TRANSITION

theory has been carried out for a strip rather than a
cylinder, and (3) the analysis was based on the model
equation rather than the Boltzmann equation, the
agreement between theory and experiment indicated
in Figs. 5, 6, and 7 appears to be quite satisfactory.

V. CONCLUSIONS

(1) Experimental values for the drag coefficient
of cross-stream cylinders in supersonic flow have
been determined for a particular set of thermal
conditions but for Knudsen numbers extending
from continuum to free-molecule flow.
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(2) The results are a smooth interpolation
between inviscid values at low Knudsen number
and free-molecule-flow predictions for diffuse reflec-
tion at high Knudsen number.

(3) There seems to be reasonable agreement
between the experimental values and the theoretical
predictions for the near-free-molecule-flow range of
high Knudsen number. "
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The stability of a liquid layer flowing down an inclined plane is investigated. A new perturbation
method is used to furnish information regarding stability of surface waves for three cases: the case
of small wavenumbers, of small Reynolds numbers, and of large wavenumbers. The results for small
wavenumbers agree with Benjamin’s result obtained by the use of power series expansion, and the
results for the two other cases are new. The results for large wavenumbers, zero surface tension, and
vertical plate contradict the tentative assertion of Benjamin. The three cases are then re-examined
for shear-wave stability, and the results compared with those for confined plane Poiseuille flow. The
comparison serves to indicate the vestiges of shear waves in the free-surface flow, and to give a sense
of unity in the understanding of the stability of both flows. The case of large wavenumbers also
serves as a new example of the dual role of viscosity in stability phenomena.

The topological features of the ¢; curves for four cases (surface tension = 0 or ¢ 0 and angle of
plate inclination = or <4ur) are depicted. The effect of variability of surface tension is briefly assessed.

I. INTRODUCTION

HE stability of the laminar flow of a liquid
layer, analyzed inexactly by Kapitza,' was
first rigorously formulated by Yih® (henceforth
referred to as I), who solved the Orr—Sommerfeld
equation by an expansion in powers of aR. The
resulting secular equation was solved by numerical
computation, involving the solution of simulta-
neous nonlinear algebraic equations. Whereas the
numerical computation produced the result that
1 P. L. Kapitza, Zh. Eksperim. i Teor. Fiz. 18, 3 (1948);
18, 20 (1948); 19, 105 (1949).
2 C.-8. Yih, “Stability of Parallel Laminar Flow with a
Free Surface,”” Proceedings of the Second U. 8. National

Congress of Applied Mechanics (American Society of Mechan-
ical Engineers, New York, 1955), pp. 623-628.

the flow down a vertical plane is unstable for
Reynolds numbers larger than 1.5, thus establishing
the instability of the flow at low Reynolds numbers,
it was not accurate enough, and both the shape of
the neutral stability curve and the values of the
wave speed given in I are incorrect. In a paper
based on Yih's formulation and on a variation of
his method, Benjamin® performed a new calculation,
with the important difference that his neutral-
stability curves were obtained analytically, instead
of numerically. His calculation established the
result that free-surface flow down a vertical plane
is unstable for all finite Reynolds numbers, and

3 T. B. Benjamin, J. Fluid Mech. 2, 554 (1957).
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gave values for the wave speed which are more in
accord with experiments.* The present paper, on
the same subject, has been written for the following
reasons.

Yih’s numerical computation and Benjamin’'s
power expansion are both very laborious. It is
desirable to have a simple method for the solution
of problems of the same kind. A perturbation pro-
cedure based on Yih's expansion (I) provides just
such a method. The agreement of the results ob-
tained by this new method with Benjamin’s should
dispel the feeling in the minds of some of the people
working on free-surface instability that there is a
fundamental difference between Yih's expansion
and Benjamin’s. But quite apart from this, the
perturbation procedure provides a powerful method
for solving stability problems involving free surfaces
or interfaces, and is itself worth presenting. It is
presented in this paper.

The nature of the axis @ = 0 (a is the wave-
number) and the topology of the curves for constant
¢; in the a—R plane (ac; ~ rate of amplification or
damping, R is the Reynolds number) have not
been clarified. It is hoped that this paper will
provide such a clarification.

The plane Poiseuille flow is known to be unstable
only at rather high Reynolds numbers. Since free-
surface flow is one-half the plane Poiseuille flow,
it is rather surprising that the free surface should
make it unstable at very much lower Reynolds
numbers. Should not there remain some features
of the stability of the free-surface flow which are
similar to those of the plane Poiseuille flow? Why
should the features of the stability of the plane
Poiseuille flow disappear so completely when a
free surface is present? Clarification of this point
leads not only to the understanding of the correct
choice of mathematical approximations to be made
in dealing with problems of free-surface instability,
but also to a better understanding of the physics
of the phenomenon. This paper contains such a
clarification.

Benjamin’s calculation is based on the assump-
tion that « is small. For this reason Benjamin did
not consider his calculation applicable to values of
a which are not small. For the case of vertical flow
with zero surface tension, he gave the dashed line
a = 0.43 (approximately) as the estimated neutral-
stability curve. This is incorrect, and has misled
some people to obtain such a neutral-stability curve
with a high-speed computer. Here Yih’s method,’

4+ A. M. Binnie, J. Fluid Mech. 2, 551 (1957).
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coupled with the new perturbation procedure, pro-
vides results at low Reynolds numbers for any
value of «, however large. These results, which
cannot be obtained by Benjamin's power series
expansion, are presented in this paper. They show
that the entire axis B = 0 is part of a neutral-
stability curve for vertical film flows if surface
tension is zero, and that there is no bifurcation
point enabling the curve to branch out. The greater
versatility of the expansion in powers of aR is thus
demonstrated.

The question at large values of the wavenumber
a has so far not been touched. It will be discussed
in this paper. The pertinent result furnishes a new
example of the dual role of viscosity, i.e., a new
example of the destabilizing effect of viscosity.

The free-surface boundary condition involving
shear will be formulated with variable surface
tension taken into account, and the effect of this
variability is briefly assessed in this paper.

II. FORMULATION OF THE PROBLEM

For the sake of completeness, the formulation of
the problem is presented. With reference to Fig. 1,
the primary flow, assumed steady, is parallel to the
X axis, with the velocity @ varying only with Y.
Since the pressure gradient in the X direction and
the velocity component parallel to Y are zero,
the Navier-Stokes equations are simply

pgsin B + p da/dY* = 0, 68)
dp/dY = pg cos B, ¢

in which p is the (constant) density, g the gravi-
tational acceleration, u the viscosity, and p is the
pressure of the primary flow. The coordinates X
and Y and the angle of inclination 8 of the plane
boundary are all defined in Fig. 1.

