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Three quantum-mechanical computational techniques based on energy moments, I-'k=fdl.Jllt*(q)X"f(q), 
and semimoments, Pk(q') = [Xk>t-(q) ]q-q" are formulated. The I-' method, which employs the I-'k, is connected 
to the method of moments in probability theory, to the variational method, and to eigenvalue spectroscopy. 
The v and A methods, which employ semimoments, are related to local energy methods using one and 
several configuration points, respectively. An Nth-order calculation, requiring 2N moments or semi­
moments, yields N approximate eigenvalues and eigenfunctions. In accordance with a conjectured con­
vergence criterion, exact eigenstates are approached in the limit N --> 00. From quantities obtained in a 
moments calculation, a lower bound on the ground-state eigenvalue can also be determined using a refine­
ment of Weinstein's criterion. A computational method for generating moments and semimoments is 
given and the I-' method is applied to the linear harmonic oscillator. 

I. INTRODUCTION 

In this paper three quantum-mechanical approxima­
tion methods, all closely related to the method of mo­
ments/ are formulated. The method of moments was 
developed by mathematicians during the early part of 
this century mainly for application to continuous prob­
ability distributions. In quantum-mechanical applica­
tions the fundamental quantities are moments of the 
Hamiltonian operator 

(1 ) 

where y;(q) represents an arbitrary state function obey­
ing the same analyticity, symmetry, and boundary 
conditions as are imposed on the eigenfunctions cf>n(q) 
of the Schrodinger equation 

(2) 

In all cases considered here, the moments (1) are 
represented more explicitly as integrals over the set 
of configuration variables q. But extension to the case 
of spinor wavefunctions is straightforward. By an Nth­
order calculation is meant one in which the first 2N 
moments J.Lo, J.LI, J.L2, "', J.L2N-I are employed, usually 
resulting in approximations for N energy eigenvalues. 

The first systematic application of the method of 
moments in quantum mechanics is due apparently to 
Horvay.2 In calculation of the binding energy of the 
oxygen nucleus, he found "exceedingly slow" conver­
gence. Halpern,3 independently, applied the method to 
the phonon-polaron interaction. A fifth-order calcula­
tion proved partially successful. A subsequent applica-

* Present adress: Department of Chemistry, MIT, Cambridge, 
Mass. 02139. This paper is based on J.B.D.'s B.S. honors thesis, 
University of Michigan, 1965. 

tion4 to a problem in static-source meson theory proved 
unsuccessful, but this was apparently due to the model 
rather than the method. 

More recently, one of us has developed a formalism 
("eigenvalue spectroscopy") in which the eigenvalue 
spectrum is expressed in terms of a Fourier expansion 
containing energy moments of all orders.5 •

6 The mo­
ments are generated by the time-evolution operator 
according to 

00 (it)k 
F(t) = (y;(q) , exp(itJC)y;(q»= f.; k! J.Lk. (3) 

The function F(t) corresponds to a moment-generating 
function in probability theory or to a correlation func­
tion in the theory of stochastic processes. Comparing 
(1) with (3), the moments can be formally repre­
sented by 

(4) 

This leads to the following expansion for the eigen­
value spectrum: 

co J.L(k) 
G(w)=27r:E (-l)k-, (j(k)(W) , (5) 

k9l k. 

where O(k) (w) represents the kth derivative of Dirac's 
delta function. 

II. GENERAL THEORY 

Consider first a quantum system for which the eigen­
value spectrum consists of a finite number of discrete 
eigenvalues wo, WI, "', WN-I. An example would be a 
system of spins subject only to Zeeman excitations. 
The projection operator 

N-I 

PN(JC) = II (JC-wn ) (6) 

then serves to annihilate any state function y;(q) lying 

1 The method of moments is treated in many textbooks on 
mathematical statistics. See, for example, M.G. Kendall, The 
Advanced Theory of Statistics (Charles Griffin and Co., Ltd., 
London, 1946--1947) 2 Vols. Yu. V. Vorobyev, Method of }([omen/s 
in A ppFed Mathematics (Gordon and Breach Science Publications, 
New York, 1965). • F. R. Halpern, Ann. Phys. (N.Y.) 7,154 (1959). 

