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The hindered rotation fine structure of the J = 0-> 1, K = 0->0 transition which has been observed by 
Venkateswarlu, Edwards, and Gordy in normal methanol as well as in five additional isotopic species can 
be understood only qualitatively on the basis of earlier investigations of the theory of hindered rotation in 
methanol. It has been shown that the frequency separations between the various torsional transitions and 
the splitting of each of these can be explained quantitatively by including in the theory the effects of the 
vibration-hindered rotation interactions during the rotation of the whole molecular framework in space. 
The effects of the asymmetry of the rigid hindered rotator, the Coriolis interactions, and the centrifugal 
distortion of the molecule are discussed separately. A frequency formula for the transition is derived which 
contains essentially only four new rotational constants. Three of these depend solely upon the known struc­
ture of the molecule and the elastic force constants and can therefore be calculated from a knowledge of the 
vibrational spectrum. Since this latter has never been analyzed in more than a rough way some small adjust­
ments have been made in the indicated values of the elastic constants which are within the limits of uncer­
tainty. This adjustment is made for the normal molecule after which the three rotational constants are 
calculated for the remaining isotopic species without further adjustment. The fourth constant in the fre­
quency formula describes the dependence of the barrier height upon the normal coordinates and is the only 
constant which must be determined empirically for each isotopic species. It has thus been possible to predict 
the 30 observed separations and splittings with the aid of essentially only six empirical constants. The 
agreement with experiment is remarkably good with one possible exception where the theory predicts for 
the fully deuterated methanol a very large splitting of the normal state line whereas the line in question is 
observed to be single. It is not improbable, however, that the large splitting actually exists and that the 
second component lay too far away to be recognized. 

INTRODUCTION 

RECENTLY Venkateswarlu, Edwards, and Gordyl 
have reported the positions of the J =D-+1, 

K = o~ lines of methyl alcohol for the normal molecule 
as well as for five additional isotopic species. Since the 
transitions in the torsional states, characterized by 
n=O, 1, and 2, have been found to be split into two 
components these data comprise some 36 frequencies in 
all. The positions of the frequencies observed by Ven­
kateswarlu, Edwards, and Gordy are shown in Fig. 1 
together with a very qualitative indication of their 
intensities. l It will be observed that the positions of the 
doublets corresponding to the various n values as well 
as the doublet splittings vary in an apparently irregular 
fashion in going from one isotopic molecule to another. 

The general qualitative appearance of this group of 
lines can be understood readily on the basis of previous 
work on the theory of hindered rotation in methanol.2-4 

The transitions in question are ones in which the quan­
tum numbers most intimately connected with the in­
ternal rotation namely K, n, and 1', (using the notation 
of the papers cited), do not change, and in particular 
the K transition is D-+O. In zeroth approximation one 
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would expect to observe a single line. This line would 
however be multiple with components corresponding 
to the possibilities n=D-+D, 1~1, 2~2, etc., as well as 
to the transitions 1'= 1~1, and 1'=2, 3~2, 3. (In 
general, 7 may assume the values 1, 2, and 3 each of 
which denotes a different energy level. When K=O, 
however, the levels 7= 2 and 3 constitute a degenerate 
pair,) In higher approximation, various perturbations 
will separate the multiple line into distinct components. 
The largest effect might be expected to be a type of 
vibration-rotation interaction separating the various n 
transitions. The slight asymmetry of the methanol 
molecule should, moreover, split each 1$ line into a 
doublet corresponding to the two 7 transitions thus 
qualitatively producing the observed group of lines. 
The quantitative calculation of the various shifts (due 
to the n transitions) and the splittings (due to the T 

transitions) cannot be made on the basis of the papers2- 4 

where vibration-hindered rotation interactions were 
neglected. In particular, if these theories are employed 
the splittings in general turn out to be much smaller 
than those observed and to vary quite differently with 
isotopic species. 

An advance towards incorporating the effects of vi­
brational perturbations into the theory of hindered 
rotation has been made by Kivelson5 who applied his 
results very successfully to the J = D-+ 1 lines in the 
symmetric hindered rotator, methyl silane, CH3SiHa. 
He used a simple approximate frequency formula which 
contained a number of empirically determined con-

5 D. Kivelson, J. Chern. Phys. 22, 1733 (1954); 23, 2230 and 
2236 (1955). 
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stants. This latter feature makes his theory somewhat 
unsatisfactory when extended to apply to methyl 
alcohol since additional vibration-hindered rotation 
interaction terms have been found to be of importance 
in this molecule, and the number of empirical constants 
needed would be too large for a convincing check be­
tween theory and experiment. 

The program to be followed in the present paper 
consists in calculating the energy levels giving rise to 
the lines in the J = 0-> 1 group taking account of the 
interaction between the hindered and over-all rotations 
and the normal vibrations. These latter may be taken 
as known for, although no rigorous normal coordinate 
treatment is available for methanol, in molecules of this 
type it is well known that the normal vibrations may 
be well approximated by considering that the individual 
atoms vibrate either parallel or perpendicular to the 
bond directions. Consequently the observed funda­
mental infrared bands furnish the required elastic 
constants. 

The various terms which contribute to the energy 
levels may be grouped in the following manner. 

1. Rigid Hindered Rotator 

In zeroth approximation the methanol molecule may 
be represented, as it was in the earlier papers, by a 
model consisting of a rigid methyl group and a rigid 
0-H bar which may perform a mutual internal rota­
tion subject to a hindering sinusoidal potential. The 
only parameters which are involved are the dimensions 
of the molecule together with the magnitude of the 
potential barrier. These are all known from the earlier 
investigations. This model yields the dominant terms 
which determine the gross position of the J = 0-> 1 lines. 
It further introduces a splitting of the lines but the 
magnitude of the splitting depends upon the square of 
the product of inertia D. This quantity is very small in 
the case of normal methanol and the resulting splitting, 
as has been mentioned, is much smaller than that 
observed. 

2. Coriolis Interaction 

An important contribution to the detailed expression 
for the energy levels is the Corio lis interaction between 
the internal rotation and the angular momentum associ­
ated with the normal vibrations of the molecule. Al­
though the actual calculations are complicated and 
lengthy the only constants which are involved are (a) 
the molecular dimensions and barrier height and (b) the 
elastic constants of the molecule. These may be taken 
to be known although there is some uncertainty as to 
their precise values since they are determined through 
the approximation that the atoms move either along or 
perpendicular to the bond directions. It is found that 
the best agreement between the observed and predicted 
J = 0-> 1 lines is found by making small and reasonable 
adjustments in the values of the elastic constants as 
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FIG. 1. The observed hindered rotation fine structure of the 
J = 0-> 1, K = 0->0 transition in six isotopic species of methyl 
alcohol (Venkateswarlu, Edwards, and Gordy). The numbers 
above the lines give the splittings in Me/sec. 

determined from the positions of the near infrared 
bands. 

The actual calculation, as has been mentioned, is 
very lengthy, and it has been found advantageous to 
make it in two steps. The first step consists in examining 
in detail the principal contribution to the Coriolis inter­
action, namely the actual influence between the rota­
tions and that normal vibration in which the 0-H 
bar is allowed to move elastically in its own plane 
through a tipping motion relative to the methyl group. 
In this relatively simple model the remaining degrees 
of freedom are considered to be frozen. In the second 
step the smaller effects of these remaining normal 
vibrations are treated as additional vibration-hindered 
rotation perturbations; but at this point certain simpli­
fying assumptions may be introduced without seriously 
affecting the accuracy of the resulting energy levels. 

3. Centrifugal Distortion 

The final set of terms arises from the fact that the 
molecule is distorted due to the balance between the 
centrifugal and the elastic restoring forces. Three effects 
may be distinguished. In the first place a centrifugal 
distortion will alter slightly the over-all rotational levels 
giving rise to terms proportional to the quartic com­
binations of the rotational quantum numbers J and K. 
These terms, which are present in all molecules, will 
affect all components of the line J = 0-> 1 equally and 
hence introduce neither shifts nor splittings. They can 
be ignored in the present discussion. The second set of 
terms arises from the influence of the centrifugal dis­
tortion upon the hindered rotation. One may say that 
the distorted molecule possesses effective moments and 
products of inertia which differ from those of the non­
rotating molecule. This effect, which does contribute to 
the shifts and splittings, depends only upon the mo­
lecular dimensions, the barrier height, and the elastic 
constants, all of which may be taken as known. 

The last effect of the centrifugal distortion is its 
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influence upon the barrier height and hence upon the 
hindered rotation levels. This dependence of the barrier 
height upon the displacements of the atoms cannot be 
calculated in any simple way although a qualitative 
classical argument may be made which does yield the 
correct orders of magnitude. In the present paper, how­
ever, the above-mentioned dependence will be repre­
sented through six empirically determined constants, 
one for each isotopic species. Thus with the aid of six 
constants it is hoped to predict the thirty observed 
shifts and splittings. 

The actual mechanics of the vibration-hindered rota­
tion perturbation calculations are simplified by per­
forming a contact transformation on the Hamiltonian. 
The new form of the Hamiltonian is such that the inter­
action terms between the hindered rotation, the over-all 
space rotation, and the small vibrations appear as true 
perturbation terms; that is, of smaller order of magni­
tude than the rigid rotator terms. This can be accom­
plished by transforming to a new system of rotating 
axes with respect to which the hindered rotation and 
small vibration motions appear free of internal angular 
momentum, at least in zeroth order. 6 The zeroth-order 
internal rotation wave functions and energies still have 
the form given in the earlier papers but depend upon 
the molecular parameters in a slightly different manner 
since the transformation to the new Hamiltonian results 
in a change in the boundary conditions. 

where 

In the integral over the internal rotation angle, x, the ± 
signs belong to K' = =j= 1, respectively. Using the new 
form of the Hamiltonian the contribution of the n-+n', 
(n'~n), matrix elements is completely negligible. 

Since for all isotopic species of methanol IJ2«B2, to 
a very good approximation one is led to the following 
expression which is simply the rigid rotator frequency 

(2) 

Venkateswarlu and Gordy8 have recomputed the six 
structural parameters of methyl alcohol under the as­
sumption that the n=O-+O lines are given by the simple 

6 This process is illustrated in detail in the preceding paper for 
the hindered rotation-over-all space rotation interactions in the 
case of the simple theory of hindered rotation. 

7 The matrix elements of the Hamiltonian are given by 
Eqs. (12). 

RIGID HINDERED ROTATOR 

As a first step toward an understanding of the 
J = {}---71, K = {}---70 frequencies these will be computed 
on the basis of the simple theory of hindered rotation 
in which the molecule is represented by the rigid model 
hindered rotator. In a symmetric hindered rotator made 
up of two truly rigid components a LlJ = 1, LlK = 0 
transition, although consisting of several T-+T, n-+n 
components, would, as mentioned previously, appear as 
a single frequency given solely by the rigid rotator 
energy since the hindered rotation splittings of the 
energy levels are independent of the quantum number 
J. In an asymmetric, vibrating molecule, however, 
there exists a J dependence of these splittings which 
would give rise to a splitting in the observed lines. 