Equation (1) can be integrated with the boundary
conditions @ = 0 at ¥ = d, and du/dY = 0 at
Y = 0, since d is the depth of the primary flow and
the mean free surface is at ¥ = 0, where the shear
stress must vanish. The result is

% = (gsin 8/20)(d* — Y?),
or
Uly) = 301 — o), )
in which
U = 4/4, , 4, = average velocity of the

primary flow = g d” sin 8/3», y = Y/d. @)
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The Reynolds number and Froude number will be
defined to be

R = a,d/y, F = a,/(gd)*. (5
The second equation in (4) can be written as
3F* = Rsin 8. (6)

Squire’s result’ for the stability of three-dimen-
sional disturbances in unidirectional flows between
rigid boundaries has been extended to flows with
free surfaces, interfaces, or density stratification.®
For these flows, the primary flow is stable or un-
stable for a three-dimensional disturbance according
as it is stable or unstable for a two-dimensional
disturbance at a lower Reynolds number, a milder
slope, and a reduced pressure gradient in the di-
rection of flow. (For the flow under study, the
pressure gradient in the X direction is zero. Hence
no reduction is necessary.) Consequently, it is
sufficient to consider two-dimensional disturbances
only.

With the origin of the Cartesian coordinates
(shown in Fig. 1) at the free surface, and with u

F1c. 1. Definition sketch,

and » denoting the velocity components in the di-
rections of X and Y, respectively, the Navier-
Stokes equations are

1 dp

+ + ——————-I-gsinﬁ-l-uAu,

+v% —-—ﬁﬁ-l-gcosﬂ—l-vAv

in which ¢ is the time, p the pressure, and A the
Laplacian operator. The equation of continuity is

du/oX + /oY = 0.

v v
9 T %ax

By the substitutions
w,v/a,, (z,y) =X, Y)/d,
pl = p/mziy T = tﬂu/d)

the equations of motion and of continuity can be
written in the following dimensionless forms:

(y, v) =

du, c'}ul ou, _ iy smﬁ
s tw Gt u Gl = AT g 3 du, ()

§ H, B. Squire, Proc. Roy. Soc. (London) A142, 621 (1933).
6 C.-S. Yih, Quart. Appl. Math. 12, 434 (1955).
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Wy W O s
T G g = ay+ +z )
"“‘+ 0. ©)
Let
=U+w, ov=29¢, p=P+9p, 10

in which U and P are the (dimensionless) velocity
and pressure of the primary flow, and the accented
quantities are the velocity and the pressure per-
turbations. Substitution of (10) into (5), (6), and
(7) yields

w + Uul + Up' = —p, + (1/R)Av’, (11)
vl + vl = ~p, + (1/R)AY, (12)
u, + v, = 0, (13)

if terms quadratic in the perturbation quantities
are neglected. In obtaining (11) and (12), the fact
that U and P satisfy (5) and (6) has been utilized.
The subscripts in (11), (12), and (13) denote partial
differentiation.

Equation (13) allows the use of a (dimensionless)
stream function ¢, in terms of which % and ¢’ can
be expressed as follows:

wo=, V= —y,.
Equations (11) and (12) can then be written as
Yoo + U¥ey — Ue = —p. + (1/R)AY,, (14)
Yoo + Uy, = —p; + (1/R)AY,.  (15)
The boundary conditions at the bottom (y = 1) are
@D =4y, =0, (i) v = —y¢.=0.

At the free surface the shear stress must vanish
and the normal stress must just balance the normal
stress induced by surface tension. Hence the bound-
ary conditions at the free surface are

I

(i) 2 % =0,
. 2 am) I *(nd)
(IV) ( pl R ay n+T aXz - O,
or
2 9, 'y T
p’+R6y+S6x2_ ! § = pdi2

in which %d is the displacement of the free surface
from its mean position. The free-surface conditions
must be applied at ¥ = 5, not at y = 0, because
the gradients of the shear stress and of the pressure
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of the primary flow at ¥ = 0 are not zero. Hence
(iii) and (iv) can be rewritten in the forms

(ii) (FU/dy")n + dy — ¥u = 0,
(ivy —P—Py—9p — 2/R),, + Sn.. =0,
which, apart from the terms containing 7, are now

to be applied at ¥y = 0. Since P(0) = 0, and
P,(0) = cos B/F®, (iv) can be written further as

(iv) (cos 8/F)n + p’ + (2/R)¥., — Sn.. = 0.

The (dimensionless) displacement n is related to
by the kinematic condition at the free surface

'—‘{'z = % + U’fz' (16)

As usual, a sinusoidal disturbance is assumed. If
the disturbance is in the form of a “cloud” vanishing
at *+ = =+, it can be expressed in terms of the
elemental sinusoidal disturbances by means of a
Fourier infegral. Assume

¥ =o(y) exp lialz —cn)], p’=1y) exp lialz —e7)],
an

in which « is the wavenumber defined by 2wd/X,
X being the wavelength, and ¢ = ¢, + ic;, ¢, being
the wave velocity and ac; being the rate of amplifi-
cation or damping. The kinematic condition at the
free surface becomes

1 = [¢(0)/c'] exp [ialz — ¢n)], ¢/ =¢c— %, (18)
and the equations of motion become
—iacg’ + 1aUs’ — ial’¢
= —iaf + (/R — a’¢)), (19
d'ep — o'Up = f* + (1I/R)(iag” — id’¢),  (20)

in which the primes now denote differentiation with
respect to y. If f is eliminated from (19} and (20)
by cross differentiation, the well-known Orr—Som-
merfeld equation results:

¢nn _ 2a2¢u -+ a*qS
= aR[(U — @ — o'¢) — U'¢].  (21)

The boundary conditions (i), (ii), and (ili) now
assume the forms

@ ¢ =0, 22)
(i) ¢(1) =0, 23)
(i) x(0) =¢”(0) + (@ — 3/c)(0) = 0. (29

The p’ in boundary condition {(iv) can be evaluated
from the second equation in (17), with f given by
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(19). The final form of the boundary condition (iv) is
(iv) 6(0) = [a(3 cot 8 + a*SR)/c'14(0) |
+ a(Be” + 3o1)¢’(0) — ip"'(0) = 0.  (25)

Equation (21) and the boundary conditions consti-
tute an eigenvalue problem. For a -nontrivial so-
lution, a relationship

c=c¢R,F,a
must exist between R, F, «, and ¢. This relationship
is complex, and ean be resolved into the relationships
¢, =¢(R,F,a), ¢ =c¢(R, F, ).
Since R, F, and the angle 8 are related by (6), on
putting ¢; = 0 the equation
c(R,F,a) = 0 (26)

defines a relationship between R and « for a given
value of 8, and the graph depiciting this relationship
is the neutral-stability curve.

