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a relationship which has been checked experimentally 
by Miller.12 In those cases where the above interfacial 
tension inequality is violated, so that lens formation is 
impossible, two limiting cases arise. When 1'1 Ill> 1'1 II 

+'YII III the middle phase spreads out as a film, while 

12 N. F. Miller, J. Phys. Chem. 45, 1025 (1941). 
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for I'll III> 1'1 n+'YI III the middle phase forms a 
globule which fioats by buoyancy.13 

Thus, it is seen that even simple applications of the 
Neumann formula provide a thermodynamic founda­
tion for various phenomena encountered in surface 
chemistry. 

13 W. M. Coghill and C. O. Anderson, U. S. Bureau of Mines, 
Technical Paper 262 (1923). 
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The theory of hindered rotation has been applied to the type of 
asymmetric molecule in which the hindering barrier is high enough 
so that the hindered rotation splittings of the energy levels are 
small compared with the rotational energies but yet large enough 
to be observable in the microwave spectrum. The specific type of 
molecule considered consists of a rigid asymmetric component 
which may undergo a hindered rotation about the symmetry axis 
of a rigid symmetric component where the symmetric component 
is in addition assumed to have threefold symmetry and the 
asymmetric component at least a plane of symmetry containing 
the symmetry axis of the symmetric component. An example might 
be the acetaldehyde molecule, CH3CHO. 

In principle, the theory developed by Burkhard and Dennison 
can be used directly but in practice the method is difficult to apply 
to such a molecule since the matrix elements of the Hamiltonian 

INTRODUCTION 

I N a series of papers from this laboratoryl-3 the theory 
of hindered rotation has been developed and applied 

to the methyl alcohol molecule, CHaOH. The details 
of the methyl alcohol spectrum are influenced very 
markedly by the fact that the molecule is a nearly sym­
metric rotator in which the potential barrier hindering 
the internal rotation is a relatively low one. The prob­
ability of the tunneling process associated with the 
hindering barrier is such that the hindered rotation 
splittings of the energy levels are of the order of magni­
tude of the rigid rotator energies themselves and much 
greater than the asymmetry splittings of these levels. 

In the present paper the theory of hindered rotation 
will be applied to a type of molecule falling into a some­
what different category, namely an asymmetric mole­
cule with a relatively high potential barrier in which the 
hindered rotation splittings are small compared with 
the rotational energies but yet large enough to be ob-

* The preparation of this manuscript was supported by Contract 
Nonr-1224(15) between the Office of Naval Research and the 
Engineering Research Institute of The University of Michigan. 

1 J. S. Koehler and D. M. Dennison, Phys. Rev. 57, 1006 (1940). 
2 D. G. Burkhard and D. M. Dennison, Phys. Rev. 84, 408 

(1951). 
3 E. V. Ivash and D. M. Dennison, J. Chem. Phys. 21, 1804 

(1953). 

used previously do not degenerate naturally or easily to those for 
the rigid asymmetric rotator in the infinite barrier limit. In the 
present treatment a transformation is made on the Hamiltonian 
whereby this complication is avoided and the resulting calculations 
are greatly simplified. 

It is found that the spectrum is essentially that of the rigid 
rotator with the important exception that all the strong lines are 
split into two components. For the low J transitions specific 
formulas have been derived for these splittings which are rela­
tively simple functions of the barrier height, the principal moments 
of inertia, and two additional parameters involving the molecular 
dimensions and the masses. The barrier height can thus be de­
duced from the observed splittings without the use of the some­
what cumbersome machinery needed in the general case. 

servable in the microwave spectrum. For the type of 
molecule to be considered the rotational lines will be 
given in zeroth order through the asymmetric rigid 
rotator energy levels alone. The chief effect of the 
hindered rotation is to produce a splitting of these lines, 
and it will be shown that the height of the hindering 
barrier in this simple case can be determined quite 
easily from rather few experimental data and without 
the use of the somewhat cumbersome machinery needed 
in the general case. 

Specifically, the molecules to be considered are as­
sumed to consist of a rigid asymmetric component 
which may undergo a hindered rotation about the 
symmetry axis of a rigid symmetric component. In 
addition the symmetric component is assumed to have 
three-fold symmetry and the asymmetric component at 
least a plane of symmetry containing the symmetry 
axis of the symmetric component. A model of such a 
molecule is shown in Fig. 1.4 

4 A generalization to molecules consisting of a completely asym­
metric component linked to a symmetric component will be dis­
cussed briefly in an appendix. The generalization to molecules in 
which the symmetric component has k-fold symmetry, with k>3, 
is very straightforward. However, if k = 2, the molecule will in 
general consist of two asymmetric components, and although the 
methods used can, in principle, be extended to this case also, the 
theory becomes very complicated due to the complete asymmetry 
of both components. 
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Fig. 1. Model of the type 
of molecule discussed. 

There exist many molecules (for example, the sub­
stituted ethanes such as CHaCH2F) which have the 
required symmetry properties, but of these only a rela­
tively small proportion will have a barrier height of just 
such a magnitude that the tunneling frequencies are 
small compared with the rotational frequencies and yet 
large enough to be observable. This circumstance has 
its origin in the extreme sensitivity of the tunneling 
effect to the barrier height. As will be shown the 
acetaldehyde molecule, CHaCHO, may be a molecule 
satisfying all these requirements. 

In principle, the theory developed in the paper by 
Burkhard and Dennison2 can be used directly, but in 
practice the method is very difficult to apply to the 
high barrier case since the matrix elements of the 
Hamiltonian in this formulation do not degenerate 
naturally or easily to those for the rigid asymmetric 
rotator in the case of an infinitely high barrier. The 
difficulty arises from the fact that there is an internal 
angular momentum associated with the hindered rota­
tion with respect to a framework of rotating axes de­
fined by the symmetry axis of the hindering potential 
which from the point of view of the molecular forces is 
a natural choice. For this reason the earlier form of the 
Hamiltonian contains cross products between the mo­
mentum associated with the hindered rotation and the 
components of total angular momentum. These cross­
product terms lead to matrix elements off-diagonal in n, 
the limiting vibrational quantum number of the tor­
sional motion, which in the high barrier limit cannot be 
neglected, even in the zeroth order of the rotational 
energies. The degeneration to the correct zeroth order 
rigid rotator comes about through these n to n' connec­
tions so that the solution of even the zeroth-order 
problem involves a complicated diagonalization process. 

In the present treatment a transformation is made on 
the Hamiltonian whereby these complications are 

avoided. The matrix elements of the transformed 
Hamiltonian may be expressed in a form such that, in 
the high barrier limit, they become those of the correct 
rigid asymmetric rotator plus those of a simple hindered 
rotator plus a small number of perturbation terms. A 
simple hindered rotator is defined as one whose wave 
equation is 

-h2 d2 

- -M(x)+ V(x)M(x)=EinternalM(x), (1) 
2p. dx2 

where x is the internal rotation angle giving the relative 
orientation of the two components of the molecule, Ii- is 
some reduced moment of inertia depending on the two 
components of the molecule, and M(x) is the internal 
rotation part of the wave function. For the specific type 
of molecule to be considered the hindering potential has 
the form V(x)=H/2(1-cos3x). A sinusoidal form will 
be used for the hindering potential here as in the earlier 
treatments. Deviations from this form can only intro­
duce minor corrections in the type of molecule under 
consideration. 

Except for the transformation of the Hamiltonian 
and certain approximations valid in the high barrier 
case, the method of solution is that given in the paper 
by Burkhard and Dennison. It consists of taking matrix 
elements of the Hamiltonian using as a basis the wave 
functions which are exact solutions of the symmetric 
hindered rotator part of the Hamiltonian. The diagonal­
ization of these matrix elements then yields the energy 
levels and the correct wave functions of the asymmetric 
hindered rotator. The basis wave functions are specified 
by the usual symmetric rigid rotator quantum numbers, 
J, K, and M, and the two hindered rotation quantum 
numbers, nand T, where T can have the values 1, 2, or 3 
and is the quantum number describing the threefold 
splitting of the energy levels due to the tunneling effect 
associated with the three-fold hindering barrier. 