The frequencies predicted by the rigid model can be 
obtained most easily if the Hamiltonian of the hindered 
rotator is given in a form in which the interaction terms 
between the hindered rotation and the over-all rotation 
in space appear as small as possible, as was done in the 
preceding paper.7 In methyl alcohol the off-diagonal 
matrix elements of this Hamiltonian arising solely 
through the slight asymmetry of the molecule are very 
small compared with the differences in the diagonal 
matrix elements, and for J = 1 they can be treated as 
perturb a tion terms. The expression for the J = {}---71 
frequencies is given with good accuracy by second-order 
perturbation theory 

(1) 

formula (2). The Venkateswarlu-Gordy values of the 
moments and product of inertia, based on their small 
modifications in the structural parameters, will be used 
throughout the computations in this paper, while the 
Ivash-Dennison value of the barrier height (H = 374.82 
cm-1)4 is employed for all isotopic species. A numerical 
substitution shows that (2) is an exceedingly accurate 
approximation to (1) for all the 0-H isotopic species 
but may be in error by as much as 40 Mc/sec in the 
0-D isotopic species. However, since the bond dis­
tances and angles are only effective values it was not 
felt worthwhile to make further small changes in the 
structural parameters.9 

8 P. Venkateswarlu and W. Gordy, J. Chern. Phys. 23, 1200 
(1955). 

• Since the theory of the vibration-hindered rotation inter­
actions in methyl alcohol is examined in detail in this paper it 
would have been possible to compute new effective bond distances 
and angles for which the averaging effects of the vibration-
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TABLE 1. Rigid hindered rotator splittings of the n=O->O transitions in Me/sec. 

Isotopic molecule C12H,OH C13H,OH 

Predicted 
Rigid hindered 0.021 0.026 
Rotator splittings 

Observed 4.49 4.43 Splittings 

The splittings of the n=~O lines computed on the 
basis of the rigid model hindered rotator are shown in 
Table I for the six isotopic species. They are propor­
tional to D2/B2, and for the O-H isotopic species are 
much smaller than those observed. Clearly the further 
effects of the Coriolis forces and of the centrifugal dis­
tortion must be considered. It will prove convenient to 
begin by discussing the centrifugal distortion. 

CENTRIFUGAL DISTORTION IN METHYL ALCOHOL 
SIMPLIFIED SEMICLASSICAL DESCRIPTION 

As a first step toward an understanding of the 
dominant vibration-hindered rotation interactions in 
methyl alcohol, the effect of the centrifugal distortion 
of the molecule on the observed frequencies will be 
examined on the basis of a simplified picture. If the 
small asymmetry of methyl alcohol is neglected the 
effect of the centrifugal distortion can be treated very 
simply on the basis of a semiclassical description of 
the molecule. 

Since the transition of present interest is K = ~O 
the classical motion corresponds to an end-over-end 
tumbling in space of the whole molecular framework. 
During this rotation in space the hydroxyl and methyl 
groups spin about each other in their mutual hindered 
rotation motion. The centrifugal forces arising from the 

H 

FIG. 2. The chemical coordinates and symmetry properties of 
the methyl alcohol molecule. The symmetry operation x->-x, 
where the internal rotation angle, x, is defined by hydrogen atom 1 
of the methyl group; 2~3, an interchange of hydrogen atoms 2 
and 3 of the methyl group, is equivalent to a reflection in the 
COH plane. 

hindered rotation interactions (but not the ordinary vibration­
rotation interactions) have been taken into account. It is certain 
that these would introduce only very minor changes. 

C12D,OH C12H,OD C13H,OD C12D,OD 

0.012 13.00 11.58 23.55 

3.04 15.13 13.17 0 

two kinds of rotations tend to distort the molecule until 
the atoms have taken on new equilibrium positions 
depending upon the amount of rotation. The amount of 
rotation in a particular state, described by the quantum 
numbers J, T, and n, (K=O), is given by the quantum­
mechanical expression for the rotational energy in that 
state, and the problem can be treated as a simple 
statics problem. Both the new equilibrium configuration 
and the change in energy due to the centrifugal distor­
tion are determined from the condition that the total 
energy must be a minimum in the new equilibrium con­
figuration, where both the energy due to the molecular 
forces and the two kinds of centrifugal forces must be 
considered. 

If the small asymmetry of the molecule is neglected, 
this energy is simply 

h
2
( 1 1) TVJm =- -+- (J2+J) 

(K=O) 4 A B 

1( 1 1) +- -+- (Om!p",2!Om) 
2 C1 C2 

H 
+-(Om !1-cos3x! OTn)+t L: ki(oqi)2, (3a) 

2 

where (Om! p,,2! Om), for example, 1S the diagonal 
matrix element of px2 : 

The first term in (3a) represents the over-all rotation 
while the second and third terms give the average value 
of the kinetic and potential energies of hindered rota­
tion. The oqi are the chemical coordinates describing 
motions where the atoms move either along or per­
pendicular to the chemical bonds. For this type of 
molecule it is well known that cross terms in the poten­
tial, namely kijoqiOqj, while present are small enough to 
be neglected. Both the moments of inertia, A, B, C l , 

and C2 , and the barrier height, H, are functions of the 
vibrational coordinates. For example 

A=Ao+L: A/ll(oqi)+"', 
i (4) 

H=Ho[1+ L: a/1
) (Oqi) + ... ]. 

i 
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However, to first order in the (oq;) they are functions 
only of the totally symmetric vibrational coordinates 
since the energy must be invariant under the allowed 
symmetry operations of the molecule. Since the poten­
tial energy of methyl alcohol is invariant to the opera­
tion, x-+-x, 2-+3, (Fig. 2), and since this operation is 
equivalent to a reflection in the COH plane, the vibra­
tional degrees of freedom of methyl alcohol fall into the 
irreducible representations of the point group C •. The 
molecule has eight vibrational degrees of freedom which 
are symmetric (+) and three, besides the hindered 
rotation, which are antisymmetric (- ) with respect to 
reflections in the COH plane. Since the expression for 
W must be invariant under such reflections, the summa­
tions in Eqs. (4) must be carried out only over the eight 
(+) vibrational degrees of freedom. However, the ex-

11 [b" (1) (Om I sin3x 10m) J2 

.E-------
1/=9 2kl'H 

pression for W may contain terms of the form 

.E bJ'(l) (oqJ') (Om I sin3x 10m), (3b) 
J' 

where this summation is now over the three (- ) vibra­
tional degrees of freedom only. Higher order terms in 
the Oqi, and terms involving cos6x, sin6x, . .. can be 
neglected. . 

The changes in the vibrational coordinates induced 
by the centrifugal distortion in a state characterized by 
J, T, n, are determined from the condition of minimum 
energy 

aWJTn 
---=0 i=l,· ", 11. 
a (oqi) 

(5) 

With values of (Oqi)JTn given by these relations, the 
value of W is changed by the centrifugal distortion by 
an amount 

(6) 

Formula (1) for the general (J -l)~J, K =0-+0 frequency is therefore modified by the centrifugal distortion terms 

where the first centrifugal distortion term, a function 
of J3, arises from the ordinary vibration-rotation inter­
actions. It has the same value for all the lines of the 
J = 0-+ 1 fine structure and merely shifts all of them to 
lower frequency by the same amount. The second term, 
linear in J, arises from the vibration-hindered rotation 
interactions and is the term proposed by Kivelson· for 
symmetric hindered rotators from a consideration of 
the complete Hamiltonian. 

In the approximation in which methyl alcohol can be 
considered a symmetric molecule, Fv is given by 

8 1 {h2lA;<1) Bi(l)] Ho } 
Fv=-.E -- - --+-- '-a/I) . 

i ki (+) 4 A02 B02 2 
( 

(8) 

Since the potential constants, a/ l ), can be determined 
neither from the pure vibration spectrum in the infrared 
nor from the pure hindered rotation microwave spec­
trum, the constant Fv can only be determined empiri­
cally from the observed J = 0-+ 1 frequenci~s themselves. 

(7) 

In the symmetric molecule approximation C,. is given by 

8 1 
Cv=+.E-

;=1 ki(+J 
<+) 

{ 
h2(A;(l) B/I)) h2(Cl/l) C2/1)) t 

X - -+- .- -+- . 
4 Ao2 B02 2 CI 02 CZ02 

(9) 

Since the moments of inertia and their derivatives, 
A 0, A i(l), • •• are functions only of the masses of the 
atoms and the known structure of the molecule, and 
since the elastic force constants can be estimated, with 
fair accuracy at least, from a knowledge of the infrared 
frequencies and their assignments,lO the constant Cv can 
be computed for each isotopic molecule. For the normal 
molecule the following estimate has been made 

C,,= -1.028+0.212+0.045 
+ (-0.138+0.097+0+0+0)= -0.81l\lc/sec, 

10 Ivash, Li, and Pitzer, J. Chern. Phys. 23, 1814 (1955). 
References to earlier work are given in this paper. 
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where the first and largest term arises from the deforma­
tion of the COH angle, the next two terms from the 
stretching of the 0-Hand C - 0 bonds, respectively, 
and the terms in brackets from the five (+) degrees of 
freedom involving motions of the methyl group. These 
are to be discussed in more detail later. The contribu­
tions of the methyl group can be expected to be small, 
partly because the effect of the stretching modes cancels 
the effect of the bending modes and partly because the 
effective mass involved in the methyl motions is greater 
than that involved in the hydroxyl motions. 

An attempt was made to fit the observed frequencies 
for C12HsOH by means of (7) with this value for G. 
and a value for Fv determined empirically to give the 
best possible fit. This attempt resulted in a failure to 
predict in any way satisfactorily the positions of the 
lines and pointed up the fact that Coriolis interactions 
play an important role. These will be considered next, 
starting with a discussion of the dominant terms. 

O-H ROCKING MODEL FOR METHYL ALCOHOL 
THE DOMINANT CORIOLIS INTERACTION TERMS 

The foregoing semiclassical description of the cen-
trifugal distortion of the methyl alcohol molecule is 
based on an entirely static picture of the vibration­
hindered rotation interactions and consequently fails to 
give the effects of the Coriolis forces which arise during 
the rotation of the whole molecular framework in space. 
These are somewhat complicated in form but the domi­
nant Corio lis effects can be understood on the basis of 
an approximate description of the molecule. 

