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Centroid-based methods for calculating quantum reaction rate constants:
Centroid sampling versus centroid dynamics
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A new method was recently introduced for calculating quantum mechanical rate constants from
centroid molecular dynamiq€MD) simulations[E. Geva, Q. Shi, and G. A. Voth, J. Chem. Phys.
115, 9209(2001)]. This new method is based on a formulation of the reaction rate constant in terms
of the position-flux correlation function, which can be approximated in a well defined way via
CMD. In the present paper, we consider two different approximated versions of this new method,
which enhance its computational feasibility. The first approximation is based on propagating initial
states which are sampled from the initial centroid distribution, on the classical potential surface. The
second approximation is equivalent to a classical-like calculation of the reaction rate constant on the
centroid potential, and has two distinct advantagds:it bypasses the problem of inefficient
sampling which limits the applicability of the full CMD method at very low temperatui@si has

a well defined TST limit which is directly related to path-integral quantum transition state theory
(PI-QTST). The approximations are tested on a model consisting of a symmetric double-well
bilinearly coupled to a harmonic bath. Both approximations are quite successful in reproducing the
results obtained via full CMD, and the second approximation is shown to provide a good estimate
to the exact high-friction rate constants at very low temperatures20@2 American Institute of
Physics. [DOI: 10.1063/1.1445120

I. INTRODUCTION on the corresponding classical chai(RIMC and PIMD,
_ . ~ respectively.!57 In this case, one attempts to analytically

The calculation of solution-phase quantum mechanicatontinue the imaginary time quantum mechanical flux—
reaction rate constants in anharmonic systems represent fRaviside correlation function to real tirAe3%35
ongoi_ng challenge _ for theoretical and computational In a recent paper, we introduced a new and potentially
chemistry: Most previous attempts to address this challengé,qwerful approach for the calculation of quantum reaction
were based on one of the following approaches: rate constant¥® Like PI-QTST, it is based on the centroid

@ :%t‘le\g quantum  transition state theorfQTST)  concept. However, it avoids any kind of TST-like approxi-
approach.” Quantum mechanical expressions for reactionyations, and explicitly accounts for dynamical effects within
rate constants that are based on equilibrium thermodynamig,o framework of centroid molecular dynami¢€EMD).
averages are termed QTST. One of the most successfll\ip is an approximate method for calculating real-time
formulatloriﬁsgcifz QTST is  path-integral ~ QTST 4 antym correlation functiof’~#31t is based on the hy-
(PI-QTST). ACCO“_j'nngto the path-integral formula-  yohesis that the centroid follows classical-like dynamics,
tion of quantum mechanicé;*®the equilibrium dynamics of 4 tha quantum effects can be incorporated by modifying
ahqt_‘a”“]ﬂ”;') pa(;ﬂcle IS anal(()jgct))us r:o that of a CI%;?“LCVC“(fhe force fields, as well as by representing dynamical observ-
chain of beads connected by harmonic springs. The  ,pie5 in terms of suitably defined “centroid symbols.”
center-of-mass of such a chain is known as its centroid. Th%he new method has been systematically tétemh a
structure of PI'QTST. IS S|m|l_qr to that of classical TST, benchmark system consisting of a double-well potential
except that the classical positions are replaced by the Cerﬂﬁlinearly coupled to a harmonic bath.and was found to

trlo 'd‘zOf the cgrr?spp r:dlgg ghalgs. Seyer;ell suggtgst|or:s hat\gfovide an excellent approximation for the exact rate
aso been made for introduciii9 dynamical Corrections 10 fale o nstant on a wide range of temperatures and frictibrs.

; 9,20
constants Calculgted via QTS . _ the same time, the new method is subject to two practical
(b) The semiclassical approach. This approach is basefﬂnitations

on the reactive-flux formulation of the reaction rate constant

in terms of the flux—heaviside or flux—flux correlation (1) Generally speaking, CMD simulation of many-body sys-

functions®?122|n this case one uses a semiclassical approxi- tems with anharmonic interaction potentials requires an

mation in order to estimate the corresponding quantum cor- on-the-fly determination of the centroid force at every

relation functiong3-28 time step. Although the computational effort is often
(c) The analytical continuation approath*The evalu- feasible?®>*it is still very demanding and therefore pro-

ation of imaginary time quantum mechanical correlation  hibitive if one wishes to explore the parameter space of a

functions is computationally feasible for relatively complex problem.

systems via Monte Carlo or molecular dynamics simulationg2) Quantum delocalization renders centroid sampling of the
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initial state inefficient at low temperatures, thereby mak-  The reactive system is said to be in the reactant state if
ing it increasingly more difficult to perform the calcula- s<0 and in the product state $£>0. Pz andPp are defined
tion under these conditionsee Sec. 1y as the mole fractions of the reactant and the product, respec-

tively,
In the present paper we address these difficulties by consid-

ering two different approximated versions of the new method R .

which are computationally more economical. Pp=1-Pr=(h(8))=(h), 2
The remainder of this paper is organized in the following

Wa.y: A ShOI’t OVerVieW Of the new method iS giVen in Sec. Il. Where h(g) iS the Heaviside function operat@qrs| h(§)|s’>