The structure of the energy levels for the various 
types of rotators has been discussed before3 and is 
shown in Fig. 2 to illustrate the structure of the levels 
and the transitions for the type of molecule of present 
interest. The energy levels of a symmetric rigid rotator 
(SRR), shown on the left, are split into three as a finite 
three-fold hindering barrier is introduced. Both the 
energy levels and the transitions for the symmetric 
hindered rotator (SHR) occur in groups of three. (The 
particular transitions shown here will occur only if the 
molecule has a component of dipole moment perpen­
dicular to the symmetry axis.) These levels are all 
doubly degenerate, but the introduction of the asym­
metry causes a splitting of only one of these levels. For 
a molecule such as methyl alcohol with a relatively low 
barrier (lb) and a very small asymmetry (sa) both the 
levels of the asymmetric hindered rotator (AHR) and 
the allowed transitions giving rise to the strong lines 
occur in groups of four. If the barrier height is imagined 
to go to infinity these four levels must go over to the 
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two asymmetric rigid rotator CARR) levels. However, 
if the barrier is not too high each of these levels is split 
into two components, one a doubly degenerate one (E), 
the other a nondegenerate one (A I or A 2)' For relatively 
high barriers (hb) and large enough asymmetries (la) 
the hindered rotation splittings will be much less than 
the asymmetry splittings, and the spectrum will essen­
tially be that of an asymmetric rigid rotator with the 
important exception that all the strong lines of the 
spectrum, like the energy levels, are split into two com­
ponents where these are of comparable intensity. There 
will, in addition, be certain allowed transitions giving 
rise to single lines which would be forbidden for the 
rigid rotator and which can therefore be expected to be 
very much weaker. 

In this limiting case of high barriers specific formulas 
can be given, for the low J values at least, for the 
splittings of the energy levels, and from these formulas 
the barrier height can be deduced directly if the prin­
cipal moments of inertia of the molecule are known 
from an analysis of the gross features of the spectrum. 
In addition there may be a shift of the center of gravity 
of each pair of hindered rotation levels from the position 
of the limiting rigid rotator level. Relatively little use 
can be made of these shifts of the levels, however, since 
they may be affected considerably by all the other 
vibration-rotation perturbations of the problem. 

TRANSFORMATION OF THE HAMILTONIAN 
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FIG. 2. Structure of the energy levels for the various types of 
rotators. SRR-symmetric rigid rotator; SHR-symmetric 
hindered rotator; AHR-asymmetric hindered rotator; (lb, sa)­
low barrier, small asymmetry, (hb, la)-high barrier, large asym­
metry; ARR-asymmetric rigid rotator. The dashed lines indicate 
allowed transitions which can be expected to be very weak, 

The classical Hamiltonian becomes 

Px2 Py2CI P/B 
H=--+ +----

2A 2 (BCI-D2) 2 (BCI-D2) 

pxPyD pxPzB 
+ + +-----

(BC1-D2) (BC1-D2) (BC I-D2) 

px2(BC-D2) 
+ + Vex), (3) 

2C2(BC I-D2) 
The transformation to the new Hamiltonian will be where 

made in a form where the physical meaning of the 
transformation is readily apparent. The kinetic energy 

aT aT 
px=-, Px=-, 

ax aw x for the type of molecule of present interest is2 

where C2 is the moment of inertia of the symmetric 
component about its symmetry axis, and where the 
moments of inertia of the entire molecule, A, B, C, and 
the product of inertia, D, are defined with respect to a 
system of orthogonal axes fixed in the asymmetric com­
ponent of the molecule with origin at the center of mass 
of the whole molecule. The z axis is parallel to the 
symmetry axis of the hindering potential, and the y 
axis lies in the plane of symmetry of the asymmetric 
component of the molecule. The vector w denotes the 
angular velocity of the asymmetric component of the 
molecule and can be expressed in terms of the Euler 
angles, 8, "",, and <PI describing the orientation in space 
of the asymmetric component. The angular velocity of 
the symmetric component of the molecule has been 
eliminated by the introduction of the internal rotation 
angle, x= <PI- <P2, where <PI and <P2 are the azimuth 
angles of the two parts of the molecule about the sym­
metry axis of the hindering potential. 

and where P x, P y, and P z are given in terms of the 
canonical variables pe, p"" Pq,I, fJ, "",, and <PI by the usual 
relations. It can be shown that Px, P y , and P z are the 
components of the total angular momentum of the 
molecule expressed with respect to the system of axes 
fixed in the asymmetric portion of the molecule. How­
ever, the total angular momentum receives contribu­
tions from the internal rotation. The canonical variable, 
px, conjugate to the internal rotation angle, x, is a 
function of more than just the relative motion of the 
two parts of the molecule. It does not, for example, 
give the angular momentum of the symmetric com­
ponent relative to the asymmetric component. 

Also, in this form the Hamiltonian is clearly not that 
of the correct rigid rotator plus that of a simple hindered 
rotator with only small rotation-hindered rotation per­
turbation terms since it is the moment of inertia CI 

rather than C which occurs in the terms involving P y 

and P z • The difficulty arises from the fact that there is 
an internal angular momentum associated with the 
relative rotation of the two groups of the molecule when 
viewed from a framework of axes rotating with the 
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asymmetric portion. (An observer located on the asym­
metric component of the molecule would say that the 
symmetric component has an angular momentum rela­
tive to his coordinate system.) The difficulty is over­
come if the relative rotation of the two components of 
the molecule is viewed from a system of axes which 
rotate in space in such a way that no internal angular 
momentum is associated with the mutual rotation of 
the two groups. This system of axes which describes 
the rotation of the whole molecular framework in space 
will be called the "molecule-fixed" system of axes al­
though its orientation relative to either of the two rigid 
components of the molecule depends on the internal 
rotation angle x. In the limit in which classically 
x~O= constant, it will indeed become a system of axes 
fixed in the whole molecule. However, for this type of 
asymmetric molecule it will not coincide with a system 
of axes defined by the symmetry axis of the hindering 
potential, and it need not coincide with the principal 
axes of inertia of the rigid molecule. 

In the ordinary rotating and vibrating molecule any 
coordinate system fixed in the limiting rigid molecule 
can serve as a proper rotating framework for the de­
scription of the vibrational motions since the condition 
of zero internal angular momentum can always be 
satisfied by an appropriate choice of the internal degrees 
of freedom. In hindered rotators, however, the physics 
of the situation dictates the choice of the internal de­
grees of freedom, and since these initially may not be 
free of internal angular momentum with respect to 
coordinate systems which seem most natural from the 
point of view of the molecular forces, a proper "mole­
cule-fixed" system of axes must first be found if the 
rotation-hindered rotation interaction terms in the 
Hamiltonian are to appear as small perturbation terms. 
This can be accomplished by a transformation on the 
Hamiltonian which eliminates the cross-product terms 
of the form pxPi• 

The situation is simplest for symmetric hindered rota­
tors or for molecules such as nitromethane, CHaN02,6,6 

in which the symmetry axis of the hindering potential 
coincides with one of the principal axes of inertia of 
the whole molecule. For such a molecule the molecule­
fixed system of axes is defined by the symmetry axis 
of the hindering potential and the new azimuth angle 
cP' = (C1/C)cpl+ (C2/C)cp2' When viewed from this sys­
tem of axes the internal angular momentum due to the 
rotation of one component of the molecule is canceled 
by the equal and opposite internal angular momentum 
of the other component of the molecule. 

In terms of the angular momentum components, the 
transformation to the "molecule-fixed" system for a 

• Tannenbaum, Johnson, Myers, and Gwinn, J. Chern. Phys. 
22, 949 (1954). 