III. SOLUTION FOR LONG WAVES

For wavelengths that are long compared with
the depth d, the wavenumber « is small, and a
solution of the differential system defining stability
by successive perturbation is possible. For the first
approximation, « can be simply set equal to zero,
and the differential equation becomes

7 =0, @n
with the boundary conditions
® o) =0, (1) (1) =0,

(i) ¢"(0) — 3/cN6(0) =0,  (iv) ¢"(0) = 0.

The differential system is indeed an extremely
simple one. Integration of (27) produces

¢ = A+ By + Cy° + Dy, 28)

and (iv) demands D = 0. Boundary conditions (i)
and (ii) then give
A4+B+C=0, and B+ 2C = 0,

or

C=A4, and B = —-24.
Then (iii) demands |

2C — (3/¢HA = 0.
Hence
¢ = 3.

¢ =14, or 29

Since the differential system is linear and homo-
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geneous, the eigenfunction is determined only up to
a multiplicative constant. We shall take A = 1.
The eigenfunction is then simply

o(y) =1 —2y+y =1 -y’ (30)

For the sake of clarity, this expression will be
denoted by ¢o(y) in subsequent approximations.

Equation (29) gives a value of ¢ which is  times
that of Benjamin. This is because the reference
velocity is taken to be the average velocity of the
primary flow in this paper (and in I), whereas
Benjamin uses the surface velocity of the primary
flow as the reference velocity. The present result is
therefore in agreement with Benjamin’s.

The opinion exists that there is a difference in the
results obtained, on the one hand, by putting « or
R equal to zero in the differential system and, on
the other, by allowing « and R to vanish in the
expression for ¢ laboriously obtained from the
original, unsimplified differential system. Now the
differential equation retains its order when either «
or R vanishes. The eigenfunction is an entire func-
tion of @ and R, as can be seen by solving (21) by a
power series and considering its convergence for
finite @ and R, and as the boundary conditions
are not singular in « or R if they are finite. Hence
the aforementioned opinion has no foundation
whatever. The case of infinite Reynolds number,
which has occupied the attention of researchers for
almost exactly three-quarters of a century, is quite
another matter, for if R is set equal to infinity to
start with, the order of the Orr-Sommerfeld equa-
tion is reduced by two. Hence the stability or
instability of flows at large Reynolds numbers
cannot be settled by considering an inviscid fluid.
The opinion mentioned above results perhaps from
a lack of understanding of the difference between the
classical case of large Ryenolds numbers and the
case under study in this paper.

Equation (28) shows that the axis o = 0 is a part
of the neutral-stability curve, whatever the angle 8,
the surface tension, and, indeed, the Reynolds
number. It is a valid approximation for small values
of & so long as aR is small, even though E may be
large. The next step is to see how the eigenvalue ¢
will be modified as « departs from zero. We note
that terms of first power in « are associated with
R, and that if ¢ in

WaR[(U — @’ — &’¢) — U]

contained the first power in « that expression
would contain second powers in «. Since our first
approximation for ¢ is entirely independent of «,
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power in o« if we use in it the first approximation
for ¢ we have just obtained, as we shall. Hence it
is inconsistent to include the term —2a’p”, let
alone the term o'¢, in the second approximation.
Terms containing o” are also to be neglected in the
boundary conditions (24) and (25). However, the
term with the factor o’SR in (25) need not be
neglected, because S appears here and nowhere
else, and the inclusion of it will not lead to an error
in the term containing S. With these considerations
in mind, and with ¢ given by (30) denoted by ¢,
the differential equation for the second approxima-
tion is

#""" = aR((U = cé§’ — U,

and the boundary conditions are

@D

@ o1 =0, () ¢'(1) =0,
(i) ¢"(0) — (3/c)¢(0) = 0,
and
(iv) [«(3 cot B + &’ SR)/cilp(0)

+ aReipo(0) — i¢""(0) = 0.

Note that in (31) and in (iv) above, c¢j(=2, given
by the first approximation) and ¢, are used for ¢
and ¢, because the use of ¢ and ¢ would only intro-
duce terms of a higher order in «.

Now

(U — o)’ — U''¢o
= =30+ 1) + 30 — y)* = —6y.
Hence the solution of (31) is
¢ = ¢o + &1,
¢ = —(iaRy’/20)
4+ A4 4 ABy + ACY + ADy.  (32)

In the second of Egs. (32), the term involving « is

the particular solution, and the rest constitutes the

complementary solution, necessitated by the inclu-

sion of the first-power terms in « in the differential

system. '
In view of the fact that

¢5'(0) — (3/ch)do(0) = 0,
the boundary condition (iii) can be written as

¢1"(0) — (3/c)¢:(0) + [3Ac¢’/(ct)’1po(0) = O,

or

17(0) — 2¢,(0) + 54" = 0.
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Substitution of (32) into the boundafy conditions
yield, after rearrangement and some simple divisions,

AA 4+ AB + AC + AD = 1aR/20, (33)
AB + 2AC + 3AD = }ieR, (349

AC — AA = —3Ac, (35)

AD = —3%ia(3 cot 8 + a’SR) + %iaR. (36)

If (33), (35), and twice of (36) are added together,
and (34) is subtracted from the result, all the A
quantities disappear, and we have, after simpli-
fication,

6aR 3 cot 8 + azsR)'
5 3

A =i, ¢ = 37
Comparison of this result with Benjamin’s® Eq.
(5.3) shows that the difference is only in a factor 3,
arising from the different choices of the reference
velocity. In other words, using a power expansion
in «, which is analogous in approach to the power
expansion in aR used in I, results identical to
Benjamin’s are obtained by taking only two terms
(¢0 and ¢,) in the expansion. Higher approximations
can be carried out if desired. The two approxima-
tions cannot, and did not, take more than two hours
to accomplish at the most. The method is really
very simple and useful.