The first approximation, which is based on propagating ini-= 5(s—s') for s>0, and zero otherwigeThe reaction rate
tial states sampled from the initial centroid distribution, onconstantk is defined by

the classical potential surface, is discussed in Sec. lll. The

second approximation which is equivalent to using )

the reactive-flux formulation on a centroid potential is dis-  Pp=—Pr=—KrpPp+kprPr, ()
cussed in Sec. IV. A similar approximation was previously g, equivalently,

suggested by Schenter al. as a way of introducing dynami-

cal corrections to PI-QTS® In Sec. IV, we derive this ap- )

proximation from the CMD expression in the case of the = J6P;=—KkéP;, (4)
harmonic bath, and critically examine several simplified ver-

sions of it. The main conclusions of this work are summa-yherei=P or R, k=Kpg+kgp, 8P;=P;—P%, PS=Kpp/
rized in Sec. V. k, and qu: kRP/k-

As was shown in Ref. 36, the exact quantum reaction
rate constant may be expressed in terms of the Kubo-
transformed position-flux correlation function,

II. REACTION RATE CONSTANTS FROM CMD
SIMULATIONS

A. General formalism

In this section we give a brief overview of our recently Cg‘ébo(t)
proposed method for calculating reaction rate constants from k= — W (5)
CMD simulations®® To this end, consider a unimolecular Cran(0)

reaction, such as isomerization, that takes place in solution, . - - - P
along a predefined reaction coordinate. The total HamilHere, SA(T)=A(7) —(A)eq, (A)eg=Tre "Al/IZ, Z

tonian is given by =Tr{e AH], A(r)=e" 7" Ae H7%
a2 N )2 1 (8 y
- F (P ok clePot =—J’ d\ Tr{e (A~MH
H=3m+ 2 S FV(QS). & s (=57 | AT
XAe—meiﬁt/ﬁée—iﬁt/ﬁ}_ (6)

Here, as in the rest of this paper, we use boldface letters far . .
. A . Is the quantum Kubo transformed correlation function, and
vectors and letters capped witiae.g.,A, for operatorss,

p, andm are the reaction coordinate, conjugate momentum,

?nd E:Ol’l’espf)ndlng maSS,- reSpeCth@f;—_ (Q(l), e ,Q(N)), ﬁ:dﬁ/dtzl[ﬂ,h(g)]/h: i[f)é(é) + 5(@) p] (7)
P=(PW,....PMN) and{M®} are the coordinates, conjugate 2m

momenta, and masses of the bath degrees of freedom, rg-the flux operator.

spectively; andv(3,0) is the total potential energy that in- The expression for the reaction rate constant in(Egis
cludes the potential energy along the bare reaction coordparticularly advantageous from the viewpoint of CMD. This
nate, the potential energy of the bare bath, and the interactias because the latter can provide a well-defined approxima-
potential between the reaction coordinate and the bath. It ison for correlation functions involving at least one operator
assumed that the potential along the bare reaction coordinatehich is linear in the positiofior momentun operatorg?43

has the shape of a double-well, and that the barrier top i¥he CMD approximation of the quantum reaction rate con-
located ats=0. stant in Eq.(5) is given by®

JdscfdpefdQcfdPepc(Se,Pe,Qc,Pe)Sc( —t)Fe(Sc,pe, Qo)
Jdsc/dpcSdQcSdPepc(Sc,Pc, Qe Pe) scohc(Se,Qc)

®

k~Kcmp=
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It should be noted that and approximations to it are ex-
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pected to be explicitly ime-dependent during an initial shortPc(Sc 'QC):CLw)s(ﬁh)DS( 7)

transient period, &t<t,(<1/Kk), in the following which

they reach the “plateau region,” where they acquire a fixed

value>°°6

Other quantities that appear in E§) have the following
form:

pC(SC 1 pC 1QC ’ PC) = pC(SC 1Qc)eiﬁ[2i:1’N[(Pgi))ZIZM(i)]+(p§/2m)]a

9

h. andF are the centroid symbols of the Heaviside and flux

operators, and are given by

p;(scan)
hc(Sc'Qc)—m,
_&p(’)(SCIQC)
FC(chpCYQC)_ m PC(SC,QC)’ (10)
where
pelse. Q0= Ds(7) DQ(7)
s(0)=s(Bh) Q(0)=Q(ph)
Bh
X 6| Sc—(ﬂﬁ)_lj drs(7) |8 Qc—(Bh)~*
0
B
XJO d7Q(7) |exp{—S[s(7),Q(7)]/%}
=lim MP) | ds;--- [ d dQy-- | d
plinx (P) | ds; fspJ Qlep
10 10
X0 S~ 5 2 sk} 5{Qc— 52 Qk}
XeXp[—S(Sl,...,Sp,Ql,...,Qp)/ﬁ}, (11)

Ds(7)

pe (s ,QC>=0f
s(0)=s(Bh)

Xj DQ(7)
Q(0)=Q(ph)

SC—(Bﬁ)lj’OﬁﬁdTS(T)}é

Bh
(,Gﬁ)*lfo drh(s(7))