2 G. Horvay, Phys. Rev. 55, 70 (1939). • S. M. Blinder, Intern. J. Quantum Chern. 1, 271 (1967) . 
3 F. R. Halpern, Phys. Rev. 107, 1145 (1957); 109,1836 (1958). • S. M. Blinder, J. Chern. Phys. 41,3412 (1964). 
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wholly within the eigenfunction space of X, i.e., 

(7) 

The annihilating operator is evidently an Nth-order 
polynomial in X: 

diverge. Such cases (which include many problems of 
chemical interest) cannot be treated by the method 
developed in this section. 

Assuming that moments of all orders do exist let us 
choose f(q) =1/;*(q) in (11). Then ' 

PN(X) = aO(N)+al(N)X+·· • +aN_l(N)XN-l+JCN (8) f dCJ1l;*(q)JCk PN (x) 1/;(q) =0, 

such that the N roots of 

k=O, 1, ···,N-l. 

(14) 
PN(W) =a'O(N)+~(N)w+" '+aN_l(NlwN-1+wN=0 (9) 

correspond to the N eigenvalue wo, WI, "', WN-l. If (7) 
holds, it is trivially true that 

k=O, 1, "', N-1 (10) 

for arbitrary 1/;(q). These N simultaneous equations 
determine, in principle, the polynomial coefficients ao(N), 
al (N), "', aN-l (N) and hence the N eigenvalues. 

For spectral distributions containing an infinite num­
ber of discrete eigenvalues or continuum regions, Eqs. 
(10) can no longer be identically satisfied for finite N. 
However, a polynomial PN(W) can always be found 
such that 

k=O, 1, "', N-l, 

(11) 

where the additional arbitrary functionf(q) is restricted 
only by the condition that the integral exists. Once 
the set of polynomial coefficients ao(N), a1(N), "', aN_1(N) 
is determined, Eq. (9) can then be solved for N approxi­
mate eigenvalues WO(N), WI(Nl, "', WN_l(Nl. 

Three different computational approaches are given, 
depending on the choice of f(q): the IJ. method (Sec. 
III), the /I method (Sec. VIII), and the A method 
(Sec. IX). Each is related to other quantum-mechanical 
approximation techniques. 

III. THE IJ. METHOD 

For an arbitrary state function 1/;(q) , energy moments 
are defined by7 

(12) 

If 1/;(q) is normalized, 

IJ.O= f dq 1/;*(q)1/;(q) = 1. (13) 

When the Hamiltonian contains singularities, for exam­
ple, those arising from Coulomb potentials, moments 
higher than some order (usually k=2) will generally 

7 Moments are denoted by Ilk in Refs. 5 and 6. 

In terms of the energy moments (12), we can construct 
from (14) a set of N simultaneous equations for the 
polynomial coefficients, viz., 

lJ.oao(N)+lJ.lal(N)+ ... +IJ.N_laN_l(N) = -IJ.N, 

IJ.lao(N)+J.l2al(N)+ ••• +IJ.NaN-l(N) = -IJ.N+l, 

IJ.N_lao(N)+IJ.Nal(Nl+ ••• +J.l2N_2UN_1(N) = -J.l2N-1. (15) 

The solutions of these inhomogeneous linear equations 
follow by Cramer's rule, whereby 

k=O, 1, "', iV-l, (16) 

where 
J.lN-l 

J.lN 
D= (17) 

IJ.N-l IJ.N 

and Dk is formed from D by replacing the kth column 
Utk J.lk+l· • ·lJ.k+N-l] by [IJ.N J.lN+!· • ·1J.2N-l]. It is assumed 
that D=F-O, which requires that there be at least N 
distinct eigenvalues for the system described by X 
(see Sec. VII for proof) . Once the coefficients ao (N), "', 

aN_l(N) are known, (9) can be solved for the approxi­
mate (Nth-order) eigenvalues. The foregoing proce­
dure can be more compactly systematized as follows: 
Rearranging Dk so that the last enumerated column 
appears on the left, we have 

Dk = (_1)N+k+l 

J.lo 1J.1 J.lk-l IJ.N 

IJ.N-l 
x 

IJ.N-l J.lN J.l2N-l 

(18) 