6 Wilson, Lin, and Lide, J. Chern. Phys. 23, 136 (1955). 

symmetric hindered rotator is 

In this case the transformation is described much more 
simply in terms of the Euler angles 

(J'=(J, 1/1'=1/1, x'=x, 

(5) 

This was the transformation proposed by Nielsen7 

which leads to the symmetric hindered rotator Hamil­
tonian used by Koehler and Dennison. 

The transformation to the molecule-fixed system for 
the asymmetric hindered rotator is somewhat more 
complicated but can be accomplished by a rotation of 
axes in the y- z plane followed by a new choice oj 
azimuth angle about the new z axis. The rotation in 
the y- z plane is chosen in such a way as to eliminate 
the cross term between px and P y in the Hamiltonian, 
Eq. (3). The new pxP. term can then be eliminated by 
a subsequent proper choice for the new azimuth angle. 
The transformation to the molecule-fixed system is now 

(
C2)* px=px'- C Pz' 

P x 1 0 0 

B D 
P y 0 

(B2+D2)! (B2+D2)i 

-D B 
p. 0 

(B2+D2)l (B2+D2)t 

(C2) * (C2) * P x' 

cos C x sin C x 0 

X (C2) * COS(~2)*X Py' 
, (6) 

-sin C x 0 

o o 1 Pz' 

7 H. H. Nielsen, Phys. Rev. 40, 44S (1932). 
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where 

The P/ are the new components of the total angular 
momentum vector. Now, however, it can be shown that 
the total angular momentum of the asymmetric mole­
cule arises solely from the rotation in space of the whole 
molecular framework as defined by the molecule-fixed 
system of axes; and the new momentum variable, px', 
associated with the hindered rotation is a function only 
of the relative motion of the two parts of the molecule. 
[Classically, pz' ==C2(BC1 - D2)Xj (BC- D2).] 

The new momenta must and do satisfy the usual 

Poisson bracket relations 

and cyclically, 
(Pz',Py')=P/, 

and (P/,pz') =0, (P/,x') =0. (7) 

The angular momentum components P,/, Py', and Pz' 
are now given in terms of the new canonically conjugate 
variables, pe', p/, p'/' and 0', v/, qi, by the usual rela­
tions, where 0', v/, and qi are the Euler angles defining 
the orientation in space of the new molecule-fixed sys­
tem of axes. The functional relationship between these 
angles and the old angles 0, 1/;, c/>l, and x is quite compli­
cated and has the following form: 

B D 
cosO' cosO+ sinO cosc,oI, 

(B2+D2) I (B2+D2)! 

tan1/;( sinO- : cosO COSc,ol) - : sinc,ol 

tanf' -----------------------------, 

(sino- : cosO COSc,ol) + : sinc,ol tanf 
(8) 

---------, 
B COSc,ol- D co to 

x'=x. 

The new variables pe', p/, p/, pz', 0', 1/;', c/>', and x' 
satisfy the Poisson bracket relations required for 
canonical variables. The transformation is therefore a 
valid contact transformation. 

This transformation leads directly to the new form of 
the classical Hamiltonian, but in order to solve the 
quantum mechanical problem the Hamiltonian must be 
expressed in correct symmetrized quantum mechanical 
form. The angular momentum components, P/, and 
the momentum px' must be replaced by the usual oper­
ators which satisfy the commutation relations corre­
sponding to Eqs. (7). In the representation in which P'2 
and P/ are diagonal the matrix element of the P/ have 
the customary form in terms of the rigid rotator quan­
tum numbers J and K. They are independent of the 
hindered rotator quantum numbers nand T since the 
P/ commute with px' and x'. 

The quantum mechanical form of the new Hamil­
tonian is 

I +~(~+C __ B_)p'2 
2 BC-D2 B2+D2 z 

1 (BC-D2) 
+- px'2+ Vex) 

2 C2(BC1-D2) 

II 

+~ D [(Pu'Pz'+Pz'Pu') COS(C2)*X 
2 (B2+D2) C 

- (P'/Pz'+Pz'Pz') sin(~2) *x J (9) 

It will be noticed that there are now no terms of the 
form px' p;" and in the high barrier limit where classi­
cally x-tO= constant, the Hamiltonian degenerates 
directly to that of the correct rigid rotator plus that 
of a simple hindered rotator. At this point a trans­
formation to principal axes of inertia could still be made. 
However, the hindered rotator matrix elements of the 
Hamiltonian will be much simpler in the present form, 
Eq. (9). The transformation to the principal axis form 
of the limiting rigid molecule will be made at a later 
stage in the calculation. Since the internal rotation 
angle, x, is not affected by the transformation, the form 
of the hindering potential is unchanged. 

Part I of the Hamiltonian again has the form of the 
symmetric hindered rotator discussed in the paper by 
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Koehler and Dennison, provided the reciprocal moment 
of inertia 1/ A is replaced by 1/2[1/ A + B/ (B2+D2)] and 
l/C is replaced by [(B+C)/(BC-D2)-B/(B2+D2)]. 
In addition, the reduced moment of inertia of the simple 
hindered rotator which was C!C2/C for symmetric 
molecules must now be replaced by C2(BC!-D2)/ 
(BC-D2). The interaction between the hindered rota­
tion and the rotation of the whole molecule in space will 
come about mainly through the boundary conditions, 
but since part II of the Hamiltonian, which arises from 
the asymmetry of the molecule, still contains the in­
ternal rotation angle x, part of the rotation-hindered 
rotation interaction comes about through these terms 
in the Hamiltonian itself. However, this interaction may 
be shown to be a very mild one as the barrier height 
becomes large. 

The method of solution consists of taking matrix 
elements of the Hamiltonian using as a basis the exact 
solutions of part I which have the form 

1 
'l1=-8 ((J')eiM,y' eiK<PTeiux PKTn(X)], (10) 

211' 

where PKn, (x) is a periodic function of x, and where the 
value of (1 is determined by the boundary conditions.! 
The wave function must be invariant whencpc-~cp!+ 2n!1I' 

and CP2~CP2+ 2n211' where n! and 1t2 are any integers, 
since the physical situation is unaltered by this trans­
formation. In terms of the new variables, cp' and x, this 
transformation becomes 

The wave function will be invariant to this transforma­
tion if 

where n is an integer. This equation will hold if K is an 
integer, and if 

(1= -K[l C2(B2+
D

2)1]= _K(C!)*. (11) 
(BC-V) C 

(The choice of (1 depends on the choice of the integer n 
which is arbitrary. Here it is chosen so that (1 goes over 
to the Koehler-Dennison value when D=O.) 

MATRIX ELEMENTS OF THE HAMILTONIAN 

Using these wave functions as a basis the matrix 
elements of the Hamiltonian become 

h2 D 2r 

HJKTnJ(K+!)T'n' =- --(2K +l)[(J -K)(J+K +l)]!f PKTn*(x)e-ixP(K+!)T'n' (x)dx, 
4 B2+D2 0 

(12) 

h2

( 1 B) HJKTn J(K+2)T"n'= -- ---- [(1 -K)(1-K-1)(J+K+1)(J+K+2)]! 
8 A B2+D2 

The allowed T connections are exactly the same as those 
given in the paper by Burkhard and Dennison.2 The 
energy determinant again factors into three subdetermi­
nants where the T value associated with a particular K 
value is uniquely defined for each subdeterminant. Two 
of the determinants have identical roots giving rise to 
levels of species E, while the third gives rise to non­
degenerate levels of species A. 

In these matrix elements no high barrier approxima­
tion has been made as yet. 8 However, as the barrier 
becomes high the integrals involving the internal rota­
tion angle x (with n'=n) become equal to unity plus 

8 The diagonalization of the matrix elements is easier in this 
new form even if the barrier to hindered rotation is a relatively 
low one. The n->n' connections (n' ~n) besides being simpler in 
form, now give only very small contributions to the energies for 
any state lying appreciably below the top of the barrier, and even 
for states lying above the top of the barrier the n->n' connections 
will be smaller than those occurring in the earlier formulation. 