X6 Qc—(Bh) ™+

ph
xfo d7rQ(7) |exp{—S[s(7),Q(7)]/A}

= lim MP) dsl---f dspf dQq -~

P—oo
1 P
X f de[Ekil h(sk)}

X 0|

12 12
Sc— Egl Sk} 5{ Qc_ Egl Qk}

XeXp[—S(Sl,...,Sp,Ql,...,QP)/ﬁ}, (12)

B
(ﬁ/o’)flfo d7a(s(7))

X J DQ(7)
Q(0)=Q(pt)

X 6 SC—(ﬁB)fleBﬁdTS(T)

Bh
x5 Qc—(ﬁﬁ)’lfo drQ(7)

xXexp{—S8[s(7),Q(7)]/h}

= lim MP)

P—

1 P
x [ o | de[Bgl 5<sk>]

1 P
Sc— 52 Sk}a
k=1

1 P
X6 QC_BkElej|
xXexp{—S(s1,..-,5p,Q1,...,Qp)/ 1}, (13
with
1 1
gS[S(T),Q(T)F lim %S[Sli----SPlei---aQP]
P
1 (e (1 N1
:%J'O dr Em[S(T)]Z-FZlEM(')
X[Q(”(T)]2+V(S(T),Q(T))], (14)

1
%S[Sl!"'YSPin""lQP]

P (1
=,6'k21 [Emw%(sk_skﬂ)z

Noq . : 1
+> 5M<”w§(Q<k'>—Q<k'll>2+5V<sk,Qk>}, (15
| (2mph? N (2mBh?
C_{( m )ﬂl( M )

mP N M(i)P P/2
MP):CHZWﬂﬁZ)iHl(ZW,BhZ)] :

and w3=P/(p#)>.

1/2

(16)

It should be emphasized that within the CMD approxi-

mation, s;(—t) in Eq. (8) is obtained by propagating,

backwards in time as a classical position, but on the centroid

potential,V n(Q¢,S:), Which is defined by

pel QC,SC)Ee_BVCm(QC’SC)’ a7
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and which is distinctly different from the corresponding clas-
sical potential V(Q,s). It should also be noted that E(B)

300K

involves the following approximation regarding the dynam- 15
ics of the flux centroid symbof+42

Fe(Se,Pe,Qeit) = Fc(Sc(t),pe(t),Qclt)), (18
wheresg(t), Q.(t), P,t) are propagated as classical posi- v 1

tions and momenta on the centroid potential surface, .
VCm(SC!QC)' /

B. Application to a system bilinearly coupled
to a harmonic bath 0.5

It is important to test any approximation for the quantum
mechanical rate constant on a multidimensional model sys-
tem for which exact solutions are available. The benchmark n/(mao,)
used in the present work is based on a symmetric double-

: i : FIG. 1. The transmission coefficient as a function of friction, for DW1 at
WE!I hpo:‘entlal blllnearly CouDIe.d to a harmonic br?th’ for 300 K. Shown are the exact quantum res(éslid line with filled circles,
which the exact quantum reaction ratg constants have be% classical resultésolid line with opaque trianglesthe results obtained
calculated by Topaler and MaKi.For this model, the total  from the keyp approximation(solid line), the kees approximation(dashed

Hamiltonian is given by line), the ks approximation(dotted ling, and thekg,s approximation(solid
line with opaque squargs

(P2 1
O 2 M0 (w2
o T MP(e)

. p?
A=+ Vo(3)+ ;
tively (cf. Ref. 36 for details An important outcome of this

is that the centroid symbols of the flux and Heaviside opera-

(g 2
Q(J)_ L (19 ) !
MDD (2] |’ tors, F, and h,, respectively, become independent of the

X
where bath coordinatefcf. Eq. (10)].
Finally, we note that following Ref. 44, the results of the
Vo(S)=—a;5%+a,s*. (200  calculations are presented below in terms of the transmission
The spectral density of the bath is assumed to be Ohmic Witﬁoefflment,
an exponential cutoff, k=kIk T, (23
o (cl))? where

Jw)==D, —— w— )= npwe @, (21
2 2 MDD n TST_£<5(S)ph(p)>
andmis taken to be the mass of a proton. The parametersfor ¢ m (1—h(s))
Vo(s) and J(w) are identical to these used for the DW1
model in Ref. 44. It should be noted that Ef) was tested

on the same model in Ref. 36 akdyp was found to be in ution)
good agreement with the exact results for a wide range o The transmission coefficients obtained for this model

temperatures and frictions. _ from Eq.(8), at 300 K, 200 K, and 100 K, are represented by
Another advantage of the above mentioned model Sysg.iq |ines in Figs. 1, 2, and 3, respectively, for a wide range

tem is that in this case, the average over the harmonic bal frictions. As can be seelkeyp provides a good approxi-

lmo<_jes can be_perfforr’r;}ed analy_técgllly._ghl_s Iefadshto the fcl)ll'mation to the exact quantum results, which are represented
owing expression for the centroid distribution for the overa by a solid lines with filled circles, and capture much of the

(24)

is the classical TST reaction rate constént-) corresponds
to averaging over the classical many-body Boltzmann distri-

system®® : ) .
guantum enhancement relative to the corresponding classical
pc(S:,Q¢) results, which are represented by a solid line with opaque
triangles.