From purely classical considerations it seems highly 
plausible that the Coriolis coupling between the 
hindered rotation and the vibrational degrees of freedom 
should receive its major contributions from the deforma­
tion of the COH bond angle resulting in a tipping or 
rocking motion of the 0-H bar in the COH plane. If 
the atoms of the molecule move in this 0-H tipping 
motion during the end-over-end tumbling in space of 
the whole molecular framework, (the K=O space rota­
tion), the 0-H bar will be subject to a Coriolis force 
which causes it to precess about the symmetry axis of 
the CH3 pyramid. During the 0-H tipping motion 
the Coriolis forces therefore tend to excite the hindered 
rotation giving rise to an interaction between the two 
degrees of freedom. Since the vibrational motion is 
almost at right angles to the angular velocity vector 
for the end-over-end tumbling, and since the 0-H 
tipping frequency is one of the lowest in methyl 
alcohol, the effect of this Coriolis interaction can be 
expected to be quite large, especially in the excited 
torsional states where the hindered rotation frequencies 
are not appreciably less than the 0-H tipping fre­
quency so that the effect of the Coriolis forces is not 
readily averaged out during a cycle of the tipping mo­
tion. In all the other normal coordinate motions the 
effect of this Coriolis interaction can be expected to be 
very much smaller. In the 0- H stretching motion, for 

example, the vibrational velocities are almost parallel 
to the angular velocity vector for the end-over-end 
rotation, and the vibrational frequency is very much 
greater than the hindered rotation frequencies so that 
the small CorioUs interaction can be expected to be very 
largely averaged out during a vibrational cycle. The 
Coriolis interaction between the hindered rotation and 
all the other normal vibration motions can likewise be 
expected to exert a very small effect. 

The major vibration-hindered rotation perturbations 
arising through the Coriolis coupling between the 
hindered rotation and the vibrational degrees of freedom 
can therefore be expected to come about largely through 
the deformation of the COH bond angle, and these can 
be understood on the basis of a new approximate model 
for the molecule. The molecule is still assumed to consist 
of a rigid 0- H bar and a rigid CH3 pyramid. Now, 
however, the mutual motion of the two portions of the 
molecule is to consist of the hindered rotation and a new 
degree of freedom, the deformation of the COH angle. 
The solution of this problem will of course lead to terms 
in the frequency formula such as those given by Eqs. 
(1) and (7) but should give additional terms arising 
largely through the Coriolis coupling between the 
hindered rotation and the COH deformation mode. 

The kinetic energy for the new model of the molecule 
can be derived by the methods described previously.l1 
The velocities of the atoms of the molecule relative to 
its over-all center of mass are described most easily in 
terms of the angular velocities of the two portions of 
the molecule and the intrinsic velocities of the atoms 
relative to a coordinate system which rotates in space 
with the equilibrium configuration of the hydroxyl 
group. With the introduction of the internal rotation 
angle x, the kinetic energy becomes 

2T= Aw"?+ BWy2+Cwz
2- 2DwyWz- 2C2wz± 

+C2±2+gua2+2Bllw;rci. (10) 

The notation is that used in the preceding paper. The 
vector w denotes the angular velocity of the hydroxyl 
group which can be expressed in terms of Euler angles 
0, 1/;, and q}J; where the x-y-z coordinate system is an 
orthogonal system of axes rotating with the equilibrium 
configuration of the hydroxyl group, where the z-axis 
is parallel to the symmetry axis of the hindering poten­
tial and the y-axis lies in the COH plane. The variable 
COH angle is denoted by a, and the moments and 
product of inertia, A, B, C, and D, as well as the 
Coriolis interaction constant, Bn, are now all functions 
of a. Since the 0- H rocking motion is confined to 
small angles about an equilibrium value, ao, the solution 
of the problem will involve an expansion of a about this 
equilibrium value 

a=ao+Oo:. 

11 See reference 3; also, D. G. Burkhard, "Coupling of the 
hindered rotation and the OH rocking motion in methyl alcohol" 
(private communiation). 



54 K. T. HECHT AND D. M. DENNISON 

In zeroth order the 0-H tipping motion will be simple 
harmonic about ao. 

With the introduction of angular momentum com­
ponents, Pi, and the canonical momenta conjugate to 
a and x, 

aT aT aT 
Pi=-, pa=-, px=-, 

dWi ad: ax 

the classical Hamiltonian for the 0-H rocking problem 
becomes 

PxPzB A 
+ +tpa2

'-----

(BC1-D2) (guA-Bu2) 

(BC-D2) 
+tPx2 + V(x,a), (11) 

C2(BC-V) 

where V (x,a) = (Ho/2) (1- cos3x) + (kaI2) (00)2+ higher­
order terms involving both x and a. 

In this Hamiltonian, however, the very small vibra­
tion-hindered rotation interactions do not appear as 
small perturbation terms. The Hamiltonian (11) is 
clearly not in a form in which it is simply that of an 
ordinary rigid rotator plus that of a simple hindered 
rotator plus that of a simple harmonic oscillator de­
scribing the 0- H tipping motion in zeroth order with 
additional terms which are higher-order perturbation 
terms arising from the coupling of the O-H tipping 
motion, the hindered rotation, and the rotation of the 
whole molecular framework in space. As a first step in 
the solution of the 0-H rocking problem, the Hamil­
tonian (11) will be transformed to one having such a 
simple form, so that the interaction between the 0-H 
tipping motion and the hindered rotation can be treated 
as a simple perturbation problem. Before proceeding 
with the transformation, however, the difficulties in­
herent in the present form of the Hamiltonian must be 
understood. 

It can be shown that P x, Py , and P z are the com­
ponents of the total angular momentum vector, but in 
this form of the Hamiltonian the total angular mo­
mentum contains contributions from the internal rota­
tion and the angular momentum of the O-H tipping 
motion. The momentum px is a function of more than 
the hindered rotation degree of freedom alone. Likewise, 
pa depends on the rotational degrees of freedom and is 
not a function of the 0-H tipping motion alone. Even 

if the terms involving px and pa were ignored com­
pletely the remaining terms in the Hamiltonian would 
not be the correct rigid rotator terms since the moment 
of inertia A is replaced by A - (Bu)2/ gu and the mo­
ment of inertia C is replaced by C1=C-C2 in these 
terms. The coupling between the hindered rotation, the 
over-all rotation, and the vibrational motion is given 
largely by the terms containing the cross products 
pxP y, pxPz, and paP x; but the matrix elements arising 
from these terms in the quantum-mechanical formula­
tion will give contributions also to the zeroth-order 
rotational energies. 

These difficulties all arise from the fact that there is 
an internal angular momentum associated with both 
the hindered rotation and 0-H tipping motion when 
viewed from a system of axes rotating in space with the 
equilibrium configuration of the hydroxyl group. The 
rotating axes which would serve as a proper framework 
for the description of the hindered rotation and O-H 
tipping motions have to be such that these motions 
appear free of internal angular momentum, at least in 
zeroth order. In the ordinary vibrating and rotating 
molecule any coordinate system fixed in the limiting 
rigid molecule can serve as such a proper system of 
molecule-fixed axes since the small-vibration coordi­
nates can always be chosen as a linear combination of 
several chemical coordinates in such a way that the 
internal angular momentum vanishes, at least in zeroth 
order, during a change of anyone small-vibration degree 
of freedom. In the simplified 0-H rocking model for 
the methyl alcohol molecule, however, the nature of the 
molecular forces dictates the choice of the internal 
degrees of freedom, and since these are initially not 
free of internal angular momentum with respect to the 
system of rotating axes which seem the most natural 
choice from the point of view of the molecular forces, 
a proper molecule-fixed system of rotating axes must 
first be found if the vibration-hindered rotation inter­
action problem is to be formulated as a simple perturba­
tion problem. 

In the preceding paper it was shown how such a 
system of axes can be found in the case of the simple 
hindered rotator by a transformation of the Hamil­
tonian which removes zeroth-order terms containing 
products of the form pxPi . In the 0-H rocking problem 
such a transformation must also remove the cross term 
between pa and P x arising from the angular momentum 
of the 0-H rocking motion. The transformation must 
be a proper contact transformation from the old coordi­
nates a, x, 6, 1/;, and CPl, and their canonically conjugate 
momenta to new canonical coordinates and momenta, 
a', x', 6', etc. . . . The mechanics of the transformation 
is much simpler in terms of the non canonical angular 
momentum components, Pi, and the momenta pa and 
px, where the new momentum and angular momentum 
components must again satisfy the Poisson bracket 
relations 

(Px',Py')=P/, (12a) 
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and cyclically. 

(P/,pa')=O, (P/,px' ) = 0, (P/,a')=O, 

( 
I ') (' ') _ (12b) Pi,X =0, Pa ,px -0. 

The zeroth-order term containing the product between 
pa and P x can be transformed out of the Hamiltonian 
by means of the following transformation: 

Bll(a) 
pa=pa/+--Px', 

A (a) 
a=a/, 

o 
cosu(a) 

sinu(a) 

(13a) 

o llPx'j - sinu(a) P u' , 
cosu(a) P.' 

(13b) 

where transformation (13a) is chosen so that the coeffi­
cient of the pa' P x' term in the new Hamiltonian will be 
equal to zero for all values of a. Transformation (13b) 
is chosen to have the form of a rotation so that the rela­
tions (12a) are automatically satisfied, while u(a) is a 
function of a which must be chosen in such a way that 

pa= pa' + Bll(a)[p x' COS(C2)* x+ P u' sin(C2)* x], 
A (a) C 0 C 0 

(
C2)* 

px=px'- CoP.', where 

a=a' , X=X', 

Px 1 0 0 1 0 

Bo 
0 0 

the relations (pa',P/)=O are fulfilled. This will be the 
case if 

du Bl1(a) 
- --, 
da A (a) 

or, expanding in the parameter of smallness oa= (a-ao), 
if 

B
ll

(O) 

J.I(a)=--(oa) 
AD 

The transformation (13) must be followed by a further 
transformation which makes the ordinary rotation­
hindered rotation interaction terms in the Hamiltonian 
as mild as possible as discussed in the preceding paper. 
The complete transformation to the new form of the 
Hamiltonian is therefore 

0 cos(~) :x (C2)* sm C oX 01 Px' 
(14) 

Do C2) * (C * Py cosu(a) -sinu(a) -sin(c oX cos ;) oX 0 P/ , 
[B02+Do2Ji [B02+ Do2J! I 

-Do 
Pz 0 0 0 0 P/ sinu(a) cosu(a) 

[B02+Do2J! 
Bo J 

[B02+Do2J! 
1
J 

where Bo, Co, and Do are the equilibrium values of the 
moments and product of inertia, e.g., Bo=B(ao). They 
are therefore constants independent of a, as they must 
be if the Poisson bracket relations (Pa/,P/)=O are to 
be fulfilled for the complete transformation. Since the 
instantaneous values of B, C, and D cannot be used in 
transformation (14), this transformation removes only 
the zeroth-order part of the coupling terms of the form 
pxPi • In higher order there is an internal angular mo­
mentum associated with the combined hindered rotation 
and 0-H tipping motion, and the new Hamiltonian 
will contain terms of the type P/px'(oa) due to the 
Coriolis interaction between the hindered rotation and 
the O-H tipping motion, but this Coriolis interaction 
now appears as a perturbation term. 