The eigenfunction for the second approximation
will now be discussed. The left-hand sides of (33),
(34), (35), and (36) are not linearly independent.
In fact, with ¢; given by (37), these equations are
not linearly independent. We can, then, assign
any value to AA and calculate AB and AC, with
AD given by (36), whatever the value of A4. The
results are

AC = —‘—236—’"+ Ad,
AR = B _

12¢;
20 AD + 3 2AA4.

Thus the terms in ¢, involving AA are
AAQL — ),

which is proportional to ¢,. We shall therefore
take AA to be zero, for otherwise we should be
starting another first approximation at the stage
of the second approximation. Whereas this would
not affect the ¢; obtained, it is quite unnecessary.
Another point of view is as follows. An eigen-
function is determined up to a constant multiplier.
This multiplier was chosen once and for all when
we chose 4 to be unity. In fact, the successive
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approximations, with AA = 0, furnish more and
more aceurate eigenfunctions and eigenvalues which
satisfy the differential system more and more
closely, and that is all that is desired. In the follow-
ing section dealing with small Reynolds numbers
(but any wavenumber, large or small), the same
approach will be used. We shall simply take AA to
be zero without further explanation.

Equation (37) shows that, while ¢; is zero at
a = 0, o; will increase or decrease when «a increases
from zero, according as

R>%cotp or R < &cotp.

In other words, the neutral-stability curve has a
bifurcation point at

R = t38)

at which a branch goes off from the axis « = 0,
which is itself a branch of the neutral-stability
curve. This consideration contributes to the quali-
tative description of the ¢; curves given in Fig. 2.

The value B = § cot 8 was given by Benjamin
as the critical Reynolds number. This is, however,
the Reynolds number above which some disturb-
ances will be amplified. It is not the Reymolds
number below which all disturbances will be damped.
As has been seen, for @« = 0 neutral disturbances
exist right up to B = 0, even if 8 is less than ix
(so that the plate is not vertical).

a =0, £ cot G,

IV. SOLUTION FOR SMALL REYNOLDS NUMBERS

For the case of small Reynolds numbers and any
«, the first approximation will be carried out by
taking R to be zero to begin with. The justification
of this procedure is similar to that given for the
case of small a, and need not be repeated here.

To avoid confusion in regard to the term con-
taining SR in the boundary condition (iv), we
note that

SR = T/ua,,

which will be denoted by S’, to avoid the impression
that it must be zero when R is zero. Since 4, will,
for any given u, approach zero as R approach zero,
this term may seem troublesome. From the second
of (4) it can be seen that for given values of ¢, d, 8,
and p, pi, is finite. If u is very large, 4, will be
very small, and the Reynolds number very small.
In the limit it ean be zero. Hence it is not meaning-
less to consider the case of small Reynolds numbers
and zero Reynolds numbers, even if the surface
tension 7' is not zero. Actually wi, may be very
small. So long as it is not zero, which it is not
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unless d = 0, it causes no trouble. If T is assumed
to be zero, the term containing SE in (iv) will of
course drop out.

Setting R equal to zero in the differential system,
we have

¢/n/ - 2052¢” + a4¢ — O, (39)
with the boundary conditions (22), (23), (24), and
(iv)  —[ia(3 cot B + o8")/c'16(0)

+ 34%/(0) — ¢/(0) = 0. (40)
The solution of (39) is
¢ = e*’ + Be ™ 4+ Cye™ -+ Dye™ ™, (41)

in which the coefficient of the term ¢*’ has been
taken to be unity, because the eigenfunction can
be multiplied by any constant. Equation (24)
demands

(20" — 3/¢")(1 + B) + 2¢(C — D) = 0.
Equation (40) yields
—i(3 cot B + *S")(1 + B) + 24°¢'(1 — B) = 0,

or

(42)

—4(3 cot B + o’S’) + 2a°¢’

B="Geotp T8 + 2277 *
Equations (22) and (23) have the forms
e 4+ Be™® + Ce® + De* = 0, (44)

and
ae® — Boe™® + C(1 + a)e® + D1 — a)e* = 0. (45)

Since B is known, (44) and (45) can be solved for
C and D. The results are

D = —(1/20)[¢* + B + 2a)], (46)
with B given ‘by (43), and
C=—-1—-¢e%B+ D), 47)

with B and D given by (43) and (46). On the other
hand, C is given by (42) to be

C = D — (1/2a)(2¢" — 3/¢')(1 + B).

Equating the two expressions given for C, we can
solve for ¢/, since B and D are known. The result is,
after some intermediate calculation which is entirely
straightforward,

o 1
€ =T 1 F cosh 2a + 247
-P+§£%?E@@mw+fm](w
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Now, for small ¢,
(2a — sinh 20)/2¢° = O(w).

Hence at « = 0 we have again ¢’ = %, in agreement
with (29). Since sinh 2o > 2a for all &« > 0, the
flow is always stable at B = 0 for all nonzero
wavenumbers if cot 8 is positive (i.e., if 8 < %),
as can be seen from (48). As a increases the stabiliz-
ing effect of the slope becomes less and less im-
portant as compared with the surface-tension effect,
as is to be expected. When o — =,

¢ — —48, or ¢c— % — 18, (49)

Thus, for 8’ = 0, ¢ = £ at « = . This fact and
Eq. (70), to be presented, contradict Benjamin’s
(estimated) neutral-stability curve for S8 = 0
(corresponding to his { = 0), drawn at « = 0.43
approximately. Benjamin stated that the region
lying above that curve represents stability. Ben-
jamin’s dashed line, meant to be a rough estimate
only, was unfortunately taken seriously by some
researchers, who have produced a neutral-stability
curve of similar trend with a high-speed computer.

The neutral stability at & = O for zero surface
tension 7 is of course a puzzling situation.
Benjamin has carefully avoided the discussion of
this limiting case, and restricted his discussion to
values of R other than zero. In a note appended
to his paper, the present author has sought to
explain this puzzling situation. A fuller explanation
will be given here. Since ¢ is expressed in terms of a
reference velocity (in the present paper and in I,
in terms of 4,), and this velocity is zero if d/» is
not zero and if K vanishes. Hence if ¢ is equal to a
finite number the real rate of damping, —aci,/d,
is zero, and the disturbance will not be damped
out. But now if d/» is finite, @, can be zero only if
g sin B is zero, in which case gravity is not a source
of energy. There is no pressure gradient in the X
direction, and since T is zero the surface tension
does not enter into the question. (Since the mean
surface is flat, any corrugation would mean an
expenditure of surface energy, even if S’ is not zero.)
How could a disturbance motion be maintained?
The answer is that, for 7 = 0 and any «, in the
limiting case of R = O there is no disturbance
motion, but merely a surface corrugation, which
has no reason to be damped. Benjamin’s contribu-
tion is that in the neighborhood of this case of static
corrugation there are unstable waves.

