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Several recent experiments involving relativistic electron beam (REB) transport in plasma 
channels show two density regimes for efficient transport; a low-density regime known as the 
ion-focused regime (IFR) and a high-pressure regime. The results obtained in this paper use 
three separate models to explain the dependency of REB transport efficiency on the plasma 
density in the IFR. Conditions for efficient beam transport are determined by examining 
equilibrium solutions of the Vlasov-Maxwell equations under conditions relevant to IFR 
transport. The dynamic force balance required for efficient IFR transport is studied using the 
particle-in-cell (PIC) method. These simulations provide new insight into the transient beam 
front physics as well as the dynamic approach to IFR equilibrium. Nonlinear solutions to the 
beam envelope are constructed to explain oscillations in the beam envelope observed in the PIG 
simulations but not contained in the Vlasov equilibrium analysis. A test particle analysis is also 
developed as a method to visualize equilibrium solutions of the Vlasov equation. This not only 
provides further insight into the transport mechanism but also illustrates the connections 
between the three theories used to describe IFR transport. Separately these models provide 
valuable information about transverse beam confinement; together they provide a clear 
physical understanding of REB transport in the IFR, 

1. INTRODUCTION 

Charged particle beams generated from high-power di- 
odes always have velocity components perpendicular to the 
direction of propagation. This motion originates from 
sources such as imperfections in the diode shaping fields, 
electromagnetic forces from the beam self-fields, scattering 
through thin foils, or random thermal motions. Transverse 
motions from all these sources act to increase the beam radi- 
us, which may be detrimental in applications that require the 
beam transport over large distances with little or no radial 
expansion. One technique to control transverse beam mo- 
tion uses the focusing properties of large electromagnets. 
However, magnetic lenses can be difticult and expensive for 
high-energy electrons or ions since the power required in 
these electromagnets increases with beam energy. 

An alternative method ofsuppressing transverse motion 
in electron beams using the strong electrostatic focusing 
properties of an ion channel was first suggested by Ben- 
nett.‘s2 In this focusing method the repulsive electric field of 
the electron beam is reduced by a positive ion channel, which 
allows the beam to self-focus in its own magnetic field. One 
of the earliest experimental demonstrations of ion channel 
guided electron beams are those of Graybill and Nablo. 
These experiments injected a 3.6 MV, 17 kA, 20 nsec elec- 
tron beam pulse into neutral gas at various pressures. Figure 
1 shows the transported beam energy density as a function of 
gas pressure measured by Graybill and Nablo 20 cm down- 
stream from the injection point. The two large peaks in Fig. 1 
show that efficient beam propagation depends critically on 
the background gas pressure. These peaks represent the 

transport of over 80% of the total beam energy, indicating 
that ion channel guiding of a relativistic electron beams has 
the potential to be an efficient method of transport. 

A qualitative explanation of the dependence of trans- 
port efficiency on pressure is given below. As the beam elec- 
trons move through the gas, electron-ion pairs are produced 
as a result of ionizing collisions by the primary beam. These 
ions provide the positive space charge necessary to partially 
neutralize the space charge of the beam. At very low gas 
pressures the ionization produced by impact ionization is 
not sufficient to radially confine the beam and the beam rap- 
idly expands resulting in a low transport efficiency. As gas 
pressure increases, the number of ions in the channel be- 
comes sufficient to provide radial confinement and transport 
efficiency increases. However, eventually more ionization is 

Pressure porr] 

FIG. I. Transported electron beam energy density on axis 20 cm down- 
stream from the injection point (after Graybill and Nablo’ )~ 
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produced than is needed to space charge neutralize the beam 
and a significant number of plasma electrons are trapped in 
the channel by the excess positive charge. These extra elec- 
trons can interact resonantly with the primary beam elec- 
trons and lead to a two-stream instability that disrupts effi- 
cient beam transport. At higher gas pressures growth of the 
two-stream instability is collisionally damped and the trans- 
port efficiency again increases. At very high gas pressures 
the beam’s space charge is completely neutralized and, since 
the channel conductivity is large, the trapped channel elec- 
trons react to the longitudinal emf induced by the rising 
beam current to produce a sizable return current. Magnetic 
interactions between these oppositely directed current 
streams can cause transverse oscillations in the beam-plas- 
ma channel, which eventually interrupts efficient beam 
transport. This mechanism of instability is known as the re- 
sistive hose instability and is responsible for the decrease in 
efficiency at very high pressures. In this paper we present a 
detailed analysis of the low-pressure ion-focused regime 
(IFR) propagation window. Research at the Naval Re- 
search Laboratory (NRL) over the past several years has 
been primarily concerned with relativistic electron beam 
transport in the high-pressure regime.4a5 However, recent 
experiments at NRL have shown the utility of IFR cells to 
precondition the emittance variation in the beam for stabila- 
tion of the resistive hose instability.6 