_ —BIV, SN AM G (2000 —1eiDs. 1MD(0(1))2])2
= A(P)e™ AlVerl(se) T 2=y 2M @ DA Qe Tse MDD CENTROID SAMPLING AND CLASSICAL

(220  DYNAMICS

The explicit expressions fad(P) andVg(s) were given in The centroid symbol of the flux operator, E¢LO),
Ref. 36. For our purposes here, it is sufficient to note thatleserves special attention. In the classical limit,
Ver(so) is a function ofs; only, and is shifted relative to the p/(s.,Qc)/pc(Sc, Q) is replaced bys(s.), such that only
bare potential,Vy(s;), by a bath-induced term. It is also trajectories that start at the barrier tap=0, are sampled.
important to note thap/(s.,Q.) andp_ (s.,Qc) are given However, moving away from the classical limits turns
by expressions similar to Eq22), except thaV(So) is re-  pe(Se,Qc)/ pe(Se, Q) into an increasingly wider distribution
placed by appropriately defined,(s) andV 4(s), respec- of the initial values ofs.. The width of this distribution
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4 3.5

100K

LOg, .k

0.5

0 1 2 3
n/(me,) 0 1 2 3
n/(may,)

FIG. 2. The transmission coefficient as a function of friction, for DW1 at

200 K. Shown are the exact quantum res@slid line with filled circles, FIG. 3. The transmission coefficient as a function of friction, for DW1 at

the classical resultésolid line with opaque trianglgsthe results obtained 199 K. Shown are the exact quantum ressiid line with filled circles,

from the keyp approximation(solid line), the kees approximation(dashed  ihe classical resultésolid line with opaque trianglsthe results obtained

line), thekcis approximation(dotted ling, and thekg,s approximation(solid  from the keyp approximation(solid line), the kees approximation(dashed

line with opaque squares line), thekq s approximation(dotted ling, and thekg,s approximation(solid
line with opaque squargsNote that Logy( ), rather thar, is plotted.

increases with the quantum nature of the problem, and can _ _ _ _ _
therefore be viewed as a manifestation of quantum deIocaQUﬁl_nturn corrections are introduced into E2f) in two dis-
ization. Another useful perspective is based on the realizatiofinctively different ways:

that pe(sc,Qc) and pe(s,Qc) are analogous to partition 3y The jnitial distribution ofs, is dictated byp’(sc,Qo)

functions of a system consisting &f+1 cyclic polymers rather than byd(s.)e ™ V(@0

whose centroids are fixed as(,Q>,...,QN). While this A : -

. = cbc 1rreiNe | (2) The dynamics ofs is governed by the centroid poten-
is the only constraint in the case pf(s:,Qc), pc(Sc,Qc) tial, Vem(Se,Qo), rather than the classical potential,

includes another constraint, namely, that the position of one V(se, Q).

of the beads in tha.-centered chain is fixed at the barrier

top position, i.e., as=0. The width ofp/(s;,Qc)/pc(Sc.Qs) It is natural to ask whether one of the two quantum effects
as a function o, therefore depends on the typical extensionplays a more dominant role than the other? The answer
of a cyclic polymer which is attached to the barrier top, andto this question has important practical implications

is expected to increase as the masses and temperatures gecause initial centroid sampling only requires a single
crease. PIMD/PIMC simulation att=0, whereas centroid dynamics

SubstitutingF . from Eq.(10) into Eq.(8) and canceling requires that a PIMD/PIMC simulation is performed at
out pg(sc,Q) [cf. Eq.(9)], the centroid flux-position corre- every time step if the centroid force is to be evaluated on-
lation function can be put in the following form: the-fly.

We start by examining this question in the context of our
model system, namely, a symmetric double-well potential bi-
linearly coupled to a harmonic bathf. Sec. IIB. The cen-
troid dynamics component of the CMD calculation can be

f dscfdpcf dch dPepc(Sc,Pc, Qe Pe)Sc(—t)

XFolSe.,Pe, Qo) suppressed by sampling the initial valuesgpfrom the non-
classical centroid distributiom/(s;,Q.), followed by time
:J dst dch dQcJ dPep(Se, Qo) propagation on theclassical potential energy surface,
V(s:,Qp). The reaction rate constant evaluated via this ap-
><e—B[Ei:1,N[<P(ci))z’z""m]*<p§’2m)]sc(—t) &. 25) proximation will be denotedc,s (the subscript CeS stands
m for Centroid Sampling

P

’ _ . (i)y2 (i) 2
JdscfdpofdQcf dPpg(sc, Qc)e™ A¥i=antPe AT (Pel2mlgCh( 1)

Kees=— fdscfd pcferdecpc(sc /Pe+ Qs Pe) 8Schc(se,Qc)

(26)
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300K 3¢ 300K -

pc'(sc) (normalized)
p. (sJp.ls)

s/A

FIG. 4. The initial constrained centroid distributipfi(s.) (normalized, for FIG. 5. p¢(sc)/pc(se) as a function ok, at 300 K, 200 K, and 100 K. The

DW1 at 300 K, 200 K, and 100 K. The distribution is shown for various distributions are shown for different values efl(mwy): 0.047 (solid),

values of /(mwy): 0.047 (solid), 0.942(dotted, and 2.825dashegl The 0.942(dotted, and 2.825dashedl The classical potential along the reaction

classical potential along the reaction coordinate is also shown for referenceoordinate is also shown for reference. It should be notedoitat)/p.(sc)
decays to zero before reaching the potential minima.