In the second approximation we shall concentrate
on the case 8 = im and S’ = 0, because if these
conditions do not exist (47) already tells us that
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the flow will be stable for all nonzero values of «
at B = Q. The first approximation indicates that
the axis R = 0 is a part of the neutral stability
curve if cot 8 and 8’ are all zero. It is important to
see whether the flow will be stabilized or destabilized
as R is increased slightly.

The development in I is exactly what is needed
for the second approximation. Denoting by ¢, the
¢ given by the first approximation, i.e., by (41),
(43), (46), and (47), the ¢ for the second approxima-
tion must satisfy

¢IIII _ 2a2¢” + a4¢

= aR[—(3y" + D)@}’ — o'do) + 3¢0]. (50)
Now, with cos 8 and S’ both zero,
do =€ + e % — (1/20)(2a — 1 — e >%)ye™
+ (1/20)(—2a — 1 — &**)ye™**, (51)

as can be seen from (41), (43), (46), and (47).
We shall call the particular solutions of (50)
aR (11, 12y d1s, b14) When e®*, 7%, ye™, and ye™**
are substituted for ¢, in (50). Then the solution of
(50) 1s
¢ = ¢o T taR¢, + ABe™ 4 ACye™ + ADye **, (52)
with
¢1(y) = ¢11 + P2 — (1/2&)(2& - 1= e—2a)¢13

- (1/20)2a + 1 + €“)¢s.  (53)
In (52) AA has been taken to be zero, for reasons
given in Sec. III. The functions ¢.;, ¢12, d13, and ¢y,
were given in I, in which it is also stated that
these can be expressed in terms of exponential
functions. [The expression for ¢,, contains a mis-
print of a sign. The parenthesis (3 — 2ay) should read
(8 4+ 2ay). The expression given for ¢;,(¢;” in I)
later in I is in agreement with the correct sign.]
These are
dule, ) = (3/16a)[(3 — 4oy + 20°y")e™

— 3+ 2™,

¢12(a7 ?/) = ¢11(_a; y))
duisla, ) = —(Bct/8c")[(B — day + 2a°y%)e™’

— 8 + 2ay)e” ]
— (1/32°)[2*y* — 122°%° + 30a°y°
— 420y + 27" — (12ay + 27)e” *"], (56)

dula, y) = dis(~a, y). (67)

Since the derivatives of these functions are also
needed, they will also be given. These are

(54)
(55)
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¢hile, ) = (3/162")[(—1 + 2a’y")e™

, + (4 + 2ay)e”™™],  (58)
olo(e, ¥) = ¢l:i(—a, ), (59)
¢lsle, y) = —(ct/8)[(—1 + 26"y")e™”

4+ (1 + 2ay)e "]

~ (1/32a")[2a'y* — 4a®y® — 6a°y°

+ 18ay — 15)e™ + (15 + 12ay)e™**], (60)
¢lsla, y) = ¢ls(—a, y). (61)

Although the second and third derivatives of ¢
occur in the boundary conditions (iil) and (iv),
we need not give them for the functions given by
(54), (55), (56), and (57). This is because these
functions have been so arranged (by adding linear
combinations of the complementary solutions) as to
contain no power of y less than the fourth. Hence
these functions and their derivatives up to the
third ones all vanish at y = 0, where (iii) and (iv)
are to be applied.

With ¢ given by (52), the boundary condition
(iii) given by (24) assumes the form

(2a® ~ 3/c) AB + 20AC — 2aAD + 6Ac/cl’ =0, (62)

if terms quadratic in R and the A quantities are
neglected. In (62) the last term comes from the varia-
tion of ¢’. In obtaining it the facts that ¢,(0) = 2
and that Ac’ = Ac bave been used. Also, ¢,(0) = 0,
as explained before, so that ¢, does not appear in
(62) at all. The ¢} in (62) is the ¢’ given in the first
approximation, by (48), with cot 8 and 8’ equal
to zero. Hence

3
’ —
® = 1+ cosh 2a + 247’
and
2 3
20" — 7= ~(1 + cosh 2a). (63)
0
The boundary condition (iv) has the form (since

irand 8’ = 0)
a(Re’ + 3oi)9’(0) — i¢’’’(0) = 0.
Substitution of (52) into it yields, in the same way,
AB = (iRc}/20")(2c + sinh 2a). (64)

The boundary conditions (i) and (ii), given by (22)
and (23), have the forms

e “AB + ¢*AC + ¢ “AD = —iRa¢y(1),  (65)
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—ae” “AB + (1 + a)e"AC 4+ (1 — @) *AD

= —iRog{(1), (66)
from which
2aAD = iRae® (¢, (1) — (1 + a)¢,(1)]
— (1 + 20)AB,  (67)
and
—2aAC = iRae *[pl(1) — (1 — a)¢y(1)] — e >*AB.
(68)

Substituting (63), (64), (67), and (68) into (62), we
have, after some simplifications,

Ac = LiRey {(ch/2°)(2a + sinh 2a)
-(cosh 2a — 20 — €7°%)

+ 2afcosh a ¢{(1) — (cosh & + a sinh )¢ (1)1}, (69)

with ¢, and ¢! given by Eqgs. (53) through (61).

For very large «, a brief calculation shows that

iRel’ (3&“) _19Re "
6 \16a* 8a*

Ac ~ (70)

and
¢c; >0 as a— »

in the neighborhood of B = 0. (Indeed R must be
s0 small that «R is kept small as « increases.)
Equation (70) means that if a is very large, c;
is very small. For intermediate values of e« it is
well nigh impossible to determine the sign of the
bracket in (69) algebraically. A numerical compu-
tation” has not turned up any negative or zero
value for ¢; for a from 0.2 to 4.0. The fact that
de/dR is nowhere zero for finite values of a indicates
that a bifurcation point, such as the intersection
of the dashed line and the axis B = 0 in Benjamin’s
Fig. 2, of the neutral-stability curve cannot exist
on B = 0. This seems to rule out the possibility
that the dashed line of Benjamin's Fig. 2 divides
two regions of instability, and merely marks a
valley of least o;, which happens to be zero.