21r 

X f PKTn*(x)e-2ixP(K+2)T"n' (x)dx. 
o 

small negative perturbation terms; and, except for 
these perturbation terms and even smaller perturbation 
terms with n'rfn, the matrix elements are those of an 
asymmetric rigid rotator to which is added the internal 
energy (EKTnint) of a simple hindered rotator. This 
internal energy must be computed with the new value 
for (1 and the modified value for the reduced moment 
of inertia, but the method of solution is unchanged.! 
The rigid rotator matrix elements are not expressed 
with respect to principal axes of inertia. They could 
have been so expressed if the contact transformation 
(6) had been followed by a rotation to principal axes. 
In that case however the energy determinant would 
not have been split into three subdeterminants, and 
the complicated connections between the three determi­
nants would have been considerably more difficult to 
handle than the K~K±l connections which arise 
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because the rigid rotator part of the Hamiltonian is not 
expressed with respect to principal axes of inertia. 

In any case, the rigid rotator part of the Hamiltonian 
can be diagonalized for each individual J value. For 
the low ]'S this can be done for general values of the 
moments of inertia. The procedure will be illustrated in 
detail for J = 1. If S is the unitary matrix which di­
agonalizes the rigid rotator part of the matrix elements 
H, in the form (12), then the new matrix elements H,' . ' , 
gIven by H'=S-IHS, will be diagonal in the infinite 
barrier limit. For J = 1 

1+0: /3 1-0: 1 1 
0 

2 V2 2 V2 V2 

/3 /3 
S=SIS2= 0: 0 1 0 

where 

V2 V2 

1-0: /3 1+0: 1 1 
0 

2 V2 2 V2 V2 

{
n:2} 1 1 (B-C) (BLD2)+4BD2 

/32 ="2±"2 (B2+D2)[(B-C)2+4D2Jt' 

D(BC-D2) 
0:/3=----------------­

(B2+ D2) [(B - C)2+4D2J' 

(13) 

(14) 

and where 0: and /3 are the direction cosines of the 
z-principal axis with respect to the z' and y' molecule­
fixed axes defined by transformation (6). 

The matrix elements of the transformed Hamiltonian 
H', will again be factored into groups of three (2J + 1) 
by (2J + 1) submatrices corresponding to determinants 
1, 2, and 3. These are shown explicitly for J = 1 in 
Table 1. Determinant 3, giving the nondegenerate 
energy levels, splits into two further subdeterminants 
corresponding to the symmetries A 1 and A 2 to be dis­
cussed in a later section. In Table I, a, b, and c are the 
reciprocals of the principal moments of inertia (times 
h2j2) and are related to the moments and product A, 
B, C, and D by the following expressions 

h2 h2 

a=---=-, 
2A princ 2A 

h2 h2 (B+C)-[(B-C?+4D2J! 
b=--=- (15) 

2Bp rinc 2 2 (BC - D2) , 

h2 h2 (B+C)+[(B-C)2+4D2J 
c=---=-----------

2Cp rinc 2 2 (BC-D2) 

Again, no high barrier approximation has been made 
as yet, but the matrix elements are now in a form suit­
able for a perturbation treatment in the high barrier 

case. The quantities 

(K+l) T' n_ * -;x f
2lr 

OK T n -1- P KTn (x)e P(K+l)T'n(x)dx, 
o 

and 

(16) 

go to zero as the barrier height goes to infinity as do 
also the differences (EKTn - EKT'n). The diagonal ele­
ments now give the energy levels up to and including 
first-order perturbation terms. Higher-order perturba­
tion terms can be brought in by the usual techniques. 
An ordinary perturbation treatment will be valid only 
if the hindered rotation splittings are small compared 
to the asymmetry splittings of the limiting rigid rotator. 
However, matrix elements in this form can be used 
directly also to determine the hindered rotation energies 
in the special case when some of the limiting rigid ro­
~ator levels occur in closely sp.aced pairs, for example 
III the case of a nearly symmetnc molecule. In that case 
the separation of two rigid rotator levels may be of the 
same order of magnitude as the hindered rotation 
splittings, and the off-diagonal matrix elements con­
necting these two limiting rigid rotator levels cannot 
be neglected. A special perturbation treatment will be 
needed for these levels similar to that for two vibra­
tional levels in Fermi resonance, for example. 

Formulas for the energies are therefore rather compli­
cated in the case when the asymmetry splitting is of 
the same order of magnitude as the hindered rotation 
splitting, and the matrix elements in the form of 
Table I are consequently most useful when the hindered 
rotation splittings of the levels are much smaller than 
the asymmetry splittings. 

Matrix elements similar to those given in Table I 
for J = 1 can be derived for any J value. The S matrix 
which diagonalizes the rigid rotator part of the Hamil­
tonian for a particular J value can always be chosen to 
have the form S=S I S2, where SI transforms the rigid 
rotator part of the matrix elements from the form (12), 
containing zeroth order K -+K± 1 connections to the 
usual form in which the rigid rotator Hamilt~nian is 
expressed with respect to principal axes, and in which 
the zeroth-order off-diagonal matrix elements involve 
K-+K±2 connections only. S2, on the other hand, is 
the matrix which diagonalizes the asymmetric rigid 
rotator Hamiltonian when expressed with respect to 
principal axes. The S2 matrices are therefore well 
known.9 They depend only upon the principal moments 
of inertia although they are quite complicated for the 
higher J values. 

The matrices SI will be functions only of 0: and /3, 

9 King, Hainer, and Cross, J. Chern. Phys. 11, 27 (1943). 
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TABLE 1. Matrix elements of the Hamiltonian for J = 1, diagonalized in zeroth order. 

E 12n (K Tn) + E_lln 
a+c+------

2 

1i2 D 
--ai3--(003nI2n+Llln03n) 

2 Bl+D2 

H 21'=H12' 

D 
-ai3lt'-----OolnI3n 

B2+D2 

o 

Submatrix 1 (or 2) Type E levels 

1t2 D 
--(a2-i32)--(llo3n12n+Llln03n) 

4 B2+D2 

1t2 D 
+-a6--(003nI2n+Llln03n) 

2 B2+D2 

Su bmatrix 3 Type A levels 

1t2 D 
--(a2-i3')-oOlnI3n 

2 B2+D2 

1t2( B 1) +-132 ---- L I2n13n 
4 B2+D2 A 

D 
+1t2",i3--001n 13n 

B2+D2 

o 

'" --(E12n - E_lln ) 
2 

1t2 D 
+13- --(ILlln03n-llo3nI2n) 

4 B2+D2 

Itl D 
-a- --(003n12n-O_lln°3n) 

4 B2+D2 

E12n+E-lln 

b+c+----
2 

o 

o 

(Eqs. 14), with 0:2+/32= 1. Their elements can be deter­
mined for any J value by the following procedure. 

The components of the total angular momentum 

with respect to principal axes of inertia of the rigid 
molecule, denoted by PiP, are given in terms of the 
components with respect to the molecule-fixed coordi-
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nate system defined by (6), and denoted by P/, by 
the following equations 

P"p=P,,' 
P yP=aPy'-{3P/ 

P zP={3P y' +aP/. 

The symmetric rigid rotator wave functions which are 
solutions of part I of the Hamiltonian in the non­
principal axis form, (9), will be denoted by V;JK, where 
K can take on the 21+1 values from K = - 1 to 
K = +1. (The quantum number M can be suppressed.) 
The symmetric top wave functions which are solutions 
of the corresponding part of the Hamiltonian in prin­
cipal axis form will be denoted by V;JKp, where Kp can 
again take on the 21+1 values from Kp= -1 to 
Kp=+1. A particular wave function V;JKp will be a 
linear combination of the 21+1 wave functions V; JK 

K~+J 

V;JKp= L aKpKl/lJK, 
K~J 

where the numbers aKpK are the matrix elements of 
(SI)-I. The coefficients aKpK are determined most easily 

From these equations the aKpK can be determined. 
The signs are chosen so that SI goes over to the identity 
matrix in the limit {3-'>0, a-'>l. Thus, the matrix SI can 
in principle be found for any 1 value, and since the 
matrices S2 can be considered to be known, the prob­
lem of the asymmetric hindered rotator with relatively 
high barriers can be reduced to a fairly simple per­
turbation problem. While this can be done for arbi­
trarily high 1 values when 1?- 4, the analysis must be 
done numerically. 

