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A nonlinear periodic structure can convert an input continuous wave beam into a train of 
pulses. This modulational instability implies that the nonlinear spatial resonance (“gap 
solitons”) of distributed feedback structures are generally unstable. Stability is assured only 
for low coupling strengths or large detunings from the Bragg condition. 

Wave propagation in periodic structures is character- 
ized by the presence of stop bands and pass bands.’ In the 
linear theory, a wave whose frequency lies within a stop 
band is strongly reflected. Its amplitude decays exponen- 
tially with propagation distance into the medium and 
hence it is known as a localized state. On the other hand a 
wave whose frequency lies outside the stop band can pass 
through the structure unimpeded. In 1979, Winful et al. 
first studied the effect of a nonlinear dielectric constant on 
the transmission properties of a periodic structure.2*3 They 
found that an intense wave could alter the refractive index 
of the structure enough to tune itself out of the stop band. 
For certain intensities total transmission occurs. At these 
intensities a spatial resonance is excited within the distrib- 
uted feedback resonator,3 much the same way as nonlinear 
resonances are excited in a Fabry-Perot resonator.4 These 
spatial resonances have been termed “gap solitons” be- 
cause they have the characteristic shape of sech’ solitons 
and because they “reside” within the band gap.5 We prefer 
to simply call these structures nonlinear resonances. 

The nonlinear reflection of distributed feedback struc- 
tures has been studied in cholesteric liquid crystals6 (where 
the periodicity arises from the natural helical ordering) 
and in the four-wave mixing process’ (where the periodic 
structure is created by the interacting waves themselves). 
Among the phenomena that can occur in nonlinear peri- 
odic structures are optical bistability,2 pulse compression,’ 
soliton propagation,‘-’ ’ self-pulsations, and chaos.i2 

In this letter we show that the nonlinear resonances of 
periodic structures are generally unstable above a thresh- 
old intensity. The instability is such that a continuous- 
wave input beam is converted into a train of pulses. The 
pulsation frequency increases linearly with intensity. The 
self-pulsation can be understood in terms of four-wave 
mixing gain with feedback supplied by the periodicity.i3 
The structure, in effect, acts a four-photon parametric os- 
cillator with distributed feedback. This instability requires 
a certain threshold intensity. 

We consider a medium whose refractive index varies 
periodically as 

n=nrj + nl COS(W~), (1) 

where n,(n,, PO = 25-~//z,, and il, is the free-space wave- 
length that satisfies the Bragg condition associated with 
periodicity. The periodic modulation introduces coupling 
between forward and backward propagating waves and the 

strength of this coupling is measured by the parameter 
K = QVZ,/;~,. If the refractive index also depends on the 
local intensity, then the slowly varying amplitudes of the 
forward and backward waves satisfy the evolution equa- 
tions:’ 

(24 
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Here Afl= p -Do, fl is the propagation constant of the 
incident wave, y = xw2/jl, and n2 is the nonlinear index 
coefficient. 

At steady state and in the absence of nonlinearity, Eqs. 
(2) can be readily solved for the linear transmission prop- 
erties of a distributed feedback structure.14 For wave- 
lengths such that I AD ] <K, the structure is highly reflec- 
tive and the field decays exponentially with propagating 
distance into the medium. Outside this stop band, there are 
particular values of AD. for which the structure is totally 
transmissive. Considerable enhancement of the cavity field 
occurs at these transmission resonances as a result of con- 
structive interference. The total intensity I EFI 2 + I EBI 2 
within the structure (normalized by the input intensity) is 
given by 

I= (AhpL)2 - (KL)’ cos[26L(5 - l)] 
(APL)* - (KL)2 COS2(f%.l ’ 

(3) 

where SL=[(AflL)2- (KL)~]“~, c=z/L and L is the 
length of the structure. Clearly, the transmission reso- 
nances occur at SL = m7i-, which corresponds to 
APL = [(KL)~ + (mrr)2]“2, with m = 1,2,3,... . At the res- 
onances, the intensity distribution has a number of peaks 
equal to m and an enhancement factor of 1 + 2 (KL/ms-) * 
over the input intensity. 

Inclusion of nonlinearity makes it possible for an in- 
tense beam to tune itself into or out of these resonances. 
The nonlinear equations can still be solved for the steady- 
state intensity distribution within the structure. For the 
case where the light wave at low intensity satisfies the 
Bragg condition Ap = 0, the intensity distribution of the 
forward wave in the nonlinear periodic structure is given 
by 2*3 
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FIG. 1. Reflected (solid curve) and transmitted (dotted curve) intensities 
vs incident intensity for a nonlinear periodic structure with KL = 2 and 
AD = 0. The points labeled A, B, and C are the three transmitted inten- 
sities corresponding to an input intensity i = 2. 
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(4) 
where 

y* =J/2* [(J/2)2 + (/cL)~]~‘*, 

sn is an elliptic function and J is the normalized transmit- 
ted intensity. The intensities are normalized by fEcl 2 
= 2/3yL. 