The low-pressure propagation window associated with 
the first peak in Fig. 1 is known as the ion-focused regime 
(IFR); it is defined by gas pressures that are high enough to 
provide a sufficient number of ions to allow self-focused elec- 
tron transport yet low enough that excess channel electrons 
are not produced in sufficient numbers to drive an instabil- 
ity. To maintain strict control over the channel conductivity 
it is critical that the plasma electrons not produce excessive 
amounts of ionization as they leave the channel. Qualitative- 
ly, this condition can be met if the mean-free path for cascade 

TABLE I. Summary of recent IFR experiments. 

ionization is much larger than the beam radius.7*8 Therefore, 
to avoid avalanche breakdown in the channel, the back- 
ground gas pressure should be kept low. On the other hand, 
the gas pressure must be high enough for the beam to quickly 
create the ionization necessary to achieve self-pinched IFR 
transport. One way around this apparent difficulty is to keep 
the gas pressure low and use a laser or secondary low-energy 
electron beam to preionize the plasma channel in a very low- 
pressure gas (p - 10 - 3 Torr) . This provides the necessary 
charges to achieve self-pinched transport while avoiding 
beam-induced ionizations and avalanche breakdown. An- 
other advantage of preionized channels is that they provide a 
sufficiently high plasma density inside the channel while 
having a low plasma density outside the channel. This en- 
sures that there is a strongly preferred direction of propaga- 
tion and takes full advantage of the focusing properties of the 
plasma channel. In addition to electron produced ioniza- 
tions, it has been suggested that ion-induced ionizations and 
resonant charge exchange could also play a role in IFR 
transport experiments.’ These effects are ignored in the 
present work. Therefore the results obtained in this paper are 
limited to situations where gas pressures are low enough to 
avoid significant amounts of ion-induced ion production or 
where ion energies are below several hundred keV so that the 
cross section for ion-induced ionizations is low. 

Since the work of Graybill and Nablo a number of re- 
searchers have studied IFR electron transport. A summary 
of recent IFR transport experiments is given in Table I. In 
this table the column Y/Y is a measure of the beam intensity, 
where Y = N,e*/m,c’ is Budker’s parameter,” Nb is the 
number of beam electrons per axial length, m, is the electron 
mass, e is the magnitude of the electron charge, c is the speed 
of light, and y is the relativistic mass factor of the beam. As 
this table shows, ion channel focusing of a relativistic elec- 
tron beam has been successful over a wide range of beam 
parameters. Like the work of Graybill and Nablo many of 

Author 
Lab and Voltage 
Year (MV) 

Current 
GA) 

Pulse 
length ( nsec ) 

Length 
Cm) 

Pressure/Gas 
(Torr) 

Miller and Michigan 
0.33 

400 0.009 
Gilgenbach” 1988 0.2 1.20 

10 4-lo-s 
Ar, He, Ne 

Lucey and Michigan 600 0.008 lo-‘-lo 4 
Gilgenbach” 1987 0.7 0.3 1.20 Diethylaniline 
O’Brien et al,” SNL 

1987 2.2 
900 0.015 

1.2 21.0 
3x10m5 
Ar, He, Xe 

Carlson er al.” LANL 0.15 5 0.001 3.50 10 ’ 
1986 30 13.0 Benzene 

Shope et al.” SNL 1.0 14.0 50 0.300 1.0 lo~‘-10-4 
1986 3.6 25.0 0.180 1.3 Diethylaniline 