HIGH BARRIER APPROXIMATIONS 
EVALUATION OF THE PERTURBATION TERMS 

As has been seen the matrix elements for each par­
ticular 1 value can be reduced to a form in which the off­
diagonal elements automatically go to zero as the barrier 
height goes to infinity. The differences (EKTn - EKT'n) 
and the quantities OKK' T" nn' are small perturbation 
terms if the hindering barrier is high but finite. The 
effect of the hindered rotation makes itself felt in two 
ways. The hindered rotation will cause a splitting of 
each rigid rotator level into two components since the 
roots of determinant 3 will differ from those of de-

by making use of the properties of the operators Py', 
Pz' on the one hand and the operators PyP, PzP on the 
other. In the representation used in this paper 

P/V;JK= hKv;JK, 

h 
+-[ (J + K) (J - K + 1) J!v; J (K-l), 

2 

while similar relations hold for P yP and P zP operating 
on V;JKp. The equation 

becomes 

({3P u' +aPz' - hK p) (aKpJV;J J+aK p(L!)V;J(J_l) 

+aKp(J-2lV;J(J_2)+··· )=0. 

Since the V;JK are linearly independent, the coefficient 
of each wave function V;JK in this equation must be 
equal to zero, leading to the 21+1 equations 

terminant 1 (or 2) by small perturbation terms. In 
addition the center of gravity of the two hindered rota­
tion levels may be shifted slightly from the position of 
the limiting rigid rotator level. The splittings must be 
a characteristic of the tunneling effect associated with 
the hindering barrier and will therefore have consider­
able physical significance since the barrier height can 
be deduced from them. Less significance can be at­
tributed to the shifts of the levels, however, since these 
may be affected much more by all the other vibration­
rotation perturbations in the molecule. 

It is possible to give relatively simple formulas for 
the hindered rotation splittings since the perturbation 
terms given by the OKK'." 'In and the differences 
(EKTn-.EKT'n) can be approximated by simple expres­
sions in the high barrier case. 

In the high barrier limit the OK(K+1)."nn and the 
OK(K+2\T" nn turn out, to a very good approximation, 
to be independent of the particular values of K and T, 

and consequently they do not contribute to the split­
tings of the energy levels at all since the terms occurring 
in the two types of determinants are identical except 
for the differences in the T values. 
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For the n = 0 to n = 0 elements: 

• K+2 T" 0 
UK T 0 

in which 

and where 

is the natural energy unit for measuring the height of 
the barrier, H. 

The form of the internal rotation energy is also a 
relatively simple one in the high barrier limit. The 
internal rotation energy must be a periodic function of 
')'= (21f/3)K(C1/C)*, and hence may be expanded as a 
Fourier series in ')'. In the high barrier limit, however, 
only the first term in the Fourier series is significant 
and it can be shown that the higher terms in the series 
are completely negligible. Therefore 

where En is given by 

En= h2(~)*{3(n+!)(H')! 
2 C1C2 

9 27 1 

(18) 

--[(n+!)2+iJ-- --[(n+!)3+Hn+!)J 
8 64 (H')!; 

3
4 

1 [ 17 91} -- - 5(n+!)4+-(n+!)2+- + ... , (19) 
210 H' 2 16 

and where ~o(n), the splitting of the energy levels of the 
simple hindered rotator, in the nth torsional state, for 
K = 0, can be given as a fairly simple function of the 
parameter H'. 

One of the best methods of estimating the differences 
(EKTn-EKT'n) is through the use of the WKB approxi­
mation. The values of OKK' T T' n n' and En, on the other 
hand, are given to very good approximation by ordinary 
perturbation theory, using as zeroth-order wave func­
tions the correct linear combinations of harmonic oscil­
lator functions centered at the three potential minima. 

1. WKB Approximation 

The splitting of the energy levels for the simple 
hindered rotator with nonperiodic boundary conditions 
(K ~O) can be estimated by means of a straightforward 
application of the WKB approximation by a slight 
extension of the methods of Koenig,lo In first approxi­
mation the results are given by Eqs (18). The WKB 
value for ~o (n), the K = 0 splitting of the energy levels 
for the simple hindered rotator, in the nth torsional 
state, is given by 

9 e-21 

~o(n)' =_(H')i-_, 
4 K(k2

) 

(20) 

in which 

and where K and E are complete elliptic integrals of 
the first and second kinds, with k2= (En/H). All 
primed quantities are measured in the natural energy 
unit, h2/2(C/C 1C2)*. 

The complete WKB expression for the splittings of 
the energy levels will contain the higher terms of the 
Fourier series, for example, terms such as cos2,)" 
cos3,)" .. " for r= 1; but the coefficients of these terms 
will be of order e-41, e-6I , •. " respectively, and may 
thus be expected to be completely negligible compared 
with the coefficient of the dominant first term since the 
exponential e-21 gives the probability of penetration of 
the barrier. This follows not only from the results of 
the WKB approximation but is borne out also by exact 
sample calculations. 

Since it is our aim to determine the barrier height 
from the observed splittings this form of the splitting 
formula, (20), is not a very useful one since the func­
tional relationship between ~o(n) and H is very com­
plicated. The explicit dependence of ~o(n) on the barrier 
height can be seen more easily if the quantities in Eq. 
(20) are expanded in powers of En/H, leading to the 
expression 

9 [ 16 1n
+

1/2 

~o(n)' =- enH/2H'[(3/41+(nI21] 

271" 3(n+l/2) 

Xe-(4/3)(H'H[1+order H'-t]. (21) 

However, neither formula (20) nor (21) gives a very 
accurate estimate of the hindered rotation splittings of 
the energy levels. Sample calculations for certain values 

10 H. D. Koenig, Phys. Rev. 44, 657 (1933). 
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of H' in the region of present interest, for which 
50 ~ H' ~ 200 (as will be shown in a later section) indi­
cate that the WKB expressions for .:lo(n)' may be in 
error by as much as ten to twenty percent. However 
Eq. (21) is very useful since it can form the basis for 
a semiempirical expression for .:lo(n)' by which the cor­
rect values for .:lo(n)', computed by the continued frac­
tions technique,! can be fitted with considerable accu­
racy. For n=O, a semiempirical formula will be chosen 
having the form 

.:lol=aH'le-bvH', (22) 

in which the two constants a and b are now determined 
to give the best possible fit to the correct values for .:lo'. 
The following formula has been found to be useful and 
can be expected to be accurate to within one or two 
percent for the range 50 ~ H' ~ 200 

(23) 

2. Perturbation Theory 

Approximate expressions for the OKK' r r' n n' and the 
values of En are obtained most simply by means of 
standard perturbation theory involving only the in­
ternal rotation wave functions 

Since the hindering potential is a quadratic function of 
x in the immediate vicinity of the three potential 
minima, the zeroth-order wave functions are linear 
combinations of harmonic oscillator functions centered 
at the three minima and therefore very simple in form. 
The linear combinations having the appropriate sym­
metry for a threefold potential have been given in the 
paper by Koehler and Dennison. In the limit of a truly 
infinite barrier the three types of wave functions are 
given equally well by the single formula 

where Hn(i) (x) is the harmonic oscillator wave function 
centered at the ith minimum, for which n is now the 
ordinary vibrational quantum number, and where 

p= 0+3l for (K-3l)=-1, 0,+1 when 7=1 

p=-1+3l for (K-3l)= 0, -1, -2 when 7=2 

p=+1+3l for (K-3l)= 0, +1, +2 when 7=3 

with l taking on all integral values. These wave func­
tions form a convenient set of zeroth-order wave func­
tions for the perturbation problem in the high barrier 
case. The internal rotation wave functions M(x) must 
be eigenfunctions of the simple hindered rotator 

Hamil tonian 

h
2

( C )* a2 
H X=-- - -+-(1-cos3x), 

2 C1C2 ax2 2 
(25) 

but in terms of the simpler functions, un(x), the wave 
equation is given by 

((X l O)+X(I)+X(2)+ ... )- (En(O) +En(l) +En(2)+ ... )} 

X (un(O) (X)+Un(l) (X)+Un(2) (x)+· .. } =0, 

where, for the three regions, IX-XO(i) I ~1r/3 

{of order Hi} 

27 (26) 
--H(x-XO(i))4 {of order 1} 

16 

81 
X(4) = -H (x- XO(i»)6 {of order H-!} 

160 

where X(O) gives contributions to the energy of order 
(Hi), etc. 