Transformation (14) gives the new form of the clas­
sical Hamiltonian from which the correct symmetrized 
quantum-mechanical form of the Hamiltonian can be 
obtained as usual. The coefficients of this new Hamil­
tonian are somewhat complicated functions of the in­
stantaneous and the equilibrium values of the moments 
of inertia. However, the Hamiltonian has the simple 
form 

(0) 
H = H hindered rotation­

over-all rotation 

(0)+(1)+(2)+'" (1)+(2)+'" ( ) + H pure vibration + H vibration-hindered, 15 
rotation-over-all 
rotation perturbations 

and the coupling between the hindered rotation and 
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the 0-H tipping motion during the over-all rotation of 
the whole molecular framework in space can therefore 
be treated as a simple perturbation problem. 

The zeroth-order over-all rotation-hindered rotation 
Hamiltonian is in the form given in the preceding 
paper.I2 For the J = 1 states in all isotopic species of 
methyl alcohol, the asymmetry terms can be treated as 
perturbation terms, and the solutions of the symmetric 
hindered rotator terms can be used as zeroth-order wave 
functions. The slight modifications in these wave func­
tions in their dependence on the molecular parameters 
has also been discussed in the preceding paper. 

The pure vibrational or 0-H rocking part of the 
Hamiltonian is given by 

A 
H(0l+(~l+~2l+"'=!Gtp 1 G-tp 'Gt 

pure VIbratIOn 2 a ( A B 2) a 
gu - U 

in which G= 1/ (gllA - B U 2)C2(BC I - D2) is a function 
of a. In zeroth order, however, the vibrational part of 

the Hamiltonian has the harmonic oscillator form 

( 1 ka 
H 0) - 12+ (0)2 pure vibration --Po. - a , 

2J.La 2 
(17) 

in which J.La, the reduced mass, or rather the reduced 
moment of inertia, for the 0- H tipping motion is 
given by 

where 
(18) 

{
MOMH MOHmcHs MH2} 

gu= ---+ .-- [2, 
M OH (M OH+mcHS) M OH2 

in which the masses are identified by the subscripts 
describing the components of the molecule and in which 
I is the OH bond length. With this value for J.La the force 
constant for the OH rocking vibration, ka, can be 
estimated from the observed infrared COH deformation 
frequency; ka = J.LaW}. 

The perturbation terms arising through the coupling 
between the 0-H rocking vibrational motion and the 
hindered and over-all rotations have the form 

H (!)+(2)+'" _.!(P 12+P 12) { (I)(~ )+ (2) (oa)2 } 
vibration-hindered - 4 x y J.LU a va J.LlI aa --+ ... 
rotation-over all 2 
rotation perturbations 

+ : 
0 
{ aa (I) (oa) +aaa (2) (0;)2 + ... } (1- cos3x) + Px' P z' {J.L34a (il (oa) + J.L34 aa (2) (0;)2 + ... } 

+ HP+'px'+px'P +') {J.L14)O (oa) +J.LHaa (2) (0;)2+ . .. } 

+HP +' P/ + P/ P+') {J.L13a(l) (Oa)+J.L13 aa (2) (0;)2 + ... } 

(19) 

in which 

(
C2 * C * 

P+'=Py' cos C) 0 X-P./ sin( C
2

) 0 X. 

Only certain coefficients can give significant contribu­
tions to the J = G----+ 1, K = O~ frequencies, and these 
coefficients are listed as functions of the molecular con­
stants and their derivatives in Table II. The vibration­
hindered, rotation perturbation problem is now in a 
form in which it can be solved by standard perturba-

12 See Eq. (9) of the preceding paper. 

tion methods using the zeroth-order rotational and 
vibrational wave functions discussed previously. The 
parameter of smallness in the perturbation calcula­
tion is given by [hi (,uaWa) J1. Matrix elements of 
first order in this parameter, off-diagonal in the 0- H 
rocking vibrational quantum number, Va, and the 
torsional quantum number, n, can be transformed by 
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the usual methods!3 into second-order terms diagonal 
in Va and n, but not necessarily diagonal in the rotational 
quantum number, K. Since the rotational matrix ele­
ments off-diagonal in K can themselves be treated as 
perturbation terms, the second-order contributions to 

these matrix elements arising from the vibrational per­
turbations can to good approximation be neglected. 

The solution of the perturbation problem leads to 
the following J = O~ 1 frequency formula, valid to 
within the limitations of the 0- R rocking model: 

(20a) 

(20b) 

[ 
Gva ] - 2 FVa(Om [1-cos3x [Om)+--,;;-(om [px2[ Om) (20c) 

where 

for example, and where the upper sign applies when 
K' = + 1 while the lower sign applies when K' = -l. 

The first term in the new frequency formula, (20a), 
has the form of the symmetric rigid rotator expression 
(2), modified by the ordinary vibration-rotation inter­
action constants, the centrifugal distortion constant, 
DJ, and the constants, aVa, which account for the 
changes in the values of 1/ A and 1/ B resulting from 
the averaging effects during the COR deformation 
vibration. 

The second term (20b) gives the contributions arising 

(20d) 

---------------------- -

from the asymmetry of the molecule and has been 
discussed previously on the basis of the rigid model for 
the hindered rotator. 

The terms (20c) give the COR deformation contribu­
tions to the centrifugal distortion terms and are the 
same as those derived previously from the simple semi­
classical description of the centrifugal distortion, except 
that the constants Fv and Gv are modified by very small 
terms arising from the asymmetry of the molecule. Fv is 
the constant which must be determined empirically. 
Gv now has the value 

h2{ C1a(1) 2DoDa(l) Do2 [C!a(l) C1oBa(!)+Cla(J)Bo-2DoDa(!)]} 

'2 CI02 - Clo(BoCI O-Do2) + C1o(BoClo-Do2) (;:1-:-+ (BoClo-Do2) . 
(21) 

Except for terms smaller by an order of magnitude, 
Do/ Bo, this expression is exactly the same as that given 
previously by Eq. (9). Since Do/Bo has a value of about 
-0.003 for the O-R isotopic molecules and a value of 
about 0.03 for the 0-D molecules, these terms can be 
neglected, especially since uncertainties in the rota-

13 See, e.g., H. H. Nielsen, Revs. Modern Phys. 23, 90 (1951); 
or E. B. Wilson and J. B. Howard, J. Chern. Phys. 4,260 (1936). 

tional constants of about three percent must certainly 
be expected due to the uncertainties in the normal vibra­
tions. To sufficient approximation therefore the con­
stant Gv can be given by the simple formula (9). 

The last term in the frequency formula is an entirely 
new term arising through the Coriolis interaction be­
tween the hindered rotation and 0-R tipping motions, 
also partly through the asymmetry of the vibrating 
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molecule. This term can be written 

I<ornle~ixl :x ~!e~;xIK'T'n') 12 

-2 L L Dv,,2,----------
K'=+I n' (EK'T'n,-EoTn) 

-I 1+----------

1 < ornie~ix~ :x ~!e~ixiK'T'n')<K'T'n'l e=ix lorn>i 
-2 L (±1) L 2C.aDv,,--------------

K'=+I n' EK'T'n,-EOTn -I 1 + _______ _ 

The matrix elements containing (l/i)a/ ax arise from 
terms in the Hamiltonian of the form px'P+'(oa). Since 
these are the Corio lis interaction terms, (20d l ) can be 
expected to give large contributions to the J = ~ 1 
frequencies, especially in the excited torsional states. 

These matrix elements are somewhat complicated in 
form, and the summation cannot be carried out in 
general because of the dependence of the energy de­
nominator on the hindered rotation quantum numbers. 

TABLE II. Coefficients of the vibration -hindered 
rotation perturbation Hamiltonian. 

A,,(i) B"Il) 2Do BIlIO) 
~l1all)= ---- +----

Ao' [Bo'+Do'] [Bo'+Do'] Ao 

Clall) 2DoD"I') Do' 
~44aII)= ----+-----

Clo' Clo(BoClo-Do') Clo(BoClo-Do') 

{ 

ClalI) CloBa(l)+ BoCI,,(l) - 2DoD"II) } 
X --+----. 

Clo (BoClo-Do') 

aa II) = unknown pot en tial cons tan t 

[Bo'+Do']l BIlIO) BoDa(l) -DaB,,(I) 
~14a(I) --+ 

(BoClo-Do') Ao [Bo'+Do']l(BoClo-Do2) 

DaBalI) j C 2 (Bo+Clo) } 

~13a(1) = (BoClo-Do') I (BoCo-D;')-CB.4-D;.) 

C2(Bo'+Do2) } 

(BoClo-Do') (BoCo-Do') 

(20d3) 

If the differences in the internal rotation energies could 
be neglected in comparison with the 0-H rocking 
vibrational energy, hW(Il, the summations over the quan­
tum numbers n' and K' (with appropriate T') could be 
carried out directly. In that approximation the sums 
over the internal rotation matrix elements in (20d2) 

and (20da) turn out to be independent of the internal 
rotation quantum numbers, T and n, while the summa­
tion in (20d l ) yields 

(22) 

In that approximation therefore .the terms determined 
by the coefficients G.2 and GvDv shift all of the lines of 
the J = ~ 1 fine structure by the same amount so that 
the effect of these terms can be absorbed by the ordi­
nary vibration-rotation interaction constants, av , while 
the term determined by the coefficient Dv2 has much the 
same form as the centrifugal distortion term determined 
by Gv • It might, therefore, be expected that a simple 
formula of the Kivelson form, (7), should give an ap­
proximate fit for the frequencies provided that the 
constant Gv is replaced by Gv+ 2D}. Actually, the differ­
ences in the internal rotation energy (EK'T'n,-EOTn ), 
are for certain values of n' certainly not negligible com­
pared with the vibrational energy, and since the inte­
grals containing (l/i)(a/ax) have significant values for 
several values of n' the approximations inherent in the 
use of (22), for example, might be expected to lead to 
errors in the frequency splittings of from 2 to 10 Me/sec. 
Sums such as (22), however, are very useful as a check 
on the evaluation of the matrix elements. The summa­
tions over n' in (20d l ) and (20dz) will usually contain 
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three or four significant terms. In the summation 
(20ds), on the other hand, there is usually only one 
dominant term so that the energy denominator can be 
replaced by an average value, and to a very good ap­
proximation, (about ±O.OS Me/sec), this term is inde­
pendent of the hindered rotation quantum numbers n 
and T. The effect of the vibration-hindered rotation 
interaction constant Cv2 can therefore be absorbed by 
the ordinary vibration-rotation interaction rotational 
constants. This is a considerable simplification since 
each of the eleven vibrational degrees of freedom can be 
expected to contribute a term such as (20ds) with a 
significant value for the coefficient, C,2. Constants such 
as Dv, on the other hand, which give the strength of 
the Coriolis interaction between the hindered rotation 
and the vibrational degrees of freedom can be expected 
to have a large value only for the COH deformation 
mode, and complicated terms of the form (20d l ) and 
(20d2) can therefore be expected to have significant 
coefficients only for this one vibrational mode. 