But this is just (_1)N+l times the kth term in the 
Laplace development for the (N + 1) X (N + 1) deter-
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minant 
1 1 1 

/Lo /LI /LN 

/L2 

/LN-I /LN /L2N-I 

Moreover, 
N-I 

ilN(l) = (-l)N+I[L: Dk+D]. 
k-O 

But using (16), 
N-I 

ilN(l) = (-l)NHD[L: akCN)+l]. 
k-o 

Defining the more general determinantal function, 

1 W wi' 

/L2 

/LN-I /LN 

We have analogously 
N-I 

/LN 

/L2N-I 

(19) 

(20) 

(21) 

(22) 

ilN(W) = (-l)N+ID[ L: akCN)wk+wN]. (23) 
k-o 

But the bracketed quantity can be identified as the 
polynomial PN(W) , [d. Eq. (9)]. Therefore the N 
approximate eigenvalues in an Nth-order calculation 
appear as the roots of the determinantal equation 

(24) 

It can be shown that the N roots of (24) are real 
and distinct. Also, the polynomials ilN(W) comprise 
an orthogonal set with respect to the weighting func­
tion G(w), the spectral function [d. Eq. (5)], i.e., 

N¢N'. (25) 

The entire formalism can, in fact, be based on the 
properties of orthogonal polynomials and their associ­
ated distributions.s 

The approximate eigenfunctions tjJoCN) (q), ¢lCN) (q), 
• ", ¢N_ICN) (q) corresponding to the Nth-order eigen­
values WOCN) , WICN) , "', WN_ICN) can be generated by 

8 See, for example, G. Szego, Orthogonal Polynomials (Ameri­
can Mathematical Society Colloquim Publications, New York, 
1939), Vol. 23. 

projection operators, i.e., 

This is shown as follows: 

=f dq !/I*(q) IT (X-wm(N»PN(X)!/I(q)=O. (27) 
m;.'n 

The first equality follows from (6). Recognizing that 
the projection operator is an (N -1) degree poly­
nomial in X, the last equality results from successive 
application of (14). The vanishing of the first integral 
in (27) identifies ¢nCN)(q) as the eigenfunction corre­
sponding to Wn (N) • 

IV. CONNECTION WITH THE METHOD OF 
MOMENTS 

Any function !/I(q) obeying the limitations we have 
set forth can formally be expanded in terms of the 
eigenfunctions of X: 

!/I(q) =S cncf>n(q) , (28) 
n 

where the generalized summation symbol Sn combines 
summation over the discrete states with integration 
over the continuum. In terms of (28), the moments 
(12) can be expressed 

(29) 

The function \ !/I(q) \2, as well as the eigenvalue 
spectrum G(w), have obvious analogies with probabil­
ity distributions. Certain results in probability theory 
pertaining to continuous distributions, in particular, 
the method of moments, should therefore be applica­
ble to these quantum-mechanical analogs. For exam­
ple, the moments, if all exist, uniquely determine a 
distribution, provided that the sum 

is divergent (Carleman's theorem).9 For every distri­
bution (including the eigenvalue spectrum) there can 
be found a corresponding discrete distribution for which 
the first 2N moments coincide. For example, if, for a 

e T. Carleman, Les Fonctions Quasi Analytique (Gauthier 
Villars, Paris, 1926), p. 80. The theorem was applied to the 
phonon-polaron problem by F. R. Halpern, Phys. Rev. Ill, 1 
(1958) . 
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state function !/I ( q), 2N moments J.lo, J.l1, "', J.l2N-l are 
evaluated using (12), there exists an equivalent dis­
tribution characterized by the discrete eigenvalues Wo(N) , 

Wl(N), "', WN_l(N) for which 

N-l 

J.lk= 2: b,,(Nl[w,,(N)]\ k=O, 1, "', 2N-1. (30) 
.. -0 

These 2N simultaneous equations suffice, in principle, 
to determine "V approximate eigenvalues wn(N) together 
with N distribution coefficients b,,(N). Let the Wk(Nl'S 

be the roots of a polynomial PN(W) such as (9). Then 
we have, as well, 

k=O, 1, . ", N-1. (31) 