In this perturbation scheme the wave functions un(x) 
and the energies Enll can be determined up to any order 
by nondegenerate perturbation theory with the use of 
the zeroth-order wave functions Un (0) (x). The calcula­
tions are simplified by the use of the following further 
high barrier approximations which can be expected to 
be very good for values of H',? 50. The wave func­
tions H n (i) (X) will be assumed to be negligible for 
Ix-xo(i) I '?1r/3 so that all integrals involving the 
HnW(x) can be carried out from -00 to +00, and 
overlap integrals of the type f H n (I) (x)0H n (2) (x)dx can 
be neglected. It is because of these approximations that 
the results for the OKK'/nn' given in Eq. (17) are inde­
pendent of 7 and K. Further approximations would 
have to take into account the proper connections of the 
wave functions in the regions (x-xo(i»)=1r/3; but 
actual numerical calculations indicate that such further 
approximations are not needed for an accurate determi­
nation of the barrier height. 

11 For the En, see also, Tables Relating to Mathieu Functions 
(Columbia University Press, New York, 1951), p. XVIII. 



42 K. T. HECHT AND D. M. DENNISON 

With the use of these approximations the matrix 
elements of the Hamiltonian (26) become 

[ 
4 ]l[ (Cl)*](n)' H(n_l)n(ll= -ihw 9H' p-K C "2' 

H nn (2) = hw[~li 
9H' 

Hll (n_2)(2) = -hw[~]iU6 (2n-1)[n(n-1)Ji}, (27) 
9H' 

H n (n_4)(2) = -hW[~]! 
9H' 

x {332[n(n-1) (n- 2) (n-3) J!}, 

H ",,(4) = hw[~]{ 392 [(n+!)3+ (5/4) (n+!)J}. 
9H' 

With E,,(OJ =!zw(n+!); ftw=3VH'(h2/2)(C/C1C2)*. Since 
the parameter of smallness in the perturbation scheme 
is given by (4/9H')1 the wave functions u,,(x) must be 
computed up to fourth order in order to obtain accurate 
values for the OKK'." n n for barriers for which H' ~ 50. 
The wave functions un(x) are functions of p and K, 
but the structure of the K to K' connections in the 
Hamiltonian and the symmetries of the wave functions 
are such that the perturbation quantities OKK'." nn turn 
out to be independent of p and K and are given by 
Eqs. (17) for n=O. 

To within the approximations made in this section 
therefore the perturbation terms OKK' TT' "n contribute 
only to the shift of the center of gravity of two hindered 
rotation sublevels from the position of the limiting rigid 
rotator level. Since the quantities of greatest interest 
are the hindered rotation splittings, not the shifts, the 
possibility exists that the small errors inherent in these 
approximations may lead to small errors in the deter­
mination of the barrier height. However, actual nu­
merical calculations in some special cases show that 
the small differences in the OKK' / nn for different values 
of 1" are indeed negligible as far as their contribution to 
the hindered rotation splittings is concerned and that 
Eqs. (17) can be expected to be accurate to within a 
few percent for values of H' ~ 50. 

However, since the overall shifts of the levels may 
affect the determination of the principal moments of 
inertia, it becomes a matter of some importance to 
know their order of magnitude. The hindered rotation 
shifts are determined not only by the magnitudes of 

the OKK' / n n but also by the magnitudes of the asym­
metry parameters 

h (1 B) - -----
811"2 A B2+D2 

h D 
and 

However, even for very large values of these asymmetry 
parameters, 30000 Me/sec for example, the hindered 
rotation shifts can be expected to be of the same order 
of magnitude as the hindered rotation splittings of the 
energy levels. 

Consequently, if the hindered rotation spliUings of 
the levels have been found to be small enough, the 
principal moments of inertia can be determined with 
fair accuracy from the average positions of the two 
hindered rotation lines of the rotational transitions. 
Once the barrier height has been determined with these 
values of the moments of inertia, the hindered rotation 
shifts of the levels can be computed, and the cycle of 
calculations can be repeated in order to improve the 
accuracy of the values for the moments of inertia. 
However, since the values will be affected by all the 
other vibration perturbations no specific formulas for 
the hindered rotation shifts will be tabulated. In prin­
ciple these shifts can be computed for any level with 
considerable accuracy since the OKK' T T' n n', computed to 
order (4/9H'), have been found to be accurate to within 
a few percent. In order to predict the shifts with this 
accuracy, however, the n-+n' (n'7"f.n) connections can 
no longer be neglected. These are of order (4/9H')l, 
and since the hindered rotation energies are of order 
(9H'/4)t, the n-+n' connections give contributions to 
the rotational energies of the order (4/9H'). For the 
n = ()--t 1 connections, for example 

i [ 4 ]t[ (Cl)*] 
=-V'1 91I' 1- C ' 

(28) 

The effect of these terms, off-diagonal in the quantum 
number n, can be brought into the rotational matrix 
elements, diagonal in n, by the Van Vleck perturbation 
technique. The transformed n-+n' matrix elements can 
then be neglected, and the rotational matrix elements 
diagonal in n, which now give the energies correct to 
order (4/9H') will be given by the usual expression.12 

12 See, for example, E. B. Wilson and J. B. Howard, J. Chern. 
Phys. 4, 260 (1936), Eq. (43). 
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x {1-~ vI~/[ 1- (~l) *J-~ ~/(~[1- (~) * J-~[1- (~) *f)} 
1 1 [ (Cl)*J2 h2(C2Cl)* D [1 B] 

+9 H' 1- C "4 C B2+D2 A - B2+D2 

X {(2K+1)[J(1+1)- K(K+1)-3][(1 - K)(1 +K+1)]i}, 

h2

( 1 B) [ 2 1 [ (Cl)*J2 H JKToJ(K+2)T"o= -- ---- [(1-K)(1-K-1)(I+K+1)(1+K+2)]L 1-- - 1- -
8 A B2+ D2 3 vi H' C 

-~{~[ 1- (~l) *r -~[1- (~l) *f} ]+[(1 -K)(1-K-1)(I+K+1)(1+K+2)]i 

X {~~ h2(C2Cl)*[1_ (Cl)*J2.~(2K+1)(2K+3)} 
9H/ 8 C C B2+D2 ' 

1 1 [ (Cl)*]2 h2(C2Cl)*( 1 B)2 
H JKTO

J
(K+4h'O=9 H' 1- C "8 C A - B2+D2 

. [(1 - K)(1 -K -1)(1 - K -2)(1 - K-3)(1+K+1)(1+K+2)(1+K+3)(1+K+4]i). 

HINDERED ROTATION SPLITTINGS OF THE 
ASYMMETRIC RIGID ROTATOR LEVELS 

Since the value of the barrier height can be deduced 
from the hindered rotation splittings these are the 
quantities of greatest interest and specific formulas for 
them will be tabulated in this section for some of the 
low I values. The matrix elements in the form of Table 
I can be used even if the asymmetry splitting of a pair 
of rigid rotator levels is of the same order of magnitude 
as the hindered rotation splittings, but in that case the 
formulas for the energies are very complicated. Simple 
splitting formulas can be given, however, if the hindered 
rotation splittings of the levels are small compared to 
the asymmetry splittings. In that case the hindered 
rotation splits the rigid rotator level I K-IKI into two 
sublevels, one, IK_IKIE (of species E), and one, IK_IKI A 

(of species A). The hindered rotation splittings are 
given for some of the low I values in Table II. However, 
these formulas may not apply to certain levels of a 

particular molecule, since the asymmetry splittings for 
certain of the levels may be comparable to the hindered 
rotation splittings. 