Smith et al.” NSWC loo 0.110 0.02-2.4 
1986 0.7 4.0 1.0 Ar, He, Air 

Martin et al.” LLNL 
1985 4.5 

25 
8.0 

0.048 lo-5 
4.0 Ar, He, Air 

Wilson’* NBS 
0.75 

2000 0.020 
0.75 

1om4-5.0 
1981 4.5 He, Air 

Briggs et al.” LLNL 5.0 0.4 300 0.002 0.1-200 
1917 1.5 15.0 30 0.230 7.0 Ar, He, Air 

Graybill and IPC 
3.6 

20 
17.0 

0.170 10 ‘+-200 
Nablo’ 1966 0.2 Ar, He, Air 
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the early IFR experiments relied on beam impact ionization 
to create the plasma channels.“*‘2 However, many of the 
recent IFR experiments have used preionized plasma chan- 
nels created by either a laser-initiated discharge’3-17 or a 
secondary low-energy electron beam.‘“,i9 

There are other effects that can influence the efficiency 
of IFR transport, for example, electron-ion instabilities.” 
The main electron-ion instabilities relevant to IFR trans- 
port experiments are the electron-ion two-stream and ion- 
hose instabilities. These instabilities play a crucial role in 
IFR transport experiments since they persist even when the 
channel is stable to electron-electron interactions. The time 
scales associated with electron-ion interactions effectively 
limits the pulse length of the beam that can be reliably trans- 
ported using ion channels. This paper does not treat such 
interactions but will consider the unstable interactions that 
occur between beam and plasma electrons. 

In this paper the application of three models: Vlasov- 
Maxwell theory, particle-in-cell simulations (PIC), and the 
beam envelope approach are used to analyze IFR transport. 
In Sec. II, self-pinched beam transport is studied from the 
framework of the relativistic Vlasov-Maxwell equations. 
The main purpose of Sec. II is to review the previous kinetic 
results and set the theoretical foundation for the remainder 
of the paper. Since similar calculations to those presented in 
Sec. II can be found elsewhere, only the main results are 
emphasized. ” Additional discussions of the conditions nec- 
essary for efficient transport are developed and estimates for 
beam radius are provided. These results are shown to be 
insensitive to the specific functional form chosen for the dis- 
tribution function and therefore of practical utility. 

There has been relatively few published papers featuring 
PIC simulations IFR electron transport. The two-dimen- 
sional simulations presented by Olson’ et al. neglected beam 
pressure and were performed with only one background den- 
sity. The simulations performed by Hubbard et al. were 
mainly concerned with the degradation of beam quality as 
the beam passes through a transition region between IFR 
and solenoidal transport. 22 The simulations performed by 
Joyce et al. concentrated on the large-amplitude plasma os- 
cillations about the neutralization radius caused by the 
beam’s wake fields.23 Three-dimensional simulations have 
been recently performed to study phenomena such as the 
ion-hose instability24 and IFR transport around 180” bends 
in the recirculating linear accelerator.25 In Sec. III of this 
paper, two-dimensional PIC simulations of pinched beam 
transport are presented for several different background 
plasma densities and the dynamic approach to equilibrium is 
studied. These simulations include effects from beam pres- 
sure and provide confirmation of the Vlasov equilibrium re- 
sults given in Sec. II. In addition, the qualitative aspects of 
the PIC results confirm the experimentally measured de- 
pendence of IFR transport efficiency on beam pressure (Fig. 
1). 

Several new developments are made in the envelope 
analysis presented in Sec. IV. First an estimate of emittance 
growth from multiple small-angle scatterings off of neutral 
gas atoms is developed. This analysis shows that neutral gas 
scattering can be ignored in low-pressure IFR discharges, 

but becomes more important as gas pressure is increased. In 
contrast to the self-similar treatment of Lee and Cooper,26 
we opt for a treatment in which ions are stationary. This 
approximation provides better agreement between the enve- 
lope analysis and the PIC treatment. This is largely due to 
the fact that ions do not move much over the time scale ofthe 
simulations. Another major contribution of the paper is the 
development of a method for constructing exact solutions to 
the envelope equation for situations where energy losses are 
small, no external focusing magnets are present, and emit- 
tance growth from gas scattering is negligible. This new ap- 
proach not only produces a more general result but also pro- 
vides additional insight into the nature of the envelope 
oscillations observed in the simulations. 