Insert wo(N), Wl(Nl, "', WN_l(N) successively into the 
first of (31), multiply respectively by bo'Nl, bl(N), "', 

bN_l(N) , and sum the N equations so obtained. The 
result is, by virtue of (30), 

lltl(N)J.lO+al(N)J.ll+· •• + aN-l(N)J.lN_1+J.lN= O. (32) 

Repeating the procedure on successive members of 
(31), we obtain a set of equations identical to (15). 
This demonstrates the equivalence of the two ap­
proaches. There exists a unique solution to (30) if, 
and only if, the exact expansion (29) contains (in the 
absence of continuum contributions) at least N terms. 
It should also be noted that a set of degenerate states 
accounts for but a single eigenvalue and, conversely, 
that the method does not determine the degeneracy 
of any state. 

V. CONNECTION WITH THE VARIATIONAL 
PRINCIPLE 

For a set of N basis functions 

XJc(q) =X,kif;(q), k=0,1,···,N-1, (33) 

let the optimal linear combination 

N-l N-l 

\}i(q) = (2: CklN):JCk)if;(q) = 2: Ck(N)Xk(q) (34) 
k-o k-o 

be determined in accordance with the variational prin-

1 o 

J.lo 

ciple 
1lw=0 (35) 

where 

W=[j dq \}i* (q):1C\}i (q) / j dq 1 \}i(q) 12]. (36) 

Variational functions of the type 

(37) 

were employed by HasselO in calculations of atomic 
polarizabilities. These represent, in our nomenclature, 
second-order calculations since moments up to J.l3 are 
contained in the energy expectation value. 

The requisite matrix elements Hmn and Smn are re­
lated to the moments (12) as follows: 

Hmn= f dq Xm * (q):JCXn(q) = J.lm+n+l (38) 

and 

by virtue of (33) and the Hermitian property of :JC. 
The secular equation 

det 1 Hmn-wSmn 1 =0 

thereby takes the form 

(40) 

=0. 

( 41) 

That this is equivalent to Eq. (24) is shown as follows: 
From the second column of AN(") [Eq. (22)] subtract 
W times the first column. The determinant is, of course, 
invariant under such an operation. From the third 
column subtract W times the second column, and so on. 
Th e result is 

o o 

J.lN+l-WJ.lN (42) 

10 E. R. Hasse, Proc. Cambridge Phil. Soc. 26, 542 (1930); J. C. Slater and J. G. Kirkwood, Phys. Rev. 37, 682 (1931). 
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Finally, a Laplace development about the top row 
leads to (41). Therefore, the IJ. method and the method 
of moments are both equivalent to a linear variational 
treatment on the basis (33). From this follow the 
well-known variational results that the approximate 
eigenvalues are real and distinct and that they inter­
leave with the exact eigenvalues.u In particular, the 
lowest calculated eigenvalue provides an upper bound 
for the ground state 

(43) 

The approximate eigenfunctions determined by solv­
ing for the coefficients Ck,(N) correspond to those given 
by (26). 

VI. CONNECTION WITH EIGENVALUE 
SPECTROSCOPY 

Suppose that for some 1{I(q), the first 2N moments 
have been evaluated explicitly. In accordance with 
Sec. IV, these can be expressed in terms of an equiva­
lent distribution using (30), i.e., 

k=O, 1, "', 2N-1. (44) 

The approximation is now made that (44) also applies 
to the higher moments, i.e., 

N-l 
}.Ik-:::::3 I: b,,(N)[wn(N)]k, k=2N, 2N+l, "',00 (45) 

n=O 

with the same b,,(N) and w,,(N) as determined from the 
Nth-order calculation. Substituting (44) and (45) into 
(5) ,we obtain 

'" N-l (-1)" 
G(w)~27r I: I: b,,{N) -- [w,,(N)JO(k)(W). (46) 

k'='O 11.=0 k! 