It should be emphasized that E&6) differs from the origi-
nal CMD rate constant, Ed8), in thats{®’(—t) is propa-

gated on theclassical potential energy surfacé/(s;,Q.), Figures 1, 2, and 3 clearly indicate that centroid sam-
rather than the centroid potential energy surfacepling plays a much bigger role than centroid dynamics in
Vem(Se, Qo) reproducing the quantum enhancement of the rate constants.

The transmission coefficients obtained via the CeS aph fact, large deviations betwedwyp andke.sonly appear
proximation at 300 K, 200 K, and 100 K are presented byat 100 K, which is the lowest temperature considered, at
dashed lines in Figs. 1, 2, and 3, respectively, for a widesmall to intermediate frictions. More importantly, the full
range of frictions. The correspondin@ormalized con- CMD and the CeS calculations coincide at high frictions, for
strained centroid distributiong,.(s.), are shown in Fig. 4 all temperatures considered, which is the relevant region for
(these figures were already included in Ref. 36 and are pranany condensed phase systems. Hence, at least for the
sented here for the sake of completeneds the relatively  model studied, combining centroid sampling with classical
high temperature of 300 K, the distribution is found to bedynamics of the centroid is an excellent approximation that
unimodal and fairly localized around the barrier top, andmay provide significant saving in computational effort.
increasing the friction further localizes it. A somewhat dif- It should be noted that starting all the trajectories at the
ferent picture emerges at 200 K: At high frictions, the distri- barrier top and propagating them in time on the classical
bution is wider than at 300 K but still unimodal and localized surface would lead to the classical rate constant, which is
around the barrier top; At low frictions, the distribution be- known to be a very poor approximatihThus, the above
comes bimodal. This is because lowering the temperaturBnding implies that sampling the initial states from the cen-
and/or friction leads to more extended chains. One of theroid distribution instead of starting them at the barrier top
beads has to be attached to the barrier top, but the rest of tloan compensate, to a large extent, for this discrepancy. Com-
beads seek regions of lower potential energy which ar@aring the CMD and CeS approximations, we see that a large
downhill on both sides of the barrier. As a result, the corre{portion of the quantum enhancement is achieved by sam-
sponding centroid distribution acquires a symmetric bimodapling the initial states with corrected statistical weights.
structure. This behavior is further enhanced at 100 K, wheré&lowever, the CeS approximation cannot capture dynamical
p.(Se) is seen to consist of two, clearly separated peaks otunneling effects that are sensitive to the effective barrier
both sides of the barrier. height, and as a results is expected to deteriorate, in general,
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at low temperatures and frictions. These expectations arée barrier top(cf. Fig. 4). This distribution results in a situ-
confirmed by the results in Figs. 1, 2, and 3. ation where the large majority of the trajectories start far
The similarity of the CeS approximation to the linearized from the barrier top and therefore have a very small likeli-
version of the semiclassical approximatibf®®’ is also  hood of crossing the barrier. At the same time, a small mi-
worth noting. In this case, the semiclassical approximatiorrity of the trajectories, which start in the close vicinity of
amounts to doing the initial sampling based on the Wignetne parrier top, are very likely to cross the barrier. As it turns
distribution of the combined Boltzmann and flux operators,out’ the two types of trajectories make comparable contribu-
followed by fully classical dynamics. The above approxima-tions to the rate constafithe low likelihood of crossing the

tion is similar to the linearized semiclassical approxmatlon,barrier is compensated for by the high probability of starting

in the sense that quantum corrections are introduced via f"‘ . . . .
ST . . ..~ far from the barrier top, and vice veps&fficient sampling
nonclassical initial sampling. However, despite the similar

spirit of the two approaches, the additional important differ-Of the trajectories that start in the close vicinity of the barrier
ences should be highlightett) The initial centroid distribu- 1P IS possible via umbrella sampling. However, sampling of
tion function is fundamentally different from the Wigner the trajectories that start far from the barrier top is made
distribution®? and (2) Calculating the centroid distribution increasingly more demanding due to the inherent rare event
for realistic systems is feasible, while calculating the WignerStatistics. In other words, more and more trajectories need to
distribution for realistic systems may be extremely difficult b8 sampled in order to obtain good statistics by having
(however, see, for example, Refs. 58 and 59 for recengnough of them cross the barrier. This is demonstrated by the

progress in this arg@a relatively large error bars on the valueslkgfyp andkcesat

T=100 K, cf. Fig. 3, and by the fact that we were unable to
IV. CLASSICAL-LIKE SAMPLING AND CENTROID calculatekcyp and kces at the lower temperatures of 75 K
DYNAMICS

and 50 K, with reasonable computational effort. It is there-
The delocalized nature of the initial distribution of cen- fore natural to look for another centroid-based approximation

troid positions makes it increasingly more difficult to calcu- for the reaction rate constant that avoids this difficulty.