The second approximation carried out here shows
that the expansion in I is useful and capable of
producing definite results when only two terms in
the expansion are used. Actually, Benjamin’s ex-
pansion in power series of y and the expansion
used in I and the present paper are identical and
will produce the same results provided a very great
number of terms are used in both expansions. If
only a limited number of terms are taken, then
the method presented here is more flexible and

7 The author is indebted to Philip Davis for the assistance
rendered in this computation.
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versatile. It produces identical results as Benjamin’s
for small «, and for small R (but any «) it produces
results hitherto unavailable.

V. STABILITY OF VERY SHORT WAVES

If « is very large, then for any finite R, the Orr-
Sommerfeld equation can be approximated by (39),
provided ¢ is small compared with «. This provision,
of course, can only be verified a posteriors. Since
the boundary conditions will then be exactly those
used in the first approximation carried out in
Sec. IV, ie., (22), (23), (24), and (40), the result
is known and exactly given by (48), which shows
that ¢/ — —L1i8 as a — «. Since 8’ = T/ud,,
very short waves are damped by surface tension
T, and can only be neutral if T is zero, or if ui, is
infinite. For any given T the dimensionless rate of
damping is decreased if u#, is increased. Since the
complex wave velocity ¢ has been expressed in terms
of 4,, so that aoc,i,/d is the actual rate of growth
(and if negative, of damping), the result ¢; = —38’
shows that the actual rate of damping of very short
waves is reduced in magnitude if g is increased,
for any T. This result is entirely unexpected, and
is a new example of the dual role of viscosity. Of
course, increasing u can never bring about in-
stability. But it does reduce the degree of stability
at large wavenumbers.

VI. TOPOLOGICAL FEATURES OF THE c¢; CURVES

From the foregoing discussions the following facts
have been established:

(1) The axis @ = 0 is always a part of the neutral-
stability curve.

(2) There is a bifurcation point on @ = 0 for the
neutral-stability curve, at B = £ cot 8. This point
is at the origin if 8 = 3.

(8) The axis R = 0 is part of the neutral-stability
curveif T = Oand 8 = ir.

(@) T =0hbut B # jm c; varieson B = 0,
from zero at « = 0 through a minimum to zero
again at o = .

(B) If T 2 0but 8 = 3m, ¢; varieson B = 0
from zero at a = 0 monotonically to —%8’ at
The monotonicity can be established
readily by differentiating c¢; given by (48) with
respect to @. The result is (for B = 0)

de; _ 1
do 2a*(1 + cosh 2a + 2a°)°

- [4a*(cosh 2a + 1)(3 cot B + &°S’)
+ 6a(2a — sinh 2a)(1 + cosh 2a + 2&°) cot 8],

which is evidently negative if

o = @,

= ir.
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F1a. 2. Topologi-
cal features of the
¢; curves for the
case 8 = 0 and
=0 B = ix. The axes
constitute the neu-
tral-stability curve.

Unsiable

<=0

6) If T 0 and B = 1w, the expression for
do;/da at R = 0 shows that de;/da = — cot 8 at
a = 0, so that, with 8 < %, ¢, will initially de-
crease on B = 0. But it is evident that as « increases
(on R = 0) do;,/da will eventually be positive.
Hence ¢; will have at least one minimum on B = 0.
(More than one minimum is very unlikely, al-
though a conclusive algebraic proof that only one
minimum exists is not obvious.) We shall assume
that only one minimum exists.

(7) At large ¢, for any given 8 and R, ¢; =

From these facts we conclude that the topologi-
cal features of the ¢; curves are given in Figs. 2-5
for the four cases described in the figure captions.
It can be seen that the neutral-stability curve
given in I for the case 8’ = 0 and 8 = %= is more
a curve of constant nonzero ¢;. The numerical
calculation in I was, however, too inaccurate, and
produced erroneous values for ¢,, which did not
seem to affect the conclusion that instability.could
happen at low Reynolds numbers.

Figures 2-5 are the simplest configurations that
can be constructed with the information available.
If new information should turn out to show that
these figures are incomplete and oversimplified,
the information upon which these figures have been
drawn, wherever definite, should not be subjected
to doubt.

—1Q
20 .

VII. EFFECTS OF VARIABLE SURFACE TENSION

In case there is a thin film of contamination at
the free surface, the surface tension may vary from
place to place, giving rise to a variable shear stress
just below the film. If the surface tension at the free
surface when the film is unstretched is 7, and the
variation from this is proportional to the amount of
stretching per unit length in the direction of stretch-
ing, then

T=7T,4+T 0¢0X,

in which ¢ is the distance in the direction of stretch-
ing (assumed to be the X direction) covered by a
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certain particle, and T, is a second constant speci-
fying the variability of surface tension. This vari-
ability has no effect on the boundary condition (iv),
but does have an effect on the boundary condition
(iii). Since

Dg/Dt = a4 + a4,

we have, on the free surface,

where
D _a D - _ o, - _ .y ia{z—cT
Z_)§=%D—f=u+uau=u+ua¢'(0>e ( )'
Thus

£ = (id/ac)¢'(0)e’ """, ¢ =¢c— U = ¢ —
Now the variation in r,, on the free surface is

_ﬂ — _ZZI_ i_‘b,(o) ta(z—er)
aX ad 3° ¢ °

Dl

iaTl ¢’(O) eia(:c—cf)
d ¢ )
Hence (iii) has the form

(ii)  ¢"(0) + (o — 3/cN$(0) + @S, ¢'(0)/c’ = 0,

in which
S = Tl/ Wi, .

Since the additional term involving S, is associated
with «, it has no effect on the first approximation
for @ = 0. It does have an effect on the next approxi-
mation for ¢;, which determines the stability condi-
tion, and also on the first approximation for B = 0.
It is calculable by the method given in Sec. III.
The author is indebted to Dr. T. B. Benjamin for
pointing out the factor ¢/a in &, which was missing
in the first draft.