The relation between transmitted intensity and inci- 
dent intensity is shown in Fig. 1 for a nonlinear distributed 
feedback (DFB) structure with KL = 2 and A@ = 0. For 
this value of coupling, it is seen that a transmission reso- 
nance occurs at Z  = 2 (where the reflected intensity is 
zero). In fact for an input intensity of Z  = 2, there are three 
possible transmitted intensities labeled A, B, and C in Fig. 
1. Corresponding to each of these output values is a dis- 
tinct spatial distribution of the light field. These distribu- 
tions are shown in Fig. 2. The distribution marked A is the 
expected near-exponential decay of a light wave whose fre- 
quency satisfies the Bragg condition. Distribution C is the 
spatial resonance corresponding to that same input inten- 
sity. In order to reach that resonance, the input intensity 
must be increased beyond the knee of the S-shaped curve 
and then decreased to a value Z= 2. Distribution B is un- 
stable under steady-state condition. 

We  now investigate the stability of the spatial reso- 
nance by solving the t ime-dependent coupled mode equa- 
tions numerically. Figure 3 shows the result of such a cal- 
culation. The input intensity starts at a value of Z  = 2.5 and 
is reduced slowly to Z  = 2 and then kept steady at that 
value. It is seen that the output exhibits sustained pulsa- 
tions. The nonlinear spatial resonance is thus unstable. If, 
on the other hand, the input intensity is increased slowly 
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FIG. 2. Three spatial distributions of cavity intensity corresponding to an 
input of I = 2. Curve C is the nonlinear resonance or gap soliton. 

from Z = 0 to Z  = 2, it is found that the lower branch of the 
hysteresis loop is stable. 

For sufficiently high input intensities, higher order res- 
onances can be excited. These possess more than one 
hump. Figure 4 shows the higher order “gap solitons” that 
are excited at input intensities of Z  = 5.6 and Z  = 9.1* We  
have found that these higher order resonances are also 
unstable, These nonlinear resonances may be compared 
with the linear mode distributions of DFB structures 
shown in Ref. 14. 

The origin of the instability is four-wave mixing which 
provides gain to two sidebands symmetrically disposed 
about the pump wavelength. These sidebands enjoy feed- 
back if they are located at the resonances of the periadic 
structure. Because of the tuning action of the strong pump 
beam, it is possible for all three waves to be simultaneously 
resonant. l5 This isituation is highly unstable and results in 
self-pulsations. A.t even higher input intensities the pulsa- 
tions are chaotic. 
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FIG. 3. Self-pulsing :solution of the coupled-mode equations. The input 
intensity (straight line segments) starts at I = 2.5 and is reduced slowly 
to I = 2. Here KL = 2, A/3 = 0. 
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FIG. 4. Higher order nonlinear resonances of a distributed feedback 
structure. 

Practical applications may be envisioned for such a 
pulse generator. In that case the instability is a desirable 
feature. We  seek conditions under which highly nonlinear 
behavior such as hysteresis and self-pulsations occur. From 
the steady-state solution (4) we find that in the absence of 
detuning, i.e., AD = 0, the minimum coupling strength re- 
quired for hysteresis is KL z r/2. Further, one can show 
that the normalized critical intensity required for switching 
to the upper branch is I, -KL. In the presence of detuning, 
this switching intensity is reduced to I, = KL-APL. The 
four-wave mising instability occurs when y 1 E ) ‘L = ?r/2. If 
the switching intensity is less than this value, gap solitons 
may be observed stably. However such stable structures 
require that KL be small (KL < 1). In that case the nonlin- 
ear resonance is extremely weak. The “gap soliton” in that 

case is essentially flat with a very low contrast ratio be- 
tween its peak and its wings. Recall that the enhancement 
factor for the DFB resonances is 1 + 2(~L/n%-)~. For 
KL < 1, the enhancement is less than 20%. 

The problem of nonlinear propagation in periodic 
structures also shows up in stimulated Brillouin scattering 
which can be interpreted in terms of moving acoustic grat- 
ings. This model predicts self-pulsations and chaos in that 
interaction as we11.16 

In conclusion, we have shown that gap solitons are 
unstable in regimes of practical interest. However the in- 
stability may form the basis of a distributed feedback pulse 
generator. 
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