late kcyp andkeesat very low temperatures. As the tempera- ~ One possibility is to combine classical sampling with

ture decreases, the initial distribution acquires a bimodatentroid dynamics, i.e., the following expression for the rate

shape with sharp picks on both sides of, and far away fromgonstant;

_ s ()20 (D74 (p2 p
fdscfdpcfdQJdPCe ﬁV(SCYQC)e BlZi=1NL(P)/2M ]Jr(pclzm)]sc(_t)mc&(sc)

(27)

Keis=~ — BV(5¢.Q0) @ BLZi— L \L(PI)22M D+ (p2r2m)]
Jds.[dp.SdQ.fdPe e R PlEi=1n{Fe “Migs oh(s;)

wheres.(—t) is assumed to be propagated on the centroid2) The initial centroid distribution, e #Vem(Sc.Qd/

potential,[the subscript CIS in Eq.27) stands forclassical fds.fdQ.e #VemSe:Qd  is replaced by the classical dis-

samplind. However, our conclusion from Sec. Ill that cen- tribution, e—BV(ScvQc)/fdscfdch—BV(Sc,Q&_

troid sampling plays a more important role than centroid

dynamics also implies that this would be a poor approxima-One may now wonder if an improved approximation can

tion. Nevertheless, it is important to note that the classicakmerge from avoiding one of these approximations. A par-

sampling in Eq(27) consists of two, and distinctly different, ticularly appealing possibility is to avoid the second approxi-

approximations: mation, which would amount to replacing the classical po-

(1) The centroid symbols of the flux and heaviside operatential, V(s;,Qc), in Eq. (27) with the centroid potential,
tors, Eq. (10), are replaced by the corresponding Vem(Sc.Qo). This would lead to an expression for the reac-
classical-like approximationg,p./m]é&(s.) and h(s,), tion rate constant which igentical to that in afictitious
respectively. classical systenthat moves on the centroid potential,

5. dpe Q. dP e Pen(se Qg A3 -sn(PLFran ! pitemls () P s

Kjo= — i . . 28
cls fds./dp.SdQ Cfdpce—ﬁvcm<sc,Qae—ﬁ[zi:lmpé)>2/2M“>+p§/2m]5sc5h(sc) (28)
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As was shown in Ref. 36, Eq28) is one of a family of possiblecompletely equivalenexpressions for the
classicalrate constant. The origin of this variety has to do with the fact that the rate constant is independent of the initial
perturbation that shifts the reactive system from equilibrium. A perturbation lineawwuldlead, via linear response theory,
to an expression for the classical rate constant in terms of a position-flux correlation function, such28.#q pertur-
bation linear inh(s) would lead to an expression for the classical rate constant in terms of a heaviside—flux correlation
function,

decfdpcfdchdPCe_B[zi:1~N[(P(ci))ZIZM(i)]+(p§/2m)+vcm(s° ’Qc)]h[sc(t)] % 5(3(:)

(29

Kcis= =y 12 7 (52
fds.fdp.fdQ.SdPe BlZi=1Nl(P ) 2M ]+(pc/2m)+ch(Sc,Qc)][gh(sc)]Z

It is crucial to note that although Eq&8) and (29) appear to be different from each other, they are bound to give the same
value ofkgg.3®

It should be noted that Eq29) has been previously proposed by Schemteal, as a way of introducing dynamical
corrections to PI-QTS? Going in reverse, one can now reproduce PI-QTST from(E§). by taking its TST limit,

[ds.fdp.fdQdPe AZi=1al(P¢122M 1+ (p82m) + Von(se Qo In[ p ] % 8(se)
(30)

kClS% kTST: i i
O T s [ dpef Qg dP e~ PLZi-tnL(PS PI2M T+ (22m)+ Ven(sz Q] oh(s,) |2

In fact, ke corresponds to a primitive version of the PI-QTST rate constant, which upon variational optimization turns out to

be a rather good approximation at intermediate to strong fricfi8fis®44Thus, the approximation embodied in E&9)
naturally relates CMD with PI-QTST for a multidimensional system.

An illuminating argument as to why and when one can expect the approximation i2®aqr Eg. (28) to work can be
presented in the case of a system bilinearly coupled to a harmonic bath. The analysis is based on the fact that in this case

pe(Se,Qd)/pe(se,Qy) is independent o€, (cf. Sec. 11 B,

p(,:(sc Qo)

—————=p1(Se). 31

pe(5. Q0 1% (3D
As a result, one can approximaigyp in the following way:

kCMD%f dsep1(se)k'(se), (32
where

Jds. [ dpeS QS dPeAZi=1nl (PE1212M 1 (gf2m) + V(s Qo) lg! (— t) % S(s;—sc)
K'(sc)=— (33

Jds, dpef dQ.S dPe~ALZi=1al(Pe )M T+ (pgr2m) + Vens; Q01 55/ sh(s,)