Since beams ultimately consist of a large number of indi- 
vidual electrons, a test particle approach is also developed in 
Sec. IV. This not only provides a convenient way to visualize 
solutions to the Vlasov equation but, as seen in that section, a 
few streams of test particles provide a detailed physical pic- 
ture of the dynamic force balance that must be maintained to 
achieve good beam confinement. Furthermore, test particle 
theory illustrates the connections between the three different 
theories used in this paper to describe IFR transport. In the 
final section of the paper the important conclusions from 
this work are summarized. 

II. EQUlLlBRlUM VLASOV ANALYSIS OF PINCHED 
BEAM TRANSPORT 

A schematic of the geometry used in this paper to study 
IFR transport is given in Fig. 2. As this figure shows, IFR 
transport is studied in a cylindrical polar coordinate system 
with the z axis along the axis of symmetry, r the radial dis- 
tance from thezaxis, and 6J the azimuthal angle. Beam trans- 
port is assumed to occur inside a conducting cylindrical drift 
tube of radius R, and axial length L. The beam is assumed to 
be cylindrically symmetric with a radius of r,,. It is further 
assumed that a cylindrically symmetric preionized plasma 
channel with a radius comparable to rb is located along the 
axis of the drift tube. Some of the main assumptions used to 
simplify the equilibrium analysis of IFR transport are the 
following. 

( 1) Collisions between beam electrons and the plasma 
channel are ignored as well as collisions between the beam 
and the neutral gas. 

(2) Equilibrium quantities are assumed to be functions 
of r only. 

I Drift Tube 

I 
z=o z=L 

FIG. 2. Schematic of the beam-plasma channel illustrating the basic geom- 
etry. 
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(3) The ratio V/Y is assumed to be small compared to 
unity. When this condition is satisfied, transverse beam mo- 
tions are small compared to the axial motion so that the 
paraxial approximation is valid (p, @,). In this case the 
relativistic mass factor of the beam can be written as 

y= (1-p: -a;, -“2,(1-p;) -1’2, (1) 

wherep, and,B, are the transverse and axial velocity compo- 
nents normalized to the speed of light. From Table I it is seen 
that the assumption Y/Y< 1 is consistent with most of the 
IFR experiments and is not considered too restrictive. 

(4) Ionization produced by the beam or channel elec- 
trons is assumed to be negligible so that the number of elec- 
tron-ion pairs is constant (i.e., beam-induced ionizations 
and avalanche breakdown are assumed to be negligible). 

(5) The mean azimuthal velocity of the various channel 
components is assumed to be small so that there are no net 
currents in the 8 direction. 

(6) For simplicity, it is assumed that the plasma ion and 
electron density profiles have the same radial dependence as 
the electron beam density. In this case the plasma ion and 
electron density will be written as 

n, (4 =hbO(r), (2a) 

nd) (r) =f,n,, (r), (2b) 
where nbO (r) is the beam electron density, A is the charge 
neutralization fraction, and f, is a measure of the number of 
trapped plasma electrons. In addition, in the equilibrium 
analysis it is assumed that ions are stationary and the plasma 
electron current density profile is assumed to be proportion- 
al to the electron beam current density profile and given by 

J, (4 = -fmenbo 09 VbrW, (3) 
wheref,, is the current neutralization fraction and Vbr (r) is 
the beam’s axial velocity profile. 

In the absence of external fields, the steady-state Vlasov 
equation for the relativistic electron beam can be written as 

afbo v---e 
ax 

(4) 

where fb,, (x,p) is the distribution of beam particles in phase 
space (x,p), and E, and B, are the equilibrium self-electric 
and magnetic fields. From assumption (2) about the equilib- 
rium geometry it is possible to define potentials Q(r) and 
A, (r) such that 

E 0 =E lo (r)e - -Ee r- dr * 
and 

aA 
B, = B,, (r)e, = - -2 

Jr ee’ 
Using these relations in Gauss’ and Ampere’s laws, equa- 
tions for Q(r) and A, (r) can be written as 

ia a -- r arrx= -44rren,,(r)ti -f, - 11, 

i a aA, 4T -- r-=---en,,(r)V,,(r)(l -f,). 
r dr dr c 

(8) 

The boundary conditions used for the solution of Eqs. (7) 

and (8) are that @ and A, as well as d@/dr and dA,/dr be 
zero at r = 0. Since f, must be positive and f, =A - 1 to 
maintain charge neutrality, Eq. (7) shows that no plasma 
electrons can be confined in the channel when A < 1. There- 
fore, when the plasma density exceeds the beam density, the 
excess ions in the channel trap plasma electrons, which can 
lead to unstable interactions between the trapped plasma 
electrons and the beam electrons. Since the purpose of the 
equilibrium analysis is to study IFR transport in regimes 
that are stable to electron-electron instabilities, it is assumed 
thatA < 1 so that no plasma electrons are trapped. Therefore 
both f, and f, are set to zero in the following analysis. 