The labeling of the levels in Table II is that for which 
the magnitudes of the principal moments of inertia are 
such that a<b<c. The relative magnitudes of the 
principal moments of inertia do not affect the splitting 
formulas but only the labeling of the energy levels. 
Thus, the rigid rotator level whose energy is given by 
a+b+4c, for example, will show a hindered rotation 
splitting ~2+~2(~1-~2), but for a<b<c this will be 
the splitting formula for the level 221 , whereas for 
a<c<b this would have been the splitting formula for 
the level 211, etc. Since the x. y, and z axes of the 
molecular framework of the hindered rotator do not 
correspond to equivalent directions, the moment of 
inertia A, for example, cannot arbitrarily be chosen to 
be the greatest or least moment of inertia. 

It can be seen that the splitting formulas are func-
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TABLE II. Hindered rotation splittings of the asymmetric rigid rotator levels. 

(The labeling of the levels is that for which a <b <c) 

e(JK-1Kl) =JK_1K1
E -JK_1K1 A 

~K =~ocos{ ¥K[ l-(~)*J} 

J=O! 8(Ooo)=Ao 

8(101) = Ao+82(AI- Ao) 

J=1 8(1 ll)=AI-,82(6ol-6oo) 

J=2 

8(1 10)=601 
-----

{ 

8(202)} a+b-2c 3,82(C-b)(A,-AoJ 
=!(Ao+A 2)± (6o,-6oo)±--------

8(220 ) 4[(b-a)2+ (c-b)(c-a)]1 4[(b-a)2+ (c-b)(c-a)]! 

8(212)= AI+,82(1-,82) (A,+3ilo-4.:l,) 

8(2 ll ) = AI+,B2(602- 6o I) 

8(221 ) =A2 -82(A2-AI) 

J=3 =HA,+A,)± (l-,82){SA I-SA,+3A,) 1=F---------
I { 

8(312)} [(Sc-7b-a)+1S,B2(b-c)](.~I-A3) 82 [b+c-2a 1 

J=3 

8(3,0) S[4(b-c)'+(a-b)(a-c)]! 4 2[4(b-c)2+(a-b)(a-c)]! 

,82 
8 {32') = A2+-(1-,82)(SA I-S602+3.:l,) 

2 

=!(6oI+A,) --(17 .:l1-Sil,+3A,-1Z.:l0)+-(3-Z,B2)(1SAI-M2+A3-106oo) 
{ 

8 (331) },B2 ,8' 

8(313) 4 4 

± { (7a+b-Sc)(A3- 6o I)-Z,82(17 il l -SA2+3A3-1ZAo)(2a+b-3c) I ± {S,82(C-b)(A3-ZA2-6oI+ZAo)(Z-382) I 
S[4(a -C)2+ (b-a)(b-c)]! J 16[4(a-c)2+ (b-a)(b-c)]! J 

± J [Z,B2(9a+zb-llc)+,8'(3-2,82)(7C+b-Sa)][1S.:lI-M2+il3- 1O.:l0]} 

1 16[4(a-c)2+ (b-a)(b-c)]! 

= H6oo+A2)+-(17 6o,-SA2+36o, -1Z.:l0)--(3 - 2,82)(1S6oI- M 2+A3-10Ao) { 
8 (3 03 ) },82 ,8' 

8(3 21 ) 4 4 

± {4(a+b-ZC)(602- 6oo)+,B2(3a-7b+4c)(17 601-SA2+3A,-1Z6oo) I 
16[4(b-a)'+(c-a)(c-b)]! f 

± {S,82(4-3,82)(a+3b-4C)(A3-Z602-AI+ZAO)} 
64[4(b-a)2+ (c-a)(c-b)]! 

± {[4,82(1Zb-sa-4c)+8'(3-Z,B2)(17a-13b-4C)][lS.:lI-M2+A3-lOAO]} 

64[4(b-a)'+ (c-a)(c-b)]! 

dons only of the principal moments of inertia and the 
three additional molecular parameters 

tential. For small values of the product of inertia, D, 
{32~D2C2/B2(B-C)2. The splitting parameter, Ao, on 
the other hand is related to the barrier height, by 
formula (23) for example. 

(29) 

The parameters (C1/C)* and {32 depend only on the mass 
distribution and the geometry of the molecule. {32 goes 
to zero in the limit in which the z-principal axis co­
incides with the symmetry axis of the hindering po-

If the principal moments of inertia are known with 
fair accuracy from an analysis of the gross features of 
the spectrum, the three additional molecular parameters 
can be determined if three different line splittings have 
been observed. Further, if the principal moments of 
inertia are known, the value of C 1 can be determined 
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from (CI/C)*, the value of the product of inertia D 
from (32, and all the information needed is at hand since 
the barrier height can be determined from ..:10 by means 
of formula (23) once the energy unit h,2/2(BC-D2)/ 
C2(BC 1-lJ2) has been computed from the molecular 
parameters. 

SYMMETRY PROPERTIES; ORDERING OF THE 
TYPE A LEVELS; SELECTION RULES 

The symmetry properties for the more symmetrical 
hindered rotators of the nitromethane type have been 
examined by Wilson, Lin, and Lide. 6 For the asym­
metric hindered rotator of present interest the Hamil­
tonian will be invariant under the following symmetry 
operations: the identity operation, (1); the two three­
fold rotations of the symmetric component of the mole­
cule about its symmetry axis, (Ca, Ci, or cf>z---->cf>z±271"/3); 
a twofold rotation of the whole molecule about the x 
axis, the axis perpendicular to the plane of symmetry 
of the asymmetric component of the molecule, (C2x or 
8---->71"-8, 1/;---->1/;+71", cf>1---->71"-cf>I, cf>z---->71"-cf>z) , and finally 
the operations CZxCa and CzxCa2. These symmetry oper­
ations satisfy the group properties of the group Da, 
and the energy levels will therefore fall into species AI, 
.. h, or E. The symmetry elements I and C2x form a 
subgroup of both the hindered rotator and the asym­
metric rigid rotator symmetries, and from the com­
patibility relations it can be seen that each rigid rotator 
level must give rise to one level of species E and one of 
species A. The wave functions for the type A levels 
have one of two possible forms. These have been given 
in the paper by Ivash and Dennison3 and have been 
labeled + and -. However, the Ivash-Dennison + or 
- refers to the particular structure of the wave func­
tion, not to a change of sign of the wave function under 
a symmetry operation. If their ± is multiplied by 
(-l)Hn the resulting ± refers to the change of sign 
of the wave function under the symmetry operation CZz 

where the new + levels are then the Al levels, the 
new - levels the A 2 levels. 

Since the symmetry operation C2x is common to both 
the asymmetric rigid rotator and the hindered rotator 
Hamiltonians, the rigid rotator energy levels which 
have the property + with respect to a twofold rotation 
about the x axis will give rise to an A 1 level in the 
hindered rotator, while the rigid rotator energy levels 
which have the property - with respect to such a 
rotation give rise to an A 2 level. 

In molecules such as methyl alcohol in which the x 
axis is the axis of the greatest moment of inertia the 
ordering of the type A levels starting with the highest 
level of a particular J value is therefore: A 1, A 2, A 2, 

AI, AI, A 2, A 2, ••• (for n=O or even). 
In a molecule in which the x axis is the axis of the 

middle moment of inertia, however, the ordering of the 
A levels would be: '" AI, A 2, AI, A 2, AI, .... 