The only approximation in Eq(32) involves replacing does not extend to areas in the close vicinity of the bottoms
ho(se) by h(s.) in the denominator of Eq(33), which is  of these wells. In particulargh(s;) may be substituted by
expected to be generally valid. It should also be noted thash(s.—s.) as long ap.(s.) decays to zero before reaching
s. in the denominator was renamed and is now denoted bthe minima of the potential. Figure 5 demonstrates that this is
S. - a valid assumption for a wide range of temperatures and
We now note thafp.(S;) is concentrated in the close frictions.

vicinity of the bottoms of the product and reactant wells. The above assumptions lead to the following expression
Hence,sh(s;) can be replaced bgh(s.—s?), as long as; for k' (s.):

. (i) i 2 ’
Jds.fdpeS dQ.S dPe AZi=inl(Pe)Z2M T+ (pgi2m) +Ven(s; . Qollg! (1) % 8(s¢—Se)

k'(sg)~~— (34)

' —as. () i 2 ! ’
fdscfdpcfdQJche 'B[Z':LN[(PCI )Z/ZM(I)]+(pc/2m)+ch(5c 'Qc)]53(’;5hc(sc_5c)
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Thus, if we now think ofs{ as the position variable, and of
S. as a parameter, thek’(s.) can be interpreted as a 1 == R
classical-like rate constant, calculated on the centroid poten- T T
tial via the reactive flux method, with the dividing surface set o8 7
ats;=s.. Since the rate constant is expected to be indepen-
dent. of the Iocatlor_l _of. the dividing surfgce, as longsgss 0.6 300K
not in the close vicinity of the potential minima, we can x P — 200K
replacek’ (s.) by k'(s,=0)=kc)s. This leads to our final 04 G — 100K
result, namely, i 75K
< -—-- 50K
Kemp~kcis=KXkKgis, (35 0.2
where
0
!
Pe(Se,Qe) 0 1 2 3 4 5
K= = —.
J dsouiso= [ os o5 (30 w(moy
It is interesting to note tha in Eq. (36) coincides with FIG. 6. K as a function of friction at various temperatures.

the “CMD transmission coefficient” as defined by Jang and

Voth in Ref. 12. However, the analysis in Ref. 12 differs to the case of a general anharmonic system, it seems reason-
from the one presented here in two important respects:  gpje to expect thakqs will also provide a useful approxima-
(1) The discussion in Ref. 12 is restricted to a one-tion in such situations. In some cases, it may also be possible

dimensional systenfthe reaction coordinateand does 1O formulate feasible approximations for the effective correc-
not include coupling to gharmoni¢ bath. tion factor,K.

(2) The potential along the reaction coordinate in Ref. 12 is  Kcis was calculated numerically for a symmetric double-
assumed to be unboundedxat o, as opposed to the Well bilinearly coupled to a harmonic bath and the results are
double-well shape assumed here. It should be noted th&€presented by the dotted lines in Figs. 1, 2, and 3 for a wide
one cannot define a rate constant for a one-dimensionafnge of temperatures and frictions. From these figures it is
system unless the potential is not bounded, and that ilear that Eq.(29) provides an excellent approximation to
the case of an unbounded one-dimensional potential, thécwp - In fact, kgis turn out to provide a somewhat better

classical TST rate constant coincides with the exact clasaPproximation tharkcyp When compared to the exact re-
sical rate constant. sults. Surprisinglykcs also provides a slightly better ap-

proximation in comparison td¢s, since K is generally

Thus, EQq.(36) provides an extension of the correspondingsmaller than onécf. Fig. 6).
result in Ref. 12, to cases involving bounded reactive poten-  The calculation ok g in the general case will require an
tials and coupling to a harmonic bath. on-the-fly evaluation of the centroid potential, and will there-

Equation (35) would coincide with Eq.(29) if K=1. fore still be far more computationally demanding in compari-
This is certainly true in the classical limit, wheyg (s.) son to the calculation dkces. PI-QTST, which was shown
=6(s;). Figure 6 shows that the value &f remains very above to be an approximated versionkgfs, provides one
close to 1 for the model system considered, on a wide rangattractive way of reducing the computational effort involved
of temperatures and frictions, and that the main deviation#n evaluatingkcs, but cannot directly account for dynamical
occur at very low temperatures and frictions. Herlggg is  effects. Another interesting simplification which was origi-
expected to provide a very good approximationKggp, at  nally suggested by Schentet al, amounts to performing
least in the case of a system bilinearly coupled to a harmonithe dynamics on the classical potenfaApplying this ap-
bath. proximation to Eq.(28) leads to the following simplified

Although it is difficult to generalize the above derivation expression for the reaction rate constant:

_ Y ()220 (D14 (p2 p
fds.fdp.SdQ.fdPe BVem(Sc Qg™ BLZi=1nL(Pe)/2M ]+(DC/2m)]S<CC|)(_t)mcg(sc)

kC — - - . 3
cis fds.fdp./dQ Cfdpcefﬁvcr,«sc,Qc>e—,8[zi:1,N[<P<c')>2/2M“>]+<|o§/2m>](sscgh(sc) (37

Propagating on the classical potential with its higher barriegonstant, and hende.s is expected to be smaller than the
is expected to lead to less recrossing, and hence to largexact rate constaritf. Figs. 1, 2, and B Hence ks may
reaction rate constants. Hence, one expkgisto be larger actually turn out to provide a better estimate of the reaction
thankgs. At the same timekcs is not expected to account rate constant! This indeed turns out to be the case for our
to the full extent for the quantum enhancement of the ratenodel system(cf. the solid lines with opaque squares in
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' ' ' be rather good, especially at the high friction region which is
relevant to many condensed phase systems.