For each n, the summation over k represents a formal 
Taylor series expansion for o(w-W,,(N». Therefore, 

N-l 

G(w)~27r L: b,,(N)fJ(w-W,,(N») , (47) 
n=O 

showing that the N approximate eigenvalues, each of 
which shows up as a delta function, are identical to 
those determined by the method of moments. Evi­
dently, as N is increased, so that more of the moments 
are given exactly, (47) approaches the actual eigen­
value spectrum. 

VII. EXISTENCE OF SOLUTIONS; CONVERGENCE 

Let us first suppose that the expansion (28) or (29) 
contains only a finite number, say M, of discrete eigen­
states or, equivalently, that only M functions of the 
basis (33) are linearly independent. In this instance 

11 J. K. L. MacDonald, Phys. Rev. 43, 830 (1933). 

(29) becomes 
M-l 

IJ."= L I Cn i2w,.k. (48) 
n=O 

Substituting the expansions (48) for each element of 
the determinant D [Eq. (17)J and applying, succes­
sively, the determinantal identity 

we obtain 

M-l 

LAM' 
.. =0 

W N-l 
a 

w(l WfJ2 wi W(lN 
X . (50) 

Now any determinant in (SO) will vanish whenever 
any two indices a, (3, "', v coincide, for then two rows 
will be proportional. However, two indices will be 
forced into equality whenever N> M. Therefore D, 
and correspondingly AN(W) , of which D is a minor, 
will vanish identically if N> M. In this instance a 
unique solution will not exist for the IJ. method as for­
mulated in Sees. III-V. This difficulty does not, how~ 
ever, arise in eigenvalue spectroscopy (Sec. VI). The 
IJ. method can be made operative by removing the 
redundant moments IJ.211[, IJ.2M+l, ••• by using the largest 
nonvanishing minor in D. To summarize, Eqs. (24) 1 

(30), or (41) possess unique solutions provided that 
M?N and that at least 2N moments (J.LO, "', IJ.2N-l) 
exist. These alternative sets of 2N simultaneous equa~ 
tions then suffice to determine N approximate eigen­
values (exact if M = 1V) and N expansion coefficients 
for the arbitrary state function 1{I(q). From the latter 
set, or using (26), the approximate eigenfunctions can 
be constructed. 
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As to the convergence of the calculated eigenvalues 
and eigenfunction to exact ones, the following conjec­
ture is made: If it is found that linear dependence is 
approached as N---+oo as indicated, for example, by 
.1w(w) approaching zero identically, the calculated 
eigenvalues and eigenfunctions are converging to exact 
ones. This generalization is based on intuition and 
ez,:perience; we have not pursued it on a rigorous level, 
particularly in cases involving continuous spectra. 

Analogous considerations apply to existence and con­
vergence for the v and A methods. 

VIII. THE ]I METHOD 

One way of circumventing the moment-divergence 
difficulty might be to modify the potentials. Replacing 
r-I by (r+b)-l in Coulomb potentials for example, 
removes the singularity. The !J. method is then applica­
ble, With b carried as a parameter. It can be shown 
that, although individual moments may diverge as 
b---+O, they do so in a compensating manner such that 
the approximate eigenvalues approach finite limits. 
An alternative approach might be to transform the 
Hamiltonian so as to remove the singularities. The 
two-particle Coulombic system can, for example, be 
transformed into the harmonic oscillator.12 Analogous 
transformations might well be possible for many­
particle systems. 

The method to be outlined in this section avoids not 
only the divergence problem but the evaluation of 
integrals entirely. The v method is based on the choice 
f(q)=o(q-q') in (11), where q' represents an arbi­
trary point in the configuration space sufficiently dis­
tant from any singularity. Defining the semimoments13 

]lk(q') == f dqo(q-q')Xkif(q) = [X'1f( q) ]q=q'= Xk(q') , 

(51) 

we can construct a set of equations analogous to (15) 
but with Vk(q') instead of !J.k. Subsequent developments 
are, mutatis mutandis, largely analogous. Thus, an 
Nth-order calculation, requiring 2N semimoments, leads 

to approximations for N eigenvalues (depending on q' 
and different, in general, from those obtained by the 
corresponding moment calculation). The computational 
accessibility of the semimoments is the principal advan­
tage of the ]I method. For the most common types of 
Hamiltonian operators, evaluation of Vk(q') involves 
only the operations of differentiation and multiplica­
tion. 