The selection rules for this type of asymmetric 
hindered rotator have been given in the paper by Ivash 
and Dennison but can be expressed more easily in terms 

of the symmetry species AI, A z, and E. They are 
simply 

A!"-~A2 ~J=O, ±l 
(30) 

Ef-tE ..:1M=O, ±1 

The A If-tA 2 transitions will always correspond to transi­
tions which are allowed for the limiting rigid molecule. 
Some of the Ef-tE transitions, however, may be for­
bidden for the limiting rigid molecule and may be 
expected to appear only weakly in the spectrum. Essen­
tially the spectrum will be that of the rigid rotator, 
with the important exception that each line of the 
spectrum is split into two components of comparable 
intensity, one A If-tA 2, the other Ef-tE. 

LIMITATIONS OF THE HIGH BARRIER 
APPROXIMATIONS 

SO far the term "relatively high potential barrier" 
has been defined only qualitatively. A molecule with a 
relatively high barrier to internal rotation is one in 
which the hindered rotation splittings are in general 
much less than the separations between the rigid rotator 
energy levels and yet large enough to be easily observ­
able. Previously it was shown that the high barrier 
approximations for the OKK'T T' n n' and the differences in 
the EKTn are very good for values of H'?: SO. However, 
for H' "'" SO the hindered rotation splittings may be of 
the same order of magnitude as the separations between 
the rigid rotator levels, and the simple splitting formulas 
of Table II may not apply. In this case the off-diagonal 
matrix elements as given in Table I can no longer be 
neglected, and second- or higher-order perturbation 
terms may be needed in order to get a good estimate of 
the splittings of the energy levels. In this case also the 
splittings may be so large that the lines no longer appear 
as doublets. On the other side of the scale, for H'> 200, 
the hindered rotation splittings begin to fall below the 
limits set by the microwave resolution, and thus al­
though the splitting formulas are correct they cannot 
be tested experimentally. 

As stated before, the natural unit for measuring the 
energy of the asymmetric hindered rotator is given by 
the quantity 1I,2/2(C/CIC2)*. Since this depends on the 
masses of the atoms, a barrier height of 500 em-I, for 
example, may be a low barrier for one molecule but may 
be so high for another molecule that the latter can 
essentially be regarded as a rigid top. Three types of 
molecules must be considered. First, a molecule such as 
methyl alcohol in which all the off-axial atoms of both 
components of the molecule are hydrogen atoms. For 
such a molecule the barrier height would have to be 
greater than 2000 cm-1 if the high barrier approxima­
tions are to hold. The second type of molecule is a 
molecule such as ethylfluoride in which the off-axial 
atoms of one component of the molecule are all hy­
drogen atoms while the other component contains at 
least one heavy off-axial atom. For such a molecule a 
barrier height greater than about 400 cm-l is a high one. 
The third type of molecule is a molecule such as 
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CF3CH2F in which both components contain heavy 
off-axial atoms. For such a molecule the barrier height 
would only have to be greater than about 40 cm-l • On 
the other hand such a molecule could be regarded as 
a rigid top if the barrier height were greater than about 
200 cm-l • 

On the basis of the barrier height for methyl alcohol 
it seems probable that more numerous examples of high 
barriers in the sense of the present paper will be found 
among the molecules of the second type than in types 
one and three. There is, however, one difficulty which 
may occur. As the ratio (CdC)* approaches unity, the 
splittings of all the energy levels become identical, so 
that the observed lines are not split at all, even though 
the splittings of the energy levels may be large. Unfor­
tunately the second type of molecule is just one for 
which (CI/C)* may be close to unity. However, even 
in this case certain of the lines will show a splitting of 
the order of magnitude of the splittings of the energy 
levels themselves. Unfortunately these lines may in­
volve high J and K values where both the identifications 
of the lines and the computations become very difficult. 
These circumstances may explain why Solimene and 
Daileyl3 have not observed any splittings in the higher 
torsional satellites of the low J transitions in l,l-di-

(
C2 * 

P.=px'- c) p/, 

Pz 

[U2+V2+W2Jt 
13 N. Solirnene and B. P. Dailey, J. Chern. Phys. 22, 2042 (1954). 
14 D. G. Burkhard, Trans. Faraday Soc. 52, 1 (1956). 

fluoroethane. The acetaldehyde molecule, however, is 
one of the second type in which the ratio (CdC)* is such 
that the line splittings should be easily observable. 

APPENDIX 1. GENERALIZATION TO MORE 
ASYMMETRIC TYPES OF MOLECULES 

The theory of hindered rotation in molecules with 
relatively high potential barriers has been given for 
only a specific, simple type of asymmetric molecule. 
However, the methods used can be generalized to more 
asymmetric molecules. 

A slightly more complex type is one consisting of a 
completely asymmetric component linked in an arbi­
trary manner to a symmetric component. This type of 
molecule has been treated by Burkhard.14 The kinetic 
energy is 

2T= AWx
2+ BWy2+Cwz2- 2Dwywz- 2Ewxwy 

-2Fwxwz+C2XL2C2XWz. (31) 

The Hamiltonian can be expressed in terms of the total 
angular momentum components, P i= aT / aWi, and the 
momentum conjugate to x, px= aT/ax. In the high 
barrier case it is again important to make a transforma­
tion to a molecule-fixed system of axes which is now 
defined by the transformation 

W 

v 

U 

p' y 

P/ 

(32) 
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in which the following abbreviations have been used: 

u=AB-J!l, v=AD+EF, w=ED+BF, 
and where now 

(
C2)* C2[U2+~,2+W2]! 

C = A principal' Bprincipal . C principal' 
(33) 

The new form of the Hamiltonian is very similar to that of the simpler type of asymmetric hindered rotator and 
gives rise to the following matrix elements 

h2 2~ 

HJKTnJ(K+l)T'n' =-(2K +1)[(1 -K)(1+K +1)]! f PKTn*(x)e-;xP(K+1)T'n,(x)dx 
2 Jo 

{ [
V(AV2+BW2+2EVW) 

(V2+W2) (lt2+V2+W2) 

w(wD-vF) ] 

(V2+W2) [U2+~,2+W2]! 

(34) 

{[ 
u(B-A) (VL W4) (vD+wF)-4u2vw(wD-vF) 4UVW(WD-VF)] 

. (U2+V2+W2) + (U2+V2+W2) (V2+W2)2 + (V2+W2)2[U2+V2+W2]! 

[ 
U(vLW2)(wD-vF) vw(vD+wF) 

-i +-------
(V2+W2)2[u2+V2+W2]! (V2+W2) (U2+V2+W2) 

Except for the imaginary part of the coefficients of 
the off-diagonal elements, these matrix elements have 
exactly the same form as those for the simpler type of 
asymmetric hindered rotator. However, the internal 
energies, EKrnint, must be computed with new modified 
values for u and (C1C 2/C)* 

{ 
C{U2+~'2+W2]!} 

u= - K 1----------­
A principal' B principal' C principal 

(

C2Cl)* C2[uCl-vD-wF] 

C = A principal' Bprincipal . Cprincioal' 

(35) 

The hindered rotation splittings will now be functions 
of the principal moments of inertia and five additional 

+ UVW([AV2+BW2+2EVW]-U[VD+WF])]}. 

(V2+W2)2(U2+V2+W2) 

parameters, for example 

( CC
1)*, ~o, U, v, w. (36) 

The situation becomes much more complicated for 
hindered rotators consisting of two asymmetric com­
ponents.15 For this type of molecule the moments of 
inertia of the entire molecule as well as the internal 
angular momentum of either component of the mole­
cule, when viewed from a coordinate system fixed in the 
other component, will be functions of the internal rota­
tion angle, x. For this reason the transformation to a 
molecule-fixed coordinate system can be accomplished, 
at least easily, only in zeroth order; and the matrix 
elements of the Hamiltonian will still contain compli­
cated rotation-hindered rotation interaction terms. 

15 D. G. Burkhard, J. Chern. Phys. 21, 1541 (1953); D. G. 
Burkhard and J. C. Irvin, J. Chern. Phys. 23, 1405 (1955). 