VIII. VESTIGES OF SHEAR WAVES

The waves discussed so far in this paper are
surface waves. Since they can occur at small
Reymnolds numbers and are only moderately damped

T

Fi1g. 3. Topologi-
cal features of the
¢; curves for the
case S = 0 and
B < 3r.R =5/6
cot B at the bifur-
cation point B.
¢i =0ona = 0.
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or amplified at small values of Ra, they may be
called soft waves. These are distinct from the
ghear waves, or hard waves, in plane Poiseuille flow
and other confined flows, which are highly damped
at small values of Re. But it does seem strange that
the existence of a free surface should remove the
possibility of shear waves altogether, particularly if
the surface tension is large, so that the free surface
is rather stiff against corrugation. Where are the
vestiges of shear waves? In providing the answer
that they are there, we shall also illustrate how to
make the correct approximation to the mathematical
system to be solved, gain a deeper insight into the
fine structure of an arbitrary disturbance possessing
different components (each represented by an
eigenfunction of the differential system governing
stability), and demonstrate that the differential
system has infinitely many eigenvalues for ¢ for
given values of R and o.

We deal with shear waves of plane Poiseuille
flows for three cases:

(1) Small Reynolds number for any «,
(2) Small wavenumber for any finite R,
(3) Large wavenumbers.

In each case it is shown that the waves are
strongly damped. We then take up the shear waves
in the film flow under study in this paper, deal with
the same three cases, and show that the waves are
again strongly damped, thus demonstrating the
vestiges of shear waves in film flow. After all, the
film flow is one-half of a plane Poiseuille flow, and if
these vestiges could not be found it would be very
strange indeed.

Tor plane Poiseuille flow, the differential equation
is still given by (21), with U given by (3), except
that U isnow defined in —1 < y < 1. The boundary
conditions are

(1) = 0, ¢’(+1) = 0.

It is well known that if the differential system

F1c. 4. Topologi-
cal features of the !
¢y curves for the «
case 8" # 0 and 7
B =13r.¢; =0o0n
a = 0. ¢; curves
flatten and c¢; ap-
proaches —3S’ as
« increases 1ndefi-
nitely.
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[

Unstable Q

5=0
R

Fia. 5. Topologi-
cal features of the «
¢; curves for the
case S8’ = 0 and
B < 3w.e; = 0on
a =0.¢;— —3}8
asa— o B =5/6
cot 8 at the bifur-
cation point B.

governing stability is entirely symmetric, so that it
admits of an odd function of ¥ or an even function
of y as a solution, the secular equation for any so-
lution, which is neither even or odd, is factorizable
into two factors, one of which is for the odd part of
the solution and the other the even part. Hence
even and odd solutions can be treated separately.
In general, they have different eigenvalues.

Case 1. For small R, assume that K¢ is not small.
This is important, for otherwise ¢ would drop out
of the differential system altogether in the limiting
case of B = 0, and the differential system could not
have any nontrivial solution. For any «, the differ-
ential equation can then be written as

(D* ~ g)D* ~ o9 = 0, (7D
in which D = d/dy, and
g’ = o’ — iaRe. 72)
The even solution is
¢ = A cosh ay + B cosh By. (73)

The satisfaction of the boundary conditions demands
A cosha -+ B cosh 8 = 0,
Aa sinh « + B8 sinh 8 = 0,
so that the secular equation is

B tanh 8 = « tanh a. (74)

The solution 8 = « is to be excluded, because in the
first place it violates the assumption Re = 0, and
in the second place the solution (73) would be
invalid f 8 = «. But there are infinitely many

- solutions of (74). Let 8 = vi. Then (74) becomes

v tanvy = —atanha, (75)

the solutions of which are the abscissas of the
intersections of the curves

T'=tany and I = —atanha/y
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in the v-T plane, and are infinite in number, at a
distance of = apart asymptotically. Let these real

solutions of v be denoted by v, (n = 1, 2, --:).
Then
iaRe, = o + 72,
and
¢ = —(i/aR)@ + 72, (76)-.

giving infinitely many eigenvalues of ¢, all corre-
sponding to high rate of damping since R is small.
The rate increases in magnitude as n increases.
Note that as n increases v, also does, so that
cosh B,y (= cos v,y), hence ¢, is more and more
oscillatory. That a more and more oscillatory dis-
turbance will be damped faster and faster is quite
to be expected.
The odd solution is

¢ = A sinh ay -+ Bsinh 8y,
with the secular equation
8 coth 8 = « coth a.

Again the solution 8 = « is to be excluded. The
other solutions are found again by putting 8 equal
to vz and solving

@7

for v. The solutions can be obtained by finding the
intersections of

v coty = a coth «

I' = coty and T = « coth a/vy.

Then again ¢, is given by (76). The v’s are infinite
in number, asymptotically at distance = apart, and
asympotically at the distance iz from the roots of
(72). The v, for even ¢ is smaller than v, for odd ¢
if « is large (by a little less than Zr in fact), but the
reverse is true if o is small. The infinity of the
number of eigenvalues has now been amply demon-
strated. Note that the assumption that Ro is not
small has been justified a posteriors.

Case 2. If o is small, we shall assume that ac is
not small. The differential equation can then be
written as

@' + daRed’’ = 0. (78)
The even solution is
¢ = A + B cosh By,
with 8 now given by
B8 = —iaRe. (79)

The boundary conditions ¢’(£1) = 0 give, with-
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out the conjunction of the other two boundary
conditions,

sibh 8 =0, or B = nri.
This gives
¢ = —(i/aR)(nx)’.
The odd solution is
¢ = Ay -+ Bsinh 8y.
The boundary conditions demand
A 4 Bsinh 8 = 0,
A+ BBcoshg =0,

(80)

sd that
Bcothg = 1.

There are no real solutions of this equation except
8 = 1, which is to be excluded. But, with 8 = ¢,

yeoty =1, (81)
the solutions of which are®
vi= 44934, 4, = 7.7253, vy, = 10.9041,
v. = 14.0662, vs = 17.2208.

Further roots are at distance = apart, approxi-
mately. In this case it is evident that antisymmetric
disturbances (even ¢) are less stable than symmetric
ones (odd ¢).

Case 3. If a is large, we assume o is at least of
the order of @. The governing equation is again (71),
and the eigenvalues are given by (76), with =,
given by (75) for antisymmetric disturbances and
by (77) for symmetric disturbances. Since « is large,
the v, for antisymmetric disturbances (even ¢) is
approximately

Y. = 32n + D, (82)
and the v, for symmetric disturbances (odd ¢) is
(83)

so long as n is not too large for either case. When n
is large, the eigenvalues v for even ¢ are still at
distance = apart approximately, but there is a
forward ‘“phase shift” of 3 from the values given
by (82), whereas those for odd ¢, also at distance
= apart approximately, undergo a backward ‘‘phase
shift” of 3= from those given by (83).