V. CONCLUDING REMARKS

Two approximations to the CMD reaction rate constant,
kemp» have been considered. The first approximation, which
was denoted byces, combines centroid sampling of the
initial state with classical dynamics. Its most attractive fea-
ture is that it only requires one PIMD/PIMC simulation at
the initial time, thereby providing an economical centroid-
based route for calculating quantum mechanical reaction rate
constants. Its main disadvantage is that dynamical quantum
effects that are not included in the initial nonclassical sam-
pling, are not accounted for. Another disadvantage has to do
with the delocalized nature of the initial centroid distribution,
that can lead to inefficient sampling at very low tempera-
tures. The second approximation, which was denoted by
kcis, correspond to a classical-like calculation of the reaction
rate constant, on the centroid potential. It was shown that this
approximation can be rigorously justified when the bath is
harmonic. Its main advantage is that, unlike in the calcula-
tion of keyp , all the trajectories start at the barrier top. Thus,
the problem of poor sampling due to the highly delocalized
nature of the initial centroid distribution does not arise, and
the calculation of rate constants at very low temperatures

~20 : ; ' : : becomes possible. The main disadvantage of this approxima-
B/1000 a.u. tion is that, similarly tokcyp, the calculation ofkgg re-
quires that the dynamics is carried out on the centroid poten-
F_IG_. 7. !_ogm(k/a.u.) as a function of inverse tempe_rature, at_tfrfwee ?iﬁertinttial. Hence, in the general case, the centroid force has to be
e o o e o oo™ calculated_on-the-fy, which would require performing a
kenp (solid line with opague trianglgsk,s (dotted—dashed linekes (dot-  PIMD/PIMC calculation at every time step. A reduction of
ted lin@, kees (dashed ling andkgs (solid line with opaque squares the computational effort involved can be achieved by apply-
ing a TST-like approximation td&cs, which leads to PI-
QTST, or by performing the dynamics classically, which
Figs. 1, 2, and B Despite this, one should not lose sight of leads to the approximation embodiedkifs.
the fact that this better agreement is the result of a rather The various approximations were tested on the exactly
fortunate cancellation of errors: The enhancement of the exsolvable model of a symmetrical double-well bilinearly
act rate constant relative ks is probably due to the inabil- coupled to a harmonic bath, for a wide range of temperatures
ity of the latter to fully account for quantum tunneling, while and frictions.kc.sWas found to be a good approximation of
the enhancement d&f s relative tokgs originates from di-  kqyp, except at very low temperatures and small frictions.
minished classical-like recrossing. ks was typically found to provide superior agreement with

Finally, it should be noted that the calculation lof;s, kemp » and in fact performed better thagy,p in reproducing
kEss, and ks involves initial trajectories that start at the the exact results, which is likely to be accidental. It is impor-
barrier top. Hence, unlike the calculation kfyp andkces, tant to note that the variation in the predictions of different
the calculation okgs, ks, andkés can be easily extended centroid-based approximations is far smaller relative to the
to very low temperatures. In Fig. 7, we present the exact ratgap between the quantum and classical rate constants. Thus,
constants(on a logarithmic scale as well as the various perhaps the most important conclusion from the present
approximations discussed in this pag&ewp . k('§|s, Kais, work is that regardless of which centroid-based approxima-
kees, andkgg), as a function of the inverse temperature.tion is used, the result obtained is expected to provide a far
Special attention should be given to the two lowest temperabetter estimate to the rate constant than the corresponding
tures considere@5 K and 50 K. We were unable to calcu- classical result. This observation seem to reinforce the im-
late keyp and kees at these temperatures with reasonableportance of the centroid concept as a mean for estimating
computational effort, due to the rare event statistics menguantum mechanical rate constants. At the same time, it ap-
tioned in the beginning of this sectiGAThe approximations pears that the success of the centroid based methods, at least
represented b¥cs, kés, andkg,s avoid this difficulty by  for the benchmark considered, relies heavily on their ability
starting all trajectories at the barrier top. As a reskilg, to capture the quantum statics, rather than the quantum dy-
kK, and ks could be calculated with ease at very low namics of the problem. This is demonstrated by the fact that
temperatures, and the agreement with the ekaetfound to  the results are rather insensitive to whether we use classical

Log,(k/a.u.)




J. Chem. Phys., Vol. 116, No. 8, 22 February 2002

Centroid-based methods 3233

dynamics or centroid dynamics. Future work will therefore*w. H. Mmiller, Faraday Discussl10, 1 (1998.
focus on(1) exploring whether or not the above observations’°H. Wang, X. Sun, and W. H. Miller, J. Chem. Phy€8 9726(1998.

extend to more anharmonic systenig) testing CMD in

problems that show a more pronounced signature of quantu

dynamics.
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