It is well known that an arbitrary function of the single 
particle constants of the motion is a solution to the steady- 
state Vlasov equation. 27 Thus the problem of finding Vlasov 
equilibria can be reduced to finding the single particle con- 
stants of the motion in the equilibrium fields. For beam equi- 
libria that are azimuthally symmetric and independent of the 
axial coordinate z, the single particle constants of the motion 
are the energy H, the canonical angular momentum PB, and 
canonical axial momentum P,, which are given by 

H = (p2c2 + m:c4)“’ - e@(r), Pa) 

Pe = rpe, (9b) 
P, =pz - (e/c)A,(r). (9c) 

There is considerable freedom in choosing the functional 
form of the distribution function. In this paper it is assumed 
that all the beam electrons have the same canonical axial 
momentum and the distribution function is taken to be inde- 
pendent of the canonical angular momentum. Under these 
assumptions, solutions to the steady-state Vlasov equation 
can be written in the form 

fbo (x,P) = FL,,, (JO&P, - PO ), (10) 
where PO is the common canonical axial momentum and 
Fbo (H) is the distribution in total energy. For the moment 
the distribution in total energy is left arbitrary and some 
general properties of Eq. ( 10) are explored. 

Once the distribution function is specified, many inter- 
esting properties of the equilibrium can be studied. Of inter- 
est in Eqs. (7) and ( 8) are the equilibrium density and fluid 
velocity profiles, which are 

(11) 

V,(r) = 
i-$J:,.d42q:/~~v 

XF,, (HEW’, - PO ), (12) 

where the components of velocity are specified in terms of 
the momentum by v = p/ym, and y = (1 + p2/m:c2)“2. 
For the subclass of distribution functions given in Eq. ( 10) it 
can be shown that the radial and azimuthal fluid velocities 
are zero. This follows directly from Eq. ( 12) since H is an 
even function ofp, andp, so that v,Fbo and veFbo are odd 
and the transverse momentum integrals vanish. This proper- 
ty is very important for self-focused electron transport since 
there is no net radial flux through any cylindrical surface for 
any choice of Fb o (H). The mean axial velocity can be found 
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by performing the integrations in Eq. ( 12) and expressed as 

V,,(r) =pz (WyZ (rh,, (13) 
where pz (r) = PO + eA, (r)/c is the beam’s axial momen- 
tum and the paraxial approximation has been used to write 

y,(r)m,c’= [p:(r)c’+ m:c4]‘/2, (14) 
The characteristic beam energy is defined by evaluating Eq. 
( 14) at r = 0, and is given by 

yom,c2 = (Pic2 + m~c4)“2. (15) 
Equations (13) and ( 14) show that, when PO ,eA,/c, the 
beam’s axial momentum profile is approximately uniform 
[pZW=Po]andyz(r)= yo. But PO $ eA,/c is equivalent to 
the condition p/y< 1. Therefore, within the context of small 
v/y, distribution functions of the form given by Eq. (10) 
have axial velocity profiles that are approximately uniform. 

In addition to the density and mean fluid velocity, a 
third macroscopic variable of interest in IFR experiments is 
the transverse temperature profile defined by 

p dps p: f p 2 
W, (r)m, 

Ft,o (HI. 

(16) 
In the remainder of this section the density and transverse 
temperature profiles will be examined for two choices of 
Fbo V-0. 