The two new significant vibration-hindered rotation 
interaction constants Dyo? and CVaDva, like Gv, are func­
tions only of the elastic force constants and the known 
structural parameters. On the basis of the 0-H rocking 
model they have the following values: 

=_1_{h2[Bn(0)+ Da(1) _ DoBa(l)]}2 (23) 

2k", 2 CloAo CloBo CloB02 ' 

=_1 (
h2

J.tl4
a
(l»). (h2[_ Bn(O)]), (24) 

2k", 2 4 AoBo 

where most of the terms smaller by an order of magni­
tude, Do/ Bo, have been neglected in the approximate 
expressions. These constants can therefore be evaluated 
from known data. However, a certain amount of adjust­
ment is possible due to the uncertainty in the elastic 
force constant, ka, and the uncertainty in the actual 
form of the normal vibration motion. An adjustment in 
the force constant, k"" however, must affect the rota_ 
tional constants for all the molecules in exactly the same 
way, and the rotational constants for the isotopic 
species can therefore be expected to follow from the 
adjusted constants for the normal molecule. From an 
examination of the mass factors occurring in the expres­
sions for the rotational constants it can be seen that 
the rotational constants for the isotopic species can be 
obtained, to sufficient approximation, from those for 
the normal molecule by the following very simple, 

approximate isotopic rules: 

(Gv)isotope 1 ,lLisotope 1 (A 02) isotope 2 

, 
,lLisotope 2 (A 02)isotope 1 

(25) 

(26) 

in which J.t is the reduced mass involving the masses of 
the hydroxyl and methyl groups: 

mCHaMoH 
J.t= • 

(mcHa+MoH) 

The theory which has been developed up to this point 
uses a simplified model, and the physics behind the 
various terms is rather easily understood. It is satisfying 
that it gives the principal contributions and yields a fit 
with experiment which is quite good, (with a certain 
allowed adjustment in the constants for the normal 
molecule). A re-examination of the problem has been 
made and will be described in the following section in 
which all the degrees of vibrational freedom (not merely 
the 0-H rocking) have been considered. Although this 
greatly increases the complexity of the calculations, it 
essentially introduces no new empirical constants, and 
it does result in a substantially better fit. 

DETAILED EXAMINATION OF THE VIBRATION­
mNDERED ROTATION INTERACTIONS 

The detailed consideration of the vibration-hindered 
rotation perturbations in methanol is carried out in this 
section in order to incorporate into the theory the 
Coriolis effects of the vibrations other than the 0- H 
rocking motion. 

The eleven vibrational degrees of freedom of the 
molecule may be built up from the changes in the bond 
lengths and the bond angles which are illustrated in 
Fig. 2. There are eight (+) and three (-) degrees of 
freedom, symmetric and antisymmetric, respectively, 
with respect to reflections in the COH plane. The three 
chemical coordinates not involving the methyl group, 
namely the deformation of the COH angle, 00, the 
stretching of the 0- H bond, Oi, and the stretching of 
the C-O bond, oh, are all (+) vibrational degrees of 
freedom. The degrees of freedom involving motions of 
the methyl group may be expressed through the changes 
in the three C - H bond lengths os i, the three H CH 
angles 0'1' i, and the three HCO angles o{3i; but they must 
be built up in such a way as to have both the correct 
symmetry properties of the three fold methyl group and 
the correct symmetry, either (+) or (-), with respect 
to the symmetry operation, x~-x, 2~3, which leaves 
the potential energy of the molecule invariant. One 
possible choice having the correct symmetry is the 
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following: 
1 

Oq4= (os)0=-(OSI+0S2+0Sa) 
v'J 

1 
Oq6= (o'Y)0=-(0'Yl+0'Y2+ha) 

v'J 

1 
Oq6= (os)+= (i)![OSI-!(OS2+0Sa)J cosX--(OS2-0Sa) sinx (+) 

V2 

1 
Oq7= (fJ';-)+= (i)![O'Yl- !(0'Y2+0'Ya) J cosX--(0'Y2-fJ';'a) sinx 

V2 

1 
oqs= (0/3)+= (i)![0/31-!(0/32+0/3a)J cosX--(0/32-0/3a) sinx 

V2 
(27) 

1 
Oq9= (os)_= (i)![OSI-!(OS2+0Sa)J sinx+-(os2-oSa) cosx 

V1. 

1 
OqlO= (01')_= (i)![O'Yl-!(0'Y2+0'Ya)J sinx+-(0'Y2-0'Ya) cosx (-). 

V1. 

1 
oqu = (0/3)-= (j)![0/31- !(0!32 + o!3a) J sinx+-(0!32-0!3a) cosx 

V1. 

In terms of these eleven vibrational coordinates the 
kinetic energy for the completely nonrigid hindered 
rotator can again be derived most easily in terms of the 
angular velocity (0) of a framework of axes rotating in 
space with the equilibrium configuration of the hydroxyl 
group and the intrinsic velocities of the atoms of the 
two groups of the molecule relative to the equilibrium 
framework. With the introduction of the internal rota­
tion angle, x, the kinetic energy of the vibrating 
hindered rotator becomes 

+2Wr L B 1iQi+2wy L BZiQi+2wz L BaiQ, 
i 

+C2X2- 2C2wzx+ L gijQ;rh 
if; 

x {[ (01')+' - (0~)+'J2+[ (01')-' - (as)-'J2} 

+ 12mHx{[(0'Y)_'- (os)_'J[(o-y)+'- (08)+,J 

- [(0'Y)+' - (os)/J[ (o-y)_' - (os)-'J}, (28) 

in which mH is the mass of one of the hydrogen atoms 
of the methyl group and (01' )±', (os )±' are given by 

1 a 
(osh'=- -(osk 

y6 So 

So is the equilibrium distance of the CH bonds, and a is 
the equilibrium distance from one of the hydrogen 
atoms to the center of gravity of the Ha triangle. The 
last two terms arising through the distortion of the 
methyl group give an additional coupling between the 
vibrations and the hindered rotation but their effect on 
the J = (}--+ 1 frequencies can be shown to be completely 
negligible. The Coriolis interaction constants, B li , B 2i , 

B ai, the moments of inertia, A, B, and C, the product of 
inertia, D, and the new products of inertia, E and P, 
arising from the complete asymmetry of the molecule 
in its distorted configurations, are functions not only 
of the eleven vibrational degrees of freedom but also of 
the internal rotation angle, x. This latter dependence 
comes about through the methyl degrees of freedom. 
First, there is an implicit dependence on x through 
vibrational degrees of freedom such as (01')+ and (01')-, 
but it gives rise to no new types of terms in the fre­
quency formula. [In Appendix II it will be shown that 
vibrational coordinates such as (01'>+ and (01')- give 
contributions to the vibration-hindered rotation cor­
rections to the energy of exactly the same form as the 
vibrational coordinate, oa, for example.J However, 
there is an additional explicit dependence on x since the 
moments of inertia are in higher order functions of 
terms such as (01')+ cos3x and (01')- sin3x. This coupling 
between the hindered rotation and the methyl degrees 
of freedom does give rise to entirely new terms in the 
frequency formula. However, it can be shown that the 
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effects of these terms on the J = ~ 1 frequencies are 
numerically so small that they can be neglected. 

The solution of the complete vibration-hindered rota­
tion interaction problem is carried out in exactly the 
same way as the solution of the 0-H rocking problem. 
With the introduction of the angular momentum com­
ponents, Pi, and the momenta conjugate to x and the 
vibrational degrees of freedom, qi 

aT aT aT 
P;=-, px=-, Pi=-, 

aWi ax aqi 

the classical Hamiltonian can be derived as before. 
This form of the classical Hamiltonian, however, is 

subject to all the difficulties discussed in connection 
with the O-H rocking Hamiltonian in the form (11). 
The very small vibration-hindered rotation interactions 
do not appear as small perturbation terms, and the first 
step in the solution of the problem will again consist of 

a transformation to a new form for the Hamiltonian in 
which the interactions between the vibrational degrees 
of freedom and the hindered rotation can be treated as 
a simple perturbation problem. In the case of the com­
pletely nonrigid hindered rotator it would have been 
possible to choose vibrational coordinates which are in 
zeroth order free of internal angular momentum with 
respect to the framework of axes rotating with the equi­
librium configuration of the hydroxyl group. Since there 
would still be zeroth-order interaction terms between 
the hindered rotation and the three (-) vibrational 
degrees of freedom and between the hindered rotation 
and the over-all rotation in space, it is just as convenient 
to make the transformation to the new form of the 
Hamiltonian without first forming linear combinations 
of the chemical coordinates which are free of internal 
angular momentum. 

In the case of the completely nonrigid hindered 
rotator the transformation to the new form of the 
Hamiltonian is given by 

+ {Ai cosX 
(Bo cosU + Do sinU) (Do cosU - Bo sinU) 

+XJ Ai(~2) ~ fp.' j=9, 10, 11 (29) 
[B 02+Do2J! 

qi=q/ i=l,···,l1 

X= x' -A9(1i~)_ -AIO(Ii/,)_ - An (1i{3)-

P", cosA -sinA 0 

r 

cosX 0 sinX 1 

P y sinA cosA 0 0 1 0 0 

P z 0 0 1 l-'in" 0 cosX 0 

where the following abbreviations have been used 

(
C2)* (C2)* P_' = Px' cos - x+Py'sin - x, 
C 0 Co· 

(
C2)* (C2 * 

P+'= -Px ' sin C 0 x+Py' cos C) ox' 

0 

cosU 

sinU 

[B 02+Do2J! 

0 1 0 0 P_' 

Bo Do 
-sinU 0 P/ 

[B02+Do2J [Bo2+Do2J~ 

-Do Bo 
cosU 0 P.' 

[B 02+Do2J! [B02+Do2J! 

and 

B 2P)CI O+ B 3/O) Do B2P) Do+ B 3/O) Bo 
Aj=------- Xj=-------

(BoC1o- D02) 

j=9, 10, 11 
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and where the functions, A(oqj_), X(oqi-), U(Oqi+) must 
be chosen in such a way that the Poisson bracket 
relations (pt',P.') = 0 are fulfilled: 

11 11 

A (oqj_) = L Ajoqi-, X (oqj_) = L Xjoqi-, 

The quantities denoted by the subscript 0 and th eAj 
and Xj must be evaluated for the equilibrium configura­
tion of the molecule since they must be constants inde­
pendent of the vibrational coordinates if the Poisson 
bracket relations (pt' ,P.') = 0 are to be fulfilled for the 
complete transformation. 