The v method also has a variational analog. Con­
sider the trial function 

N-l N-l 

<I>(q) (L Ck(N)Xk) t (L Ck(N)JCk)if(q) 
k=iJ k-ll 

N-l N-l 

L L Ck(N)*Cm(N)Xk+m(q) , (52) 
k-ll m=iJ 

where (33) has been used for the last equality. Specify 
now that the local energy14 

weN) (q) ==JC<I>(q) /<I>(q) (53) 

shall be stationary with respect to variations in the 
CkC'{), i.e., 

OW(N)(q) = {o[JC<I>(q)]/<I>(q) I 

- {[OC<I>(q)]o<I>(q)/[<I>(q)]2j=0; (54) 

multiplying by <I>(q) and using (53) again, the varia­
tional condition can be written 

Il[JC<I>(q)-W(N)(q)<I>(q)]=O; (55) 

substituting the expansion (52), noting that XXk+m= 
Xk+m+l, and setting q=q', which introduces the semi­
moments [d. (51)], we obtain 

o L L Ck(N) *Cm(N) [Vk+m+l (q') -w(?')(q')Vk+m(q')]= O. 
k m 

(56) 

In analogy with the conventional variational problem 
(Sec. V), this leads to a secular equation 

=0, (57) 

where the N roots represent extremal values of the local energy W(N) (q') • 

12 D. Bergmann and Y. Frishman,]. Math. Phys. 6,1855 (1965). 
13 Semimoments are denoted by kk(q') in Refs. 5 and 6. 
14 J. H. Bartlett, Phys. Rev. 51, 661 (1937). 
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TABLE 1. Coefficients An(k). 

k 

n 0 1 2 3 4 5 6 7 

0 1 

1 1 -1.5 

2 2.5 -9 2.25 

3 11.5 -62.25 33.75 -3.375 

4 73.75 -531.0 447.75 -9.45 5.06 

5 6.048XIOZ -5.452XI03 6. 243 X lOZ -2.041XIQ3 2.278XI02 -7.593 

6 6.056XIQ3 -6. 563 X 10" 9.500XIO< -42. 29X to< 7.277XIQ3 -5.012XIOZ 11.39 

7 7. 169XIO" -9.072Xl00 1. 588XIQ6 -8. 960 X 1()6 2.097XIQ6 2.219XIO' 1.036XIQ3 -17.08 

In analogy with (24), the latter can also be obtained 
from the determinantal equation 

1 W wN 

Ifo(q') Ifl(q') IfN(q') 

Ifl(q') 1f2( q') IfN+l(q') =0. (58) 

The variational condition (54) implies only station­
arity, in contrast to (35), which also implies minimiza­
tion. The roots of (57) or (58) are therefore not upper 
bounds on the corresponding exact eigenvalues. In 
common with local energy method, fluctuations in the 
w(q') with q' should decrease with improvement of the 
trial function <p(q), hence with higher-order lV. 

IX. THE A METHOD 

N conditions on the polynomial coefficients ao(N), •• " 
aN_liN) can also be imposed by choosing in (11), with 
k=O, f(q) successively equal to O(q-qm), for lV dis­
tinct points qo, qt, •• 'qN-l in configuration space. In 
terms of the quantities 

we obtain the N simultaneous equations 

Aooao(N) +AlOal(N) + ••• +AN_l.OaN_I(N) = - ANO, 

Aolao(N) +Au/lJ,(N) + ••• +AN_l.laN_l(N) = -ANt, 

Ao.N-lao(N) +Al,N_lal(N) + ... +AN-l,N-laN-l (N) 

= -'tW,N-l. (60) 

Exploiting the analogy between (60) and (15), the A 
method leads to N approximate eigenvalues which are 

the roots of the determinantal equation 

1 w wN 

AOO AlO ANO 

AOI Au ANt =0. (61) 

Ao,N-l Al,N-l 

The approximate eigenvalues represent averages of 
local energies (53) over the configuration points qo, 
ql, "', qN-l. Weighting factors on these points can be 
introduced, if desired. Although the A matrix is not 
symmetrical (Akm¢Amk), this method has the computa­
tional advantage over the p. and If methods that only 
moments up to order N (rather than 2lV -1) need be 
computed. The A method has certain features in com­
mon with Frost's least-squares local-energy method.16 

If the latter were, in fact, carried out using the basis 
(33) and the configuration points qo, "', qN-l, then 
the two methods would become very nearly equivalent. 