We have now dealt with plane Poiseuille flow,

Yo = 0T,

¢ H. 8. Carslaw and J. C. Jaeger, Conduction of Heat in
Solig..; (Oxford University Press, New York, 1959), 2nd ed.,
p. 492.
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and shall turn our attention to the free-surface
flow under study.

Cases 1 and 8. Due to the complexity of the free-
surface boundary conditions, a simple, explicit
solution for the eigenvalues is not possible for
these two cases, although the solution of the differ-
ential equation is itself simple and explicit. For
small B or large «, we shall use the method of
Synge.® It turns out that a single demonstration is
sufficient for these two cases.

Again, if R is small, we assume Rc is not small,
and if « is large, we assume ¢ is at least of the order
of a. These assumptions can be verified a posteriors.
In either case the governing differential equation
is (71), or

(D* — &)’ = —iaRe(D* — o)é. (84)
The boundary conditions are (22), (23),
(i) ¢"'(0) + o'¢(0) = 0, (85)

and (25). In (25) the first term can be neglected.
If R is small and Re not small, ¢ and hence ¢ must
be large in magnitude, hence the first term can be
neglected. (Otherwise the term SR is not necessarily
negligible, even if R is small; see Sec. IV for ex-
planation.) If « is large and if ¢ (hence ¢’) is at
least of the order of «, | ¢’ | is at least of the order
o |¢| and |¢”’| at least of the order &® |¢|. Hence
again the first term in (25) can be neglected. How-
ever, since it causes no trouble to keep it, we shall
do so, and verify the negligibility of the term after
the final result has been obtained. Since in both
Case 1 and Case 3 ¢ is very large, ¢’ in (25) will be
replaced by o.

Multiplying (84) by ¢*, the complex conjugate of
¢, and integrating the result (by parts if necessary),
we have, with the aid of the boundary conditions
(22) and (23),

—¢*(0)¢"""(0) + ¢"*(0)¢""(0) + I.
+ 2a2¢*(0)¢’(0) + 24°I t o'l 0
= —iaRe[—¢*(0)¢'(0) — I, — a’L,],  (86)

in which
1 1 1

L=[ WPay, I=[ W&Fay, L=[ 6] d.
0

By the use of (85), (86) becomes

¢ C. C. Lin, The Theory of Hydrodynamic Stability (Cam-
bridge University Press, New York, 1955).
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taRe(Il, + o’1) = I, + 2071, + «'I,
— 1¢*(0) {akeg’ (0) — i¢""’(0)
+ 130’9’ (0) + [«(3 cot 8 + o’ SR)/clp(0)}
— ' [3"*(0)p(0) + ¢'(0)¢*(0)]
+ [ia(3 cot B + o’ SR)/c] |$(0)[*.

Since ¢ may be replaced by ¢ (because both are
large, so that the difference % is unimportant), the
first curly bracket in (87) is the left-hand side of
(25), and is zero. Hence

(87)

iaRe(I; + o’I,) — [ia(3 cot B + o’ SR)/c] |¢(0)[*

= I, 4+ 2°I, + o’'I, — o’ [¢"*(0)3(0) + ¢'(0)¢*(0)].
But
¢"*(0)¢(0) + ¢’(0)¢*(0)

I

2 f l¢'* dy + fa @""*6 + ¢'¢*) dy

I

2 + [ @ + o6 dy.
Hence

taRe(I, + o’I,) — [a(3 cot B + o’SR)/c] |$(0) ]

L= o f @'"*¢ + ¢''¢*) dy + o'I,

I

[ 17 = @l ay. )

The right-hand side of (88) cannot be equal to
zero, for otherwise
¢ ~ a'¢ = 0,
and
¢ = A cosh ay + Bsinh ay,

which cannot nontrivially satisfy ¢(1) = ¢'(1) = 0.
Hence the last integral of (88) is positive definite.
Taking the real part of (88), we have

(3 cot B + &’SR)
le|* R

—aRc,-[Il + oI, + l¢(0>l2]

1
= f 6" — ¢[" dy > 0,
0

which proves that

(1) ¢ is negative;
(2) if R is small, the term containing |¢(0)|®
is negligible, as expected, if Re¢ is assumed not small;

(3) if that term is neglected then Ro is not small,
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as was assumed, hence, there is at least consistency
in the assumption;

(4) if « is large, the right-hand side is of the order
o* |¢|°, the left-hand side of the order Re;0® ||’
hence ¢; = O(a), as assumed, and the term con-
taining |¢(0)|® is negligible, as expected.

The development shows rather convineingly that
for small R and large o, there are highly damped
modes. These modes are the vestiges of shear waves.
They may be overshadowed by surface waves, but
they are there.

Case 2. For small « we can obtain sharper results.
Under the assumption that ac is not small, the
differential equation ean be written as

¢ + daklep’’ = 0,
the solution of which is
¢ = A + By + C” + De™™,
with
8 = —iaRe.

The boundary conditions (iii) and (iv) are

¢"0) =0, F¢'0) —¢"'(0) =0,
from which
= —D, B = —48D.
The boundary condition ¢'(1) = 0 gives
B = 28 cosh 8D.

" Since 8 has been assumed to be different from zero,
the two evaluations of B give

cosh 8 = —2.

The boundary condition ¢(1) = 0 can be used to
evaluate A in terms of D (say), and is not needed
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to arrive at the secular equation. Thus
8= cosh™ 2+ 2n + Dni
and
—iaRe = (cosh™ 2)° — (2n + 1)'2°
+ #2(2n + 7 cosh™ 2,

with » any integer, positive or negative. Breaking
this into its real and Imaginary parts, we have

aRe; = (cosh™ 2)° — 2n + 1A,
aRe, = —2(2n + D cosh™ 2.

Since cosh™ 2 = 1.32 approximately, ¢; is always
negative, and very large in magnitude when o« is
small. Since « is always assumed positive (because
the results are unchanged if « is negative) and n
may be positive or negative, the waves can propa-
gate both upstream and downstream, and if they
propagate with the same speed they are damped
equally fast. Note again that as [2n + 1] increases
the eigenfunction has more and more oscillations in
0 £ y < 1. It is therefore not surprising that the
pertinent waves are damped faster and faster. We
have now shown that the shear waves are indeed
there, though it is the surface waves that govern
stability.

We conclude with the warning that although
surface waves have been shown to govern stability
at small Reynolds numbers, it has not been con-
clusively shown that for very small 8 (so that & cot 8
is large) shear waves do not, after all, govern the
stability of the flow.

i
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