The transformation (29) removes from the Hamil­
tonian zeroth-order terms of the form pxPi- which arise 
through the coupling of the hindered rotation and the 
three (-) vibrational degrees of freedom, but in doing 
so it alters the hindered rotation angle x to 

x= x' - A9(OS)_ - AlO(Ol')_ - All(o(3)-. 

As a result the coupling between the hindered rotation 
and the (-) vibrational degrees of freedom reappears 
in the new Hamiltonian in the form of terms such as 
Ho/2 sin3x' (3Ajoqj_) and Ho/2 cos3x'[9/2A/(Oqj_)2]' Un­
like the terms of the form pxPj- these are now small 
perturbation terms, and since they have the form of 
potential energy terms their effect can be absorbed by 
the unknown potential constants of the general joint­
vibration-hindered rotation potential field. 

The new Hamiltonian is again in a form in which the 
coupling between the hindered rotation and the vibra­
tional degrees of freedom can be treated as a simple 
perturbation problem. Since the vibrations parallel and 
perpendicular to the directions of the chemical bonds 
do not correspond to the exact normal coordinates, 
there are still cross terms in the zeroth-order vibrational 
part of the Hamiltonian. These could in principle be 
treated as additional perturbation terms, but no such 
refinements will be made since there will at best be 
some uncertainty in those rotational constants which 
can be evaluated from known data. 

The vibration-over-all rotation-hindered rotation per­
turbation terms for the completely nonrigid molecule 
are very numerous. They will not be listed since they 
are for the most part analogous in form to the perturba­
tion terms, (19), for the simple O-H rocking model. 

The form of the frequency formula given by the com­
plete vibration-hindered rotation interaction problem is 
nearly the same as that given by the simple 0-H 
rocking model, with the exception that there is not 
merely a single Coriolis term of the form (20d) involving 
only the 0-H rocking motion, oa, but there are now 
eleven terms of this form in all, one for each normal 
vibration, and each with its own rather complicated 
energy denominator. In the last section it was shown 
that the effect of the eleven constants, CVi2, can be 
absorbed by the ordinary vibration-rotation constants. 
The constants, Dv;, for the vibrational degrees of free­
dom other than the 0- H tipping coordinate are very 
much smaller than the constant, Dva. The Coriolis 
interaction between the hindered rotation and the 0-H 
tipping motion during the end-over-end tumbling in 
space is indeed the only Coriolis interaction of this form 
which gives significant contributions to the frequency 
formula. Since the effect of the Corio lis interaction 
between the hindered rotation and the other vibrational 
motions is so small, their contributions to the frequency 
formula can be given by the approximations inherent 
in the use of (22), and the effect of these Coriolis inter­
action constants can be absorbed by the centrifugal dis­
tortion constant, Gv , if this is replaced by Gv+2 Li DVi2, 
with i~a. It has been estimated that the effect of these 
Coriolis interactions is so small that the centrifugal 
distortion constant is modified only very little, (from 
a value of -0.81 .Mc/sec to a value of -0.73 Mc/sec). 
The constant Gv is still given to a good approximation 
by the simple expression (9). 

The constants CVaDva and Dva2 must be reevaluated 
on the basis of the complete theory since there are 
contributions to these constants arising through the 
interaction of the 0-H rocking motion with the other 
vibrational degrees of freedom. The constant CVaDva 

now has the form 

CVaDva = _1_ (h2

,..U4a (1)) h2[r aaa + L r ajJJ.!aWa 

2k" 2 4 1 J.!jWj 

+ (J.!13a(1)- (~l) :J.!14a(1)) l (30) 

where the new contributions determined by the con­
stants r aJj arise through the interaction of the 0-H 
rocking degree of freedom (a) with the other vibrational 
degrees of freedom.14 To a good approximation these 
constants are given by 

(31) 

in which gii are the inverse of the kinetic energy matrix elements and A* is given by A*=A - L B1p.gJ"B jp • 

14 In the O-H rocking model the constant C. was determined largely by a perturbation term ofthe form 1/2 (P +,Pz'+Pz'P +')1'13(00). 
Now there are additional perturbation terms in the Hamiltonian of the form P -'Pa' (oqj)2r aii, for example, which give important 
contributions to this constant. 
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As in the case of the simple 0-H rocking model the constant Dv",2 is given by 

(32) 

in which 
[B02+D02J! Bll (0) 

J.t14a (I) Term 1 
(BoClo-Do2) Ao 

(Bo- Lzz(O» (Da (1)+ L 23a (l) 

+,-----------------------------
[B02+Do2Ji[(Bo- L22 (O» (CIO- L3S(O»- (Do+L23 (O»2] 

where 
11 

x {1 BoL3S(O)+DoL2S(O)} 

(BoClo- D02) 

Lzs(O)= I: B2t,«O)g(O)/lVB3v (O), 

J.L,1I=9 

for example, and (Ln(lJ)a= (aLZ3/ oa)ao and in which 1 
is the largest term and terms 2' and 3' are akin to similar 
terms derived on the basis of the simple 0-H rocking 
model. The large number of complicated terms arises 
through higher order effects associated with the coupling 
between the hindered rotation and the three (- ) vibra­
tional degrees of freedom. For the most part the effect 
of these terms is quite small, but some of them do give 
significant contributions. 

The constants Dv,/ and CVaDva still are simple func­
tions of the single elastic force constant, ka, and to 
sufficient approximation the rotational constants for the 
other isotopic species follow from those of the normal 
molecule by the simple somewhat approximate isotope 

Terms 2' 

DoL22a(I) 

Terms 3' 

rules given by Eqs. (25) and (26) in the last section, 
with the exception of the constants, DVa2, for the O-D 
isotopic molecules for which the mass and structural 
factors of (33) are best evaluated for each isotopic 
molecule. 

COMPARISON BETWEEN THEORY AND EXPERIMENT 

From a detailed examination of the completely non­
rigid hindered rotator therefore the frequency formula 
for the J = ~ 1 transition can to a very good approxi­
mation be expected to have the simple form derived on 
the basis of the 0- H rocking model for the molecule, 
and such a formula must be expected to give a good fit 
between the predicted and the experimentally observed 
frequencies. Only one small modification has to be made, 
and the final frequency formula is taken to have the 
form 

j (
h2 Do +P.) <Om le"";x IK'1"n>j2 

2 4 [B02+D02] 
VOIOoTTnn=vo(J only)-- I: 
(J K Tn) hK'=+1 h2

[ Bo+Co 1( 1 3BO)] 
-1 (EK'T'n-EOTn)+- - _+ __ _ 

2 (BoCo-D;) 2 Ao B02+Do2 

-2[Fv(Om \1-cos3xIOm)+ :: (OmIP,,210m)] 

-2 I: 
DVa 2\ < Om I e"FiX7 :x =Fte"F'Z I K' 1" n) r± 2CVaDva I < Om I e"FiX7 :x =F te,,"ix I K' 1" n) (K' 1" n' I e±ix I Om) I 

I:-----------------------------------------------------------
K'=+l n' 

-I 

(34) 



64 K. T. HECHT AND D. M. DENNISON 

TABLE III. Matrix elements and matrix sums for CHaOH. 

2: 2: I (om I eTiz(~~'F!) I K'T'n') 
K'-+! n' J iJx 2 

2: 2: I(om le'fiz(~~'F!)K'T'n') I' -1 

1 
Jj2(Om I Pz' 10m) (OTn 11 -cos3x 10m) 

r=1 1.5162 0.4631 
n=O 

r=2,3 2.3275 0.3918 

r=2,3 4.0193 1.2131 
n=1 

r=1 9.4064 0.8779 

r=1 7.9288 1.4076 
n=2 

r=2,3 15.5186 1.1294 

The first term is determined by the rigid rotator 
energy and the ordinary vibration-rotation interactions. 
It determines the over-all position of the J =0---t1 fre­
quencies; but since it is independent of the hindered 
rotation quantum numbers nand T, the shift in fre­
quency due to the vibration-rotation interactions in­
corporated in this term must affect all of the lines of the 
J=O---t1 fine structure in exactly the same way. No 
attempt has been made to evaluate the effects of the 
ordinary vibration-rotation interactions in methyl 
alcohol. Since the discussion has thus been limited to 
the vibration-hindered rotation interactions, the ob­
served high frequency line is chosen as a reference line 
in each isotopic molecule and only the shifts in fre­
quency from the high frequency line are studied. 

A very small vibration-hindered rotation interaction 
constant, P., has been added to the second term, the 
term which comes about through the asymmetry of the 
rigid hindered rotator, for the following reason. Since 
the K = O---t± 1 matrix elements can themselves be 
regarded as perturbation terms, the second-order con­
tributions to these matrix elements due to the vibration 
perturbations have previously been neglected. From an 
estimate based on the complete theory, however, it 
seems reasonable to assume that these may contribute 
as much as 10% to the K = O---t± 1 matrix elements. 
Unfortunately it is almost impossible to make an accu­
rate estimate of these contributions since they arise 
through a large number of very small terms and are 
determined mainly by combinations with purely vibra­
tional perturbation terms. For this reason it has been 
found necessary to choose the numerical value for p. 
empirically to fit the n=O---tO splitting in C12HaOD. 
From considerations based on the 0-H rocking model 
it seems plausible that p. should obey the somewhat 
approximate isotope rule: (Pv )1/(P.)2= (A02h/(Ao2)1. 
It should be emphasized, however, that the constant, 
P., gives significant contributions, (of the order of 2 
Mc/sec), only to the n=O---tO splittings of the O-D 
isotopic molecules and is otherwise completely neg­
ligible, so that the agreement between theory and 

(K'T'n' I e±iz I Om)1 
EKIT1n l -EOTn 

1+ IIwa 

0.8903 

0.8364 

0.2792 

0.7293 

0.3426 

0.7787 

K'-+! n' J ax 2 
-1 EKITln' -Eot'tI 

1+ IIwa 

2.7785 

4.2270 

8.4883 

18.7239 

16.3624 

30.9173 

experiment is not materially affected by this small 
constant. 

The last four terms in the frequency formula give the 
contributions of the vibration-hindered rotation per­
turbations. Of the four rotational constants determined 
by the vibration-hindered rotation perturbations, only 
the constant F. must be determined empirically for each 
isotopic species. It is chosen for each molecule to give 
the best possible fit between theory and experiment. 
The three constants, G., Dva2, eVaDva, can be computed 
exactly from the elastic force constants and the known 
structure of the molecule by the formulas derived in 
the last section. Due to the uncertainty in the normal 
vibration constants they are subject to a certain amount 
of adjustment. However, the rotational constants for 
the other isotopic species must follow from the adjusted 
constants for the normal molecule so that there should 
be a convincing number of checks between theory and 
experiment. 

The values of the matrix elements and the matrix 
sums for the frequency formula are shown in Table III 
for the normal molecule, C12HaOH, as an example, to 
give an idea of the importance of the various terms. 