X. A THEOREM ON LOWER BOUNDS 

More information about the over-all distribution of 
eigenvalues is contained in N moments than in any 
other set of N parameters, except, perhaps, N of the 
eigenvalues themselves. This is one advantage of the 
method of moments over other quantum-mechanical 
computational methods. For example, several criteria 
on lower bounds to the lowest eigenvalue make use of 
energy moments. Weinstein's criterion,16 in particular, 
requires the second moment. We shall derive here a 
generalization of Weinstein's criterion based on quanti­
ties which are determined in the course of a moments 
calculation. 

15 A. A. Frost, J. Chern. Phys.lO, 240 (1942); A. A. Frost, R. E. 
Kellogg and E. C. Curtis, Rev. Mod. Phys. 32, 313 (1960); 
and sub~quent publications of Frost and co-workers. 

16 D. H. Weinstein, Proc. Nat. Acad. Sci. U.S. 20, 529 (1934); 
L. Pauling and E. B. Wilson, Introduction to Quantum Mechanics 
(McGraw-Hill Book Co., New York, 1935), p. 189. 
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TABLE II. Approximate eigenvalues 6Jn(N) and expansion coefficients b,,(N). 

N 0 1 2 

0.625 
1.00 

2 0.51715 3.2328 
0.96029 3.971X1Q-2 

3 0.50235 2.6890 6.1857 
0.94614 5.243X1Q-2 1. 426XtQ-a 

4 0.50030 2.5452 5.1063 
0.94333 5.329X1O-2 3.328XIQ-a 

5 0.50003 2.5097 4.7119 
0.94288 5.273XIQ-2 4. 208XlQ-a 

6 0.50002 2.5060 4.6522 
0.94279 5. 230XIQ-2 4.463XIQ-a 

7 0.50000 2.5008 4.5464 
0.94277 5.215X1Q-2 4.478Xl0-a 

8 0.50000 2.4998 4.5185 
0.94277 5.212XIQ-2 4.478XlO-a 

The variance 0'2 of a distribution is defined by 

0'2=P2-P12• (62) 

In terms of the formal expansions (29) and assuming 
normalization, 

0'2=5 I Cn 12w,,2- (5 I C" 12w,.) 2= tSS I Cm 121 C .. 12(W .. -Wm)2 
n n 11. m 

Since each term in the double summation is positive 
definite, 

0'2~S I c .. 12 1 Co 12(w .. -wo)2= I Co 12(p2- 2WoPl+wli) .. 
= I Co 12[0'2+(Pl-Wo)2]. (64) 

In accordance with the variational principle Pl~Wo; 
solving (64) for Wo therefore leads to a complementary 
inequality 

Wo~Pl- ( I Co 1)1120'. (65) 

Thus, if 1 Co 12 or a lower bound on 1 Co 12 is known, (65) 
provides a lower bound to the ground-state eigenvalue. 

For the case I Co t, (65) reduces to Weinstein's 
criterion 

(66) 

when I Co 12>t, (65) provides a sharper condition on 
the lower bound. 

XI. APPLICATION TO THE HARMONIC 
OSCILLATOR 

The quantum-mechanical method of moments will 
be applied to the linear harmonic oscillator. For unit 

n 

3 4 5 

9.3472 
4. 230X 10--

7.7644 12.649 
1. 761X1Q-4 1.123XIQ-6 

7.5016 11. 9019 21.855 
4.310XIQ-4 1. 470X 10-' 5.320XIQ-s 

6.9776 10.465 15.901 
5.732XtQ-4 2.257XIQ-· 8. 723 X 10-a 

6.8404 10.177 15.413 
6.063X1Q-4 2.413X1O-· 9.341XI0-a 

mass and force constant, the system is described by 
the Hamiltonian 

(67) 

The exact solutions to the SchrOdinger equation are, 
of course, well known for this problem: 

w,.=n+t, 

c/J .. (x) = (2nn!1('1/Z)-l/2H,,(x) exp( -x2/2) , 

n=O, 1, 2 .. ·, (68) 

where H,,(x) are the Hermite polynomials. 
As the approximation function, we choose the non­

eigenfunction 

!/I(x) =1('-1/4 exp( -x2). (69) 

This is expandable in the even-parity eigenfunctions 
(68). The approximate eigenvalues should then ap­
proach the set i, 2t, 4t, .... 