As a first example, consider a beam in which all the 
electrons have thesame total energy with a distribution in H, 
given by 

n 

Fbo (HI = -.fk!L- S(H - y*mrc2), 
2vo m, 

(17) 

where y*m,c2 is the common beam electron energy chosen 
so that y* > yo. This restriction on y* is necessary since it 
will be shown that ( y* - ye )m,c’ is related to the transverse 
temperature on axis, which is inherently positive. Consistent 
with the assumption that the transverse beam momentum is 
small compared to the axial momentum, the paraxial ap- 
proximation can be used to simplify the expression for the 
total energy to yield 

H=:yZ (r)m,c2 + PS +p’e 
2y,Wm, - 

e@(r), (18) 

where yZ (r) is defined in Eq. ( 14). Substituting the assumed 
distribution in H given in Eq. (27) into Eq. ( 11) and using 
the approximation for H given in Eq. ( 18) the beam density 
can be expressed as28 

1 

1, 
. yz b-1 ho(r) = nbO - 

YO 
0, 

(19) 

where TLO = (r* - y0 )m,c2 and 

w/fj(r) = 22. ? ( 
y=(r) -y. e@(r) -- ) (20) 

Yo To w2 
is the generalized betatron frequency. A Taylor expansion of 
Eq. (20) about r = 0 shows that 

w;(r) = C$ + O(?), 
where the constant 

(21) 

a; = $y; 2) 
0 0 

(22) 

is the betatron frequency and w$ = 4di,,e2/m, is the plas- 
ma frequency of the beam electrons. It is important to note, 
when the beam density profile is uniform, that all the higher- 
order terms in the expansion are zero so that Q$ (r) = 0:. 

Since yL (r) and c&(r) depend on the potentials A, (r) 
and O(r), which, in turn, dependon nbo (r), Eq. ( 19) repre- 
sents an implicit expression for the density. However, when 
v/y< 1 it can be shown that yZ (r) z y0 so that the beam 
density is approximately uniform and w;(r) ~0;. In this 
case the beam density profile becomes * 

h,(r)=: 
n&OF r<rb, 
0, r> f-b, 

where rb is the characteristic beam radius defined by 

(23) 

(241 

Equation (23) shows that, within the context of small v/y, a 
uniform beam density profile with a sharp radial boundary 
at r, satisfies the equilibrium Vlasov equation. It will be 
shown in Sec. IV that this sharp boundary is the envelope of 
turning points in the radial oscillations of individual beam 
particles. 

Substituting the form for the distribution assumed in 
Eq. ( 17) into Eq. ( 16) and using the approximation for H 
given in Eq. ( 18) to perform the integration the transverse 
temperature profile can be expressed as 

(251 

From Eq. (25) it is apparent that the constant 
r,, = (y* - y0 )m,c2 is the beam’s transverse temperature 
at r = 0. In the limit of small v/y, 0; ( r) z fii and the trans- 
verse temperature profile can be approximated by 

TL,(r)zTLo(l --?/I$). (26) 
Therefore, in the limit of small v/y, thedistribution given by 
Eq. ( 17) is characterized by a uniform density profile with a 
parabolic temperature profile with the beam’s thermal ener- 
gy concentrated near the axis and dropping off to zero at 
r= r,. 

Equation (24) gives the beam radius in terms of the 
beam’s transverse temperature and the equilibrium seIf- 
fields through the betatron frequency, ai. Since 6 is neces- 
sarily positive, Eq. (24) and the definition of fig [ Eq. (22) ] 
lead to the conclusion that J; must exceed l/g to radially 
confine the beam in the channel. However, as& -t l/d the 
betatron frequency approaches zero and r, -t CO. The phys- 
ical origins of this behavior can be understood by recogniz- 
ing that when& z l/y0 the net force on the beam from the 
self-electric and magnetic fields is small and the beam ex- 
pands as a result of its transverse kinetic pressure. Therefore, 
to have a tight beam pinch, there must also be a sufficient 
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number of ions in the channel to balance beam expansion 
caused by the transverse kinetic pressure of the beam. For a 
beam with a given radius, transverse temperature, and cur- 
rent a convenient way to express this condition is 

f;=++($)(g) 
=-+ A 

r,” I.4 
( ) ____ r,’ Y. w2 (27) 

where Ib = nr2,eii,,c,Bb, is the beam current and 
IA = ( mzti/e)yJbr is the AlfvCn current.29 The first term 
in Eq. (27) arises from the beam’s self-electric and magnetic 
fields while the second term is a result of its transverse pres- 
sure. To avoid unstable electron-electron interactions that 
can disrupt efficient beam transport an additional restriction 
on the charge neutralization is thatf; must be smaller than 
unity. This implies that, for a beam to be both radially con- 
fined and stable to electron-electron instabilities, the charge 
neutralization fraction predicted by Eq. (27) must be less 
than unity. 

