self-consistent description of the
pulse distortion is currently being investigated.

V. SUMMARY

The moment method has been used to investigate tran-
sient self-focusing in plasmas induced by thermal and pon-
deromotive forces. Previous analyses of the phenomenon
have utilized the paraxial ray method, which confines its
description of the pulse to areas very close to the propagation
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axis. In contrast, the moment method accounts for the effect
of the off-axis nonlinearity on the pulse mean radius. How-
ever, since the Gaussian shape ansatz has been used to char-
acterize the pulse, transverse distortion or breakup of the
pulse is not taken into account.

Analytic expressions for the transient power threshold
are found, and we show that self focusing is possible for times
much smaller than the characteristic plasma response time.
In addition, the scaling of the threshold powers reveals that
the thermal self-focusing mechanism rapidly decreases as
the temperature rises due to plasma heating. Since the tem-
perature in the interaction region never equilibrates (con-
trary to previous assumptions), the thermal self-focusing
process is inherently a transient phenomenon.

Numerical integration of the governing equation for the
pulse radius, using the Gaussian ansatz, reveals the nature of
the propagation of the laser pulse. As in other analyses, we
find that the laser pulse forms several focal spots which pro-
ceed to move upstream along the pulse axis. This action gen-
erates ion acoustic waves that propagate radially outward,
causing a net diffractive effect on the pulse in this model. If
the Gaussian ansatz were discarded, we would expect that
these ion acoustic waves will cause transverse breakup of the
pulse, or further filamentation. This breakup mechanism
may be entirely transient, or it may have lasting effects that
alter the expected steady state pulse propagation. In order to
determine this, the Gaussian ansatz must be discarded and
the pulse must be allowed to freely distort in shape.

Finally, we note that this analysis excludes other non-
linear plasma phenomena that often accompany self-focus-
ing. The primary effect of these generated instabilities would
be to increase the absorption or scattering of the pulse as it
propagates, decreasing the power levels further into the plas-
ma, but not altering the qualitative behavior noted here. The
large amplitude plasma modes caused by such processes, like
the ion acoustic waves generated by the moving foci, may
also generate a turbulent state in the plasma. Besides altering
the absorption and scattering levels as noted before, the tur-
bulence will also increase the net diffractive force felt by the
pulse.?®
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APPENDIX: NUMERICAL SOLUTION OF THE SELF-
FOCUSING EQUATIONS

The self focusing problem is numerically analysed by
solving the main governing equations: the pulse radius gov-
erning Eq. (11); the density wave Eq. (27); and the electron
temperature Eq. (24). The pulse and the plasma are broken
up into meshes in the { and z directions, respectively, and the
equations are solved as the { mesh propagates through the z
mesh one mesh point at a time.

A. The pulse radius governing equation

A perturbation solution to Eq. (11) is used to propagate
the pulse radius over small distances, and is repeatedly ap-
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FIG. 6. Plasma density vs time and radius at different points in the plasma; vertical axis is the negative density change (n — no)/n,. (a) koz = 0; (b) koz = 250,

(c) koz = 375; (d) kyz = 500. Parameters are the same as Fig. 1.

plied to follow the pulse points as they pass through the
plasma. First Eq. (11) is transferred to the z frame. Denoting
the z mesh points by the subscript i and the £ mesh points by
the index m, we can follow a particular pulse point m as it
propagates to the z mesh point / by

2

2
d_2 a’ Z;slim) = —
dz a;
— Tz, ) —2 J a7
0
Jz',t:) dalz',t})

(A1)
alzt;) dz

where ¢t =2 — ¢, and ¢,, =z, — ¢, are the times at
which the pulse point at £, reaches the points z’ or z; in the
plasma. The values of J are defined and calculated at the
points (z,,¢,,,) and are linearly interpolated in between
(z—2z)

J(z’tm ) = J(zi’tim) + T

-z)

J(ziotin)]s (A2)

(zi+1
X [J(zi+1:3i+ Lm ) —

3010 J. Appl. Phys., Vol. 54, No. 6, June 1983

forz;<z<z,, ,andt,, =z —¢{,,. Using the form in Eq. (A1},
we can find an analytic solution valid for small steps &z:
a’(z; + 6z) = (dal/dz + AJ,/Az;)sin( J '* 6z/a,)/(J V*/a;)
+ai[1—(2/a} — 2 )/J; |cos(J [* 6z/a;)
+a}2/ay — 27,)/J, — AJa;6z/ T V* (A3)
where ¥, = (5 dz'J(z,t')d {In[a*z)]}/dz'; AJ, =J,
—J;; 4z, =z, | —z;. Using small step dz<z;, [small
enough so that the perturbational approximations made in

Eq. (A3) are satisfied], this equation is used to follow the
pulse section §,, as it passes from z, toz, , , i = 1,2....

i

B. Density wave equation

The density wave Eq. (27) is analytically solved in the
Hankel transform space; the solution is found to be

I (§.2,tp+ 62)=1n l(é’ JZ,tp)cos C, £6t
n

ng 0

d [m n (§,Zyto)J _s1_nCs—§5t
ng

X__
d: C.t
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o sinC,£(t—1) , ,
_L dt' == B) +ag”]
Xexp[ — &%a%(z,t')/4]. (A4)

After numerical integration of the last term at each time
step, this density is numerically inverse Hankel transformed,
and then averaged in the manner of Eq. (12) to calculate J.

C. The electron temperature equation

Under the assumption of Eq. (26), the electron tempera-
ture in the pulse region is relatively constant in the radial
direction, so a single radially averaged temperature is calcu-
lated at each point z. Since this temperature enters the calcu-
lation in a parametric manner, and doesn’t directly influence
the self-focusing, it was felt that a reasonable estimate for the
temperature would suffice for the calculation. This estima-
tion also eases the calculational and storage requirements of
the numerical analysis.

The key approximation is to let the coefficients «, and
v,; depend only upon the radially averaged temperture, de-
fined as

(T.(@2)) =a ) fw drrexp[ — r’/a*(t)1T,(rt). (AS)

This formalism allows «, and v,; to vary in time as they
should, but constrains them to be spatially constant. The
result is an underestimation of the plasma heating, mainly
because the conductivity at large distances is at an artificially
high level, determined by the electron temperature in the hot
region. We can still show, however, that the interaction easi-
ly heats the plasma to a high enough level that the thermal
self-focusing mechanism (which is the most temperature
sensitive process here) becomes negligible.

Utilizing this approximation allow us to solve for the
averaged temperature directly

(T,) = T + f du(t — ulv,,
(¢]

X (ATt —u))n(t — u)] &5 af s(t — u)/
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x {[ 127w} 7,(t — uk,a*(t — u)]
X [az(t) +a¥t—u)+4 f dt 'yt )” (A6)
where y (1) = 2«, [(T.(t')) ]/3,(¢") and

n,t)= J:o drrexp[ — r*/a¥(t)]n,(rt)/a¥t).
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