The computation of moments is considerably simpli­
fied by the fact that operation of (67) on (69) brings 
down even powers of x multiplying !/I(x). We can 
therefore write 

X,ky,(x) = (llc(X)!/I(X) , 

where <1lc(X) is a polynomial 

(llc(X) = L A,,(lc)x2" .. 

(70) 

(71) 

with ao(x) = 1. If (tk(X) is known, the next higher poly­
nomial can be obtained from 

(tk+l(X)!/I(X) = X(lk (x) !/I (x) = L Am(k)JCx'lmy,(x). (72) 
m 
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FIG. 1. Calculated eigenvalue spectrum for harmonic oscillator. 

Define the new polynomial 

CBm(x) = L Bmrxr (73) 

such that 

JCX2m exp( _X2) =CBm(x) exp( _X2). (74) 
Then 

(ik-tlf(X) = L Am(k) L Bmrx2r1/;(x), (75) 
m 

the coefficient of x2r in (ik+l being 

A (HI) = '" A (k)B r £...J m mr-
m 

This can be expressed in matrix form as 

A (k-tl) = A (k)B, 

(76) 

(77) 

where A(k) is the row vector with elements A,,(k). For 
this problem, it is easily shown that the matrix B is 
tridiagonal with 

Bnn=2n+l, 

B".n+l= -3/2, 

Bn .n-l= -n(n-l)/2, 

all other elements vanishing. 

(7S) 

The moments, semimoments, and A coefficients now 
follow in straightforward fashion. In terms of 

C,,= L: x2n exp( _2X2)dx, 

where the C's are the appropriate column vectors with 
elements given by (79). The procedure outlined here 
is suitable for computer programming. It can be ap­
plied to calculate moments of almost arbitrarily high 
order. The method can also be generalized for many­
dimensional problems. 

The method of moments has been carried to eighth 
order on the IBM 7090 computer. The vectors A (0), "', 

A (7) are tabulated in Table T. The general pattern is 
clear from these, so higher-order vectors are not enu­
merated. For the larger values of k, it is seen that 
Ak(k) is much smaller in magnitude than the other 
elements of A(k). If A W _ 1(2N-l) were exactly zero, A(2N-l) 

would be expressible as a linear combination of the 
A (k) with k < 2N -1. The basis set Xo, ••• , X2N-l would 
thereby be linearly dependent, and the Nth-order cal­
culation would give N exact eigenvalues and eigen­
functions. The fact that Ak(k) becomes less and less 
significant on a relative scale indicates that the basis 
is approaching linear dependence as l'{--Hf:) and, thus, 
that the approximate eigenvalues and eigenfunctions 
are converging to exact ones. 

Table II gives the six lowest eigenvalues Wn(N) and 
expansion coefficients b,,(N) for moment calculations up 
to eighth order. These are the best results based on 
two independent calculations. By choosing different 
normalization constants, round-off and other machine 
errors could be varied. These errors produced up to 
5% variation in the higher eigenvalues for the eighth­
order calculation. Since these calculations are mainly 
exploratory in nature, no further attempts were made 
to improve computational precision. The best results 
are represented graphically in Fig. 1. The widths of the 
eigenvalue peaks correspond roughly to the computa­
tional errors. 

To apply the lower-bound criterion (65), 1 Co 12 can 
be identified with bo'N) obtained from the eighth-order 
calculation. The expansion coefficient has apparently 
converged to the value 0.94277. With J.l.l=0.625, u= 
0.53033, we obtain wo~0.4944. This is, in any case, a 
considerable improvement over Weinstein's criterion, 
which gives wo~0.0946. 
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