As a second example consider a beam distribution in 
total energy H, which is given by 

n 

F,,(H) = 

nbO 

2vom, Tlo 
(28) 

Substituting this expression into Eq. ( 11) and using the ap- 
proximation for H given in Eq. ( 18) the beam density profile 
can be expressed as 

nbO tr) = iib0 yexp[ -g(F)], (29) 

where the characteristic beam radius, r,, is defined by Eq. 
(24), and tig (r) is defined by Eq. (20). Substituting the 
Taylor expansion of w;(r) [Eq. (21)] into Eq. (29) and 
retaining only the first term, the beam density profile near 
the origin can be expressed as 

nbo(r) = fib0 exp( -?/$j). (30) 

Since Eq. (30) is based on a Taylor expansion it is only valid 
for r<r,. A more accurate solution for the density can be 
obtained by solving Eq. (29) iteratively using Eq. (30) as an 
initial guess for nbo (I). After several iterations, this proce- 
dure converges to the Bennett distribution, which is given by 

ho(r) = fib 
4 + LJ 

(31) 

where ub = v2rb is the characteristic Bennett radius. The 
density profile for a beam-plasma channel with parameters 
r, = 1.3 cm, A,, = 6.65X10” cme3, (y. - l)m,c2 = 5 
MeV, andJT = 1 is shown in Fig. 3. As this figure shows, the 
density profile is approximately Gaussian out to rzrb, but 
past this point the beam density falls off more slowly and is 
more diffuse. The radial dependence of C$ (r)/Ri is shown 
in Fig. 4. As this figure shows, particles at different radii 
oscillate with different frequencies. This is known as phase 
mixing and is responsible for many interesting phenomena in 
nonuniform beam profiles. 

Substituting the assumed form for the distribution given 

0 1 2 3 4 
‘l’i, 

FIG. 3. Comparison of the exact density profile (solid line) obtained iter- 
atively with that of a Gaussian profile (dashed line) for a beam-plasma 
channel with parameters r, = 1.3 cm, A,, = 6.65x IO’” cm-3, 
(yO - l)m,2 = 5 MeV, andf; = 1.0. 

in Eq. (28) into Eq. ( 16) and using the approximation for H 
given in Eq. ( 18), the beam temperature profile can be ex- 
pressed as 

T,,(r) = T,,. (32) 
Therefore the choice of Fbo given by Eq. (28) leads to a 
beam equilibrium characterized by a Bennett density profile 
and an isothermal transverse temperature profile. It can be 
shown that, for the Bennett distribution, equilibrium be- 
tween the transverse pressure and focusing from the ion 
channel is maintained when 

4 -= 
2 

(33) 

Equation (33) is identical to Eq. (24) so that the number of 
ions needed to provide beam confinement given by Eq. (27) 

0 1 2 3 4 5 
r/r, 

FIG. 4. The radial dependence of the generalized betatron frequency, 
G$( r), for a beam-plasma channel with parameters rb = 1.3 cm, 
A,, = 6.65~ 10” cme3, (yO - I)m,Z = 5 MeV, andf; = 1.0. 
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also holds for the Bennett profile. 
The analysis presented in this section shows that radial 

force balance is achieved when the focusing provided posi- 
tive ion channel is sufficient to balance radial expansion 
caused by beam self-fields and transverse pressure. For a 
desired beam radius, current, and transverse temperature, 
the number of ions required for radial force balance is given 
by Eq. (27). This condition is shown to be insensitive to the 
choice of Fbo. Estimates of the beam radius vary between r, 
for the uniform beam profile to v’2rb for the Bennett profile, 
where rb is given by Eq. (24). In the next section the dynam- 
ics of IFR transport near equilibria such as those just devel- 
oped are studied using the PIC method. 