In making the identification of the observed fre­
quencies the observed intensities are of great impor­
tance. The intensity of a particular n---tn, T---tT, transi­
tion will depend on the population of the initial state 
and will thus be proportional to both the statistical 
weight and the exponential temperature factor of the 
initial state. For the two components of the n=O---tO 
transitions there is no observable intensity difference 
due to the exponential temperature factor. In the ex­
cited torsional states (n= 1 and 2), however, the energy 
difference between the T= 1 and T= 2, 3 states is such 
that the exponential temperature factor will in all cases 
lead to an observable intensity difference between the 
two components of these n---tn doublets. The transition 
in the lower energy state (T= 2, 3 for n= 1, and T= 1 
for n= 2) always gives rise to the stronger line even in 
the n= 2 transitions for CD 30H where the statistical 
weight factor favors the T= 2, 3 state. In the CH3 
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isotopic molecules the statistical weight factors are in 
the ratio 4 to 4 for the two components of an n--m 
doublet. In the CDa isotopic molecules, on the other 
hand, the 1'= 2, 3~2, 3 transition is favored by the 
statistical weight factor in the ratio 16 to 11. For the 
n=()--70 transitions in CDaOH the high frequency line, 
which is the more intense, must therefore correspond 
to the 1'= 2, 3~2, 3 transition. The n= ()--70 transitions 
in the CHa isotopic molecules are the only ones in which 
the lines cannot be tagged with their l' quantum num­
bers from the observed intensities since neither the 
statistical weights nor the exponential temperature 
factor give rise to an observable int~nsity difference. 
It seems reasonable to assume that the high frequency 
line in the CHaOH molecules corresponds to the 
1'= 2, 3~2, 3 transition as it does in CDaOH, and this 
is borne out by the computations. In the 0-- D isotopic 
species the asymmetry of the molecule shifts the 
1'= 2, 3~2, 3 transition to lower frequencies, and the 
1'= 1~1 transition turns out to correspond to the high 
frequency line. 

In making the fit between theory and experiment, the 
constants Gv, DVa2, and CVaDva are computed first for 
the normal molecule. On the basis of the detailed theory, 
with the approximation that the small Coriolis effects 
of the vibrational degrees of freedom other than the 
0-- H rocking motion can be absorbed by the centrifugal 
distortion constant G", the following estimates have 
been made for the values of these constants 

Gv = --0.73 Me/sec, Dva2= 1.60 Mc/sec, 
2CvaDva= 0.62 l\fc/sec. 

The largest contributions to the frequency shifts are 
given by the constants DVa2 and Fv. Dva2 involves only 
ka , the elastic force constant associated with the 0-- H 
rocking motion. Unfortunately the spectrum of methyl 
alcohol does not furnish an unambiguous value for this 
constant since the 0- H rocking vibration band has 
not been uniquely identified in normal methanol. In 
the deuterated molecule, CHaOD, the band observed at 
869 cm-1 would seem to be that of the COH deformation 
motion. However, on the basis of the simple 0-- H 
rocking model, this implies a band at 116S cm-1 for 
CHaOH, where however no band is observed, possibly 
because it is too weak. Using the 869 cm-1 frequency 
one obtains ka/l2=0.73X10 5 dynes/cm, a value con­
sistent with the elastic constant for the HOH bending 
frequency in water of 0.69X 105 dynes/cm.15 With this 
ka, Dva2 has been computed to be 1.60 Mc/sec. 

In order to fit the observed frequencies, however, it 
became clear that Dva2 must be adjusted upward to 
2.20 Mc/sec. Working backwards this implies a value 
of ka /!2 of O.SIX 105 dynes/em and frequencies at 970 
cm-1 and 720 cm-1 for normal methanol and the 
CHaOD molecule, respectively. The situation is indeed 

16 As listed by Herzberg, Infrared and Raman Spectra of Poly­
atomic Molecules (D. Van Nostrand Company, Inc., New York, 
1945), p. 170. 

TABLE IV. Final values for the rotational constants in me/sec. 

Molecule G, D1'a2 2CvaDva F, 

CI2HaOH -0.73 (2.20) 0.62 (68.85) 
ClaHaOH -0.72 2.09 0.59 (67.34) 
Cl2DaOH -0.52 1.43 0.41 (54.60) 
CI2HaOD -0.64 1.63 0.53 (64.05) 
ClaHaOD -0.63 1.55 0.50 (62.80) 
CI2HaOD -0.48 1.22 0.35 (44.20) 

( *2 Do ) Pv=0.135- --- for CI2HaOD 
4 Bo2+Do2 

somewhat unclear due to the fact that the 0-H rocking 
frequency has not been definitely established as well as 
to the fact that a number of small effects which have 
not been calculated explicitly may serve to add to the 
contribution due to ka by the amount required or may 
affect the magnitude of the Coriolis contributions due 
to the other normal modes. Undoubtedly some of the 
difficulty arises from the fact that none of the modes in 
methyl alcohol corresponds to a pure deformation of 
the COH bond angle since there must be a good deal of 
interaction between the frequencies. Even though the 
interactions between the various chemical coordinates 
may be very significant in the determination of the 
actual normal modes and frequencies, however, the 
rotational constants DVa2, CvaDva, and Gv should be 
given largely by the magnitude of the elastic force 
constants and should be less sensitive to the actual form 
of the normal vibration motions. As a result the rota­
tional constants for the isotopic molecules should follow 
from those for the normal molecule to a sufficiently 
good approximation. 

Only the energy denominator occurring in the Coriolis 
interaction term is a function of the observed COH 
deformation frequency rather than mainly a function 
of the elastic force constants. In the computations 
presented here a value of 1165 cm-1 has been used for 
the normal molecule. In the lower torsional states the 
results are not too sensitive to a small error in this 
frequency. In the n= 3 states, on the other hand, there 
would be a possibility of a near-resonance between the 
hindered rotation and COH deformation frequencies, 
and an observation of the n=3~3 transitions might 
give some new information about the "COH deforma­
tion frequency" in CHaOH. 

The constants Gv , DVa2, and CVaDva for the other 
isotopic species are taken to follow from the adjusted 
constants for the normal molecule and have been com­
puted by means of the isotope rules discussed in the last 
two sections. They are listed in Table IV together with 
the empirically determined values for the constant Fv. 
In Table IV the empirical constants and the constants 
which have undergone a significant adjustment in the 
normal molecule have been enclosed in brackets. 

The agreement between the experimentally observed 
frequencies and the values calculated with these rota-
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FIG. 3. Comparison between the predicted and observed fre­
quencies I. The O-H molecules. The numbers give the shifts in 
Mc/sec from the high frequency line. 

tional constants is illustrated in Fig. 3 for the 0-H 
isotopic molecules, and in Fig. 4 for the 0- D isotopic 
molecules. Differences of the order of 0.5 Mc/sec be­
tween the predicted and the observed frequencies must 
certainly be expected, since a large number of very 
small effects have been neglected for simplicity. On the 
whole therefore the agreement between theory and 
experiment is quite good. One very serious discrepancy 
between theory and experiment occurs in the com­
pletely deuterated molecule. Apparently only a single 
n=G---tO line is observed, while theory predicts a very 
large splitting into two lines, separated by 26 Mc/sec. 
In the n= I---t 1 and n= 2---t2 transitions in CD 30D the 
agreement is quite good. In each case theory predicts a 
closely spaced doublet in good agreement with the single 
observed frequency. The large predicted n=O splitting 
is due partly to a very small energy denominator in the 
rigid hindered rotator asymmetry term and is therefore 
very sensitive to small errors in the energies of the 
K = 0 and K = 1 hindered rotator states. However such 
errors could not result in a shift of the T= 2,3---t2,3 line 
to higher frequency by 26 Mc/sec. A large shift to even 
lower frequency seems much more likely.16 

Two competing effects come into play in the deuter­
ated isotopes. The moments of inertia, C1 and C2, about 
the symmetry axis of the hindering potential are in­
creased on deuterium substitution. This brings about 
an increase in the effective barrier height since the value 
of H'=H/(h2/2)(C/C1C2)* defined in the preceding 
paper is increased. A twofold increase in H' can bring 
about a significant decrease in the line splittings. This 
seems to be the dominant effect in the n= 1---t1 and the 
n= 2---t2 transitions in the 0-D isotopic molecules even 
though these energy levels lie near the top or above the 
top of the hindering barrier. On the other hand, the 
0-D molecules have a comparatively large product of 
inerti~, D,. giving rise to a large asymmetry splitting, 
especIally In the ground state where there is only a 

16 A lar~e n=O-.O splitting for this isotopic molecule has also 
been predIcted on the basis of the rigid model hindered rotator 
by J. D. Swalen by a different method [J. Chern Phys 23 1739 
(1955)]. . ., 
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FIG: 4. Comparison between the predicted and observed fre­
quencies II. The 0-D molecules. The numbers give the shifts in 
Mc/sec from the high frequency line. 

small energy difference between the K = 0 and K = 1 
states, and is the reason for the large n = 0---t0 splitting 
in the 0-D molecules. 

The six empirically determined rotational constants 
F. are functions of the eight unknown potential con­
stants, a/I), for the (+) vibrational degrees of freedom, 
so that no careful evaluation of these potential con­
stants is possible. Since the contributions of certain of 
the aiel) to the values of Fv can be expected to be very 
small, it is possible to make a very rough order of 
magnitude estimate of some of the potential constants, 
a/l). From the six empirically determined values for 
F. it seems reasonable to assign the following rough 
order of magnitude values 

ah(l) = -3 to -8, 
(35) 

aso(I)=O to -1.0, aa(I)=O to -0.4, 

in which ~, a, 'Yo, and So refer to the CO stretching, COH 
deformatIOn, and the completely symmetric CH bend­
ing and stretching coordinates, respectively. The con­
stants for the bending frequencies are dimensionless 
quantities, while the constants for the stretching fre­
quencies are given in units of (10-8 cm)-l. No rigorous 
theory exists whereby these potential constants could 
be calculated from the electronic structure of the methyl 
alcohol molecule. However, it is possible to make a 
rough order of magnitude estimate from approximate 
classical arguments. The constants a/I) can be com­
puted if the electronic distributions of the 0-Hand 
C- H bonds in methyl alcohol can be represented by 
classical charge distributions fixed to the moving 0-H 
and C-H bonds. The estimates turn out to be of the 
right order of magnitude for the larger potential con­
stants and may perhaps give some confidence that the 
empirically determined rotational constants F. are at 
least of a sensible order of magnitude. The constant 
ah (1), for example, has been computed to have the value 
- 2.7 if the classical charge distributions are assumed 
to be simple point charges at the extremities of the 
O-H and C-H bonds, while a value of -4.3 is ob­
tained if they are dipoles located at the midpoints of 
the bonds. 



VIBRATION-HINDERED ROTATION INTERACTIONS 67 

Considering the irregularities in the line spliuings for 
the various isotopic molecules, it is perhaps quite 
satisfying that the theory with the aid of essentially 
only one empirical constant per isotopic molecule, and 
this of sensible order of magnitude, reproduces the 
irregularities as well as it does. If we count as empirical 
constants the constants which for the normal molecule 
have undergone a significant adjustment, then it can 
be claimed that some 30 frequency shifts have been pre­
dicted with the use of only eight empirical constants, 
with only one possible serious discrepancy between 
theory and experiment. 

APPENDIX I. INTERNAL ROTATION WAVE 
FUNCTIONS AND ENERGIES 

In order to evaluate the matrix elements needed for 
the J =~1 frequency formula the internal rotation 
wave functions and energies must be known for the 
K=O, ±lj n=O, 1,2,3, and 4 states of Cl2HaOH and 
its five isotopic species. The same wave functions can 
be used for both Cl2H30H and CI3HaOH, however j also 
for both CJ2HaOD and C13H30D, since the molecular 
parameters in the hindered rotator part of the Hamil­
tonian are very nearly the same for the C12 and Cl3 
isotopic molecules. 

The wave functions and energies for the n=O, 1, 
and 2 and some of the n=3 states have been calcu­
lated by the continued fractions technique discussed in 

0!3=0, 

1 1 20(m+u)2+63 

reference 2. The remaining n=3 and n=4 wave func­
tions and energies have been calculated by a pertur­
bation method. These states correspond to nearly free 
rotation states, and for them the barrier height, H, 
can be treated as a perturbation. The wave functions 
and energies can be given as power series in the param­
eter H'= H/(h2/2) (C/CIC2) 0* 

P m(X) = eimx+H'CI(X)+H'2c2(X)+H'3c3(X)+' .. , (36) 

where this wave function is not yet normalized, and 
where m is the free rotation quantum number which can 
be correlated with K, T, and n.2 

H' 
Em.u'=-+(m+u)2 

2 

where 

and 

The functions Ci(X) and the constants O!i can be com­
puted by ordinary perturbation theory or by the 
methods discussed for the ordinary Mathieu differential 
equation by McLachlanY 

0!4 

128[4(m+u)L9J3[4(m+u)2-36J' 

ei(m+3)x e+i (m-3)x 
CI(X) = 

3.22[2 (m+u)+3J 3.22[2 (m+u) -3J' 

ei (m+6)x ei (m-6)x (38) 
C2(X) = + , 

32
• 26[2 (m+u)+3J[2 (m+u)+6J 32

• 25[2(m+u)-3J[2 (m+u) -6J 

[4(m+u)2+24(m+u)+63Jei (m+3lx [4(m+u)L24(m+u)+63Jei(m-3)z 
C3(X) =----------------

33 .27[2 (m+u)+3J2[2 (m+u)+6J[4(m+u)2-9J 33.27[2 (m+u) -3J2[2 (m+u) -6J[4(m+u)2- 9J 

ei (m+9)z ei (m-9)z 

+ . 
34 .27[2 (m+u)+3J[2 (m+u)+6J[2 (m+u)+9J 34 .27[2 (m+u) -3J[2 (m+u) -6J[2 (m+u) -9J 

II. APPENDIX II. STUDY OF THE METHYL 
DEGREES OF FREEDOM 

The effects of vibrational degrees of freedom such as 
(o'}')+ and (o')' )_, involving the coordinates of the methyl 
group, must be discussed separately since these degrees 
of freedom are implicit functions of the internal rota­
tion angle, x, and may thus give rise to an additional 
coupling between the hindered rotation and the vibra­
tional degrees of freedom. It is the purpose of this 

appendix to show that vibrational degrees of freedom 
such as (o,},)+ and (8'}')- give contributions to the 
vibration-hindered rotation corrections to the energy of 
exactly the same form as the 0-H rocking vibrational 
coordinate, OO!. For this purpose it is convenient to 
introduce polar vibrational coordinates, r-y and X-y, for 

17 N. W. McLachlan, Theory and Application of Mathieu Func­
tions (The Clarendon Press, Oxford, England, 1946), p. 19. 
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example: 

so that the vibrational coordinates can be written 

(hh=r.,. cos(x.,.+x)=r.,. COsX/, 

(h)-=r.,. sin(x.,.+x)=r.,. sinx/. 

(39) 

With the introduction of the angle, x/=x.,.+x, the 
explicit dependence on the internal rotation angle has 
been transformed out of the vibrational coordinates and 
the coupling between the hindered rotation and these 
vibrational degrees of freedom appears instead in the 
boundary conditions which must be modified for the 
methyl degrees of freedom. The coordinates (0')')+ and 
(0')')_ do not correspond to doubly degenerate fre­
quencies; but the distinct frequencies, PH and P.,._, can 
be expected to have nearly the same value, and it 
proves convenient to use zeroth-order wave functions 
which have the form of a doubly degenerate pair. This 
would correspond to the physical situation if it could 
be assumed that the coupling between the methyl de­
grees of freedom and the other degrees of freedom of the 
molecule can be neglected, at least in zeroth order. 

The complete wave function which is a solution of 
the zeroth-order symmetric hindered rotator-pure vibra­
tional problem is therefore chosen to have the form 

1 
Y;JKM.nr,vi1i=-E) (0') . e'M>/!' eiK'i" ei~x' 

211' 

XPm(x') II Y;'i(qi) II [eiliXi'Y;vpj(rj)], (40) 
i i 

in which the rotational part of the wave function has 
the usual form, and in which the one-dimensional har­
monic oscillator wave functions, Y;vi(qi), are used as 
zeroth-order wave functions for degrees of freedom such 
as oa, and two-dimensional harmonic oscillator wave 
functions in polar coordinates, eiliXi'Y;vj/j(rj), are used for 
the methyl degrees of freedom. This complete wave 

and 

function must be invariant under the transformation 

SOl~SOl + 2n11l' , S02~S02+ 2n 211' , 

X.,.~x,!,+2n31l', x8~x.+2n411', x~~x~+2no1l', 
(41) 

since this transformation leaves the physical situation 
unchanged. cf>l and cf>2 are the azimuth angles which 
describe the rotation of the hydroxyl and methyl 
groups, respectively, about the symmetry axis of the 
hindering potential; and nl, ... , no can be any integers. 
As usual, the value of IT is determined from this bound­
ary condition since it leads to the condition 

Knl-K(~) ~ (nl-n2)+IT(nl-n2)+I.,.n3 

+18n4+1~no+ (1.,.+18+1~) (nl- n2) = n, (42) 

where n is any arbitrary integer. This condition can be 
fulfilled only if K, 1.,., I., and l~ are all integers, and if IT 
has the value 

IT= -K[ 1-(~)]- (l.,.+l.+l~). (43) 

IT is therefore a function both of the quantum number 
K and of the quantum numbers, I.,., I., and l~. Through 
the value of IT the internal rotation wave function is 
therefore also a function both of K and the Ii and must 
be labeled, PK1"'/8/~rn(X). 

Despite this dependence of the internal rotation wave 
function on the vibrational quantum numbers of the 
methyl group, it can be shown that the methyl degrees 
of freedom do not give rise to any new types of vibration­
hindered rotation corrections to the energy. For this 
purpose a specific perturbation term is studied, as an ex­
ample. The perturbation term, JLlla (1) (P /2+ P y'2) (oa) , 
gives rise to the matrix element 

(44) 

The same type of perturbation term involving the 
methyl degree of freedom, (0,),)+, on the other hand, 
gives rise to the corresponding matrix elements 

(45) 

(46) 
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From the symmetry properties of the wave functions, 
however, it can be shown that the integrals over the 
internal rotation angle, x, in these matrix elements are 
equal to unity; and when these first-order matrix ele­
ments, off-diagonal in V'Y and loy are transformed to 
second-order elements diagonal in V'Y and loy, they result 
in exactly the same type of vibration-rotation correc­
tions to the energy as the matrix elements, (44), in­
volving the 0-H rocking degree of freedom. For this 
purpose the internal rotation wave functions must be 
studied in more detail. In particular, it must be seen 
how the hindered rotation quantum number, T, for a 
particular state is determined by the quantum numbers 
K and li. 

The wave functions, PKl'Y181{jrn(X), can be given as 
linear combinations of free internal rotation wave 
functions 

00 

PK1,,/181{jrn(X)=eipx L ame3imx, (47) 
m=-OO 

where the coefficients am are functions of nand u, and 
therefore of K and the li; and where p=O for T= 1, 
p= -1 for T= 2, and p= + 1 for T= 3. From the form of 
the wave functions it follows that the only nonvanishing 
matrix elements of the complete Hamiltonian are those 
for which T' and Til obey the following rules. For the 
K ~K + 1, l,---'>li matrix elements the only possible T 
connections are those given in reference 3: T= 1~3, 
3~2, and 2~1. For the K~K, l,---,>(li+1), matrix 
elements such as {45) the only possible T connections 
are again T= 1~3, 3~2, and 2~1, while the only 
possible T connections for the K~K+l, l,---,>(li+l), 
matrix elements are now T= 1~2, 2~3, and 3~1; and, 
last, the only possible T connections for the K~K+l, 
l,---'>(li-I), matrix elements are T= 1~ 1, 2~2, and 

TABLE V. 

I. =I{j =0 I, =I(J =0 I. =I(J =0 
1,,/=-1 1,,/=0 1,,/=+1 

K=-1 0 +1 K=-1 0 +1 K=-1 0 +1 

Determinant No.3 
Determinant No.2 
Determinant No.1 

3 
1 
2 

2 1 
3 2 
1 3 

2 
3 
1 

1 3 
2 1 
3 2 

1 
2 
3 

3 2 
1 3 
2 1 

3~3. As a result the complete energy determinant for 
the vibration-hindered rotation problem factors into 
three subdeterminants as it did for the rigid hindered 
rotator3 ; but now each subdeterminant is characterized 
by the specific T values which are associated with both 
the K and li values which characterize the diagonal 
elements of the Hamiltonian as shown in Table V. From 
the symmetry properties of the hindered rotation 
states2•3 it can be seen that the roots of determinants 
No.1 and No.2 are identical and that the wave func­
tions, e-ixPK(li+1)r'n(X, u-l), characterized by (li+1) 
and T' are identically equal to the wave functions, 
PK1iTn(x,rr) characterized by li and T where 

3 1 
for T' = I~T= 2, respectively. 

2 3 

Similarly the wave functions e+ixPK(li-1)r"n(X, rr+l) 
are identically equal to the wave functions, PK1iTn(X,U), 
where now 

2 1 
for Til = 3~T= 2, respectively. 

1 3 

It can therefore be seen that the integrals occurring in 
Eqs. (45) and (46) are merely normalization integrals 
and are equal to unity. 