III. PIC SIMULATIONS OF IFR TRANSPORT 
To gain a deeper understanding of IFR transport, two- 

dimensional (r,z) PIC simulations of relativistic electron 
beam transport in preionized plasma channels were per- 
formed using the MAGIC code, which was developed by Mis- 
sion Research Corp. 3o The simulations are performed in the 
cylindrical geometry depicted in Fig. 2 with a perfectly con- 
ducting drift tube of radius 3.5 cm and length 1.0 m. To 
simulate the presence of thin foils, each end of the simulation 
is terminated by a perfectly conducting boundary. To initi- 
ate a simulation, a neutral argon plasma is loaded along the 
axis of the drift tube, beam electrons are launched from 
z = 0, and the subsequent behavior of the system is moni- 
tored. Because of the long axial dimension, plots of various 
quantities along the z direction are presented in pairs of fig- 
ures; one for the range 0 <z< 0.5 m and a second for the 
range 0.5 <z < 1 .O m. Snapshots of various properties of the 
beam-plasma channel are shown at t = 3.3 nsec after injec- 
tion so that the beam front has had just enough time to prop- 
agate the length of the drift tube. This choice provides a view 
of the transient beam front physics as well as the beam’s 
approach to equilibrium. In some cases the simulations were 
carried out to 6 nsec, but aside from the transient physics at 
the beam front, the results were not significantly different 
than the results presented in this section, Although ions are 
permitted to move in the simulations, the ions do not move 
appreciably over the time scale of the simulations. There- 
fore, no information related to ion motion is included in this 
paper. This certainly does not imply that ion motion is unim- 
portant on a longer time scale. 

The initial distribution of beam electrons is chosen by 
sampling the distribution function given by Eq. ( 17) which, 
as shown in the previous section, is characterized by a uni- 
form density and parabolic transverse temperature profiles. 
The beam current is ramped up from zero to 1.7 kA in 1 nsec 
and the initial beam kinetic energy was taken to be 5.0 MeV. 
The desired beam radius and transverse beam temperature 
on axis are chosen to be 1.3 cm and 50 keV, respectively. 
Prior to beam injection a uniform charge neutral plasma 
channel was created along the axis of the drift tube with 
channel radius comparable to the beam radius; this plasma 
was taken to be initially at rest. From Eq. (27) the charge 
neutralization fraction required for efficient transport of a 
beam with these parameters is& ~0.98. The simulations pre- 
sented in this section are done with three different plasma 

densities corresponding to charge neutralization fractions of 
A = O.l,f; = 1.0, andJ; = 6.0. The case withA = 1.0 is cho- 
sen to represent efficient IFR transport, whereas theJI = 0.1 
andf, = 6.0 cases are chosen to correspond to points on the 
left and right of the peak IFR transport efficiency shown in 
Fig. 1. 

The first simulation results are those representing effi- 
cient IFR transport withJI = I .O. The positions of the beam 
and plasma electrons at t = 3.3 nsec are shown in Figs. 5 and 
6, respectively. In these figures a dot is drawn to represent 
the location of a particle in the system. However, since the 
volume element varies like 9, particle density cannot easily 
be inferred from the density of dots in these figures. Figure 
5(a) shows the beam electron positions in the range 
0.5 <z < 1.0 m. The most striking feature of this figure is a 
considerable amount of radial expansion and erosion of the 
beam front. A detailed quantitative description of the phys- 
ics associated with the expansion and erosion of the beam 
front is very complex. 18*31 A qualitative understanding of 
the erosion process can be gained by considering a small 
axial slice at the front of the beam. Since it takes a finite 
amount of time for plasma electrons to be accelerated from 
the channel, the focusing force provided by the ions is small 
at the beam head and the first beam slice rapidly expands due 

7s 
28 
L 

0.0 
0.5 1.0 

(a) 2 [ml 

FIG. 5. Beam electron positions at t = 3.3 nsec for an initial plasma prebill 
correspondingtof; = 1.0. (a) OS<r<: 1.0 (m). (b) 0~2~0.5 Cm). 
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FIG. 6. Plasma electron positions at t = 3.3 nsec for an initial plasma prefill 
corresponding tof, = 1.0. (a) 0.5c.z~ 1.0 (m). (b) O<z<O.5 (m). 

to its kinetic pressure. While the beam head is expanding, the 
self-electric field of the beam provides a radial acceleration 
of the plasma electrons toward the drift tube wall. However, 
this radial electric field is greatly reduced as the beam slice 
expands and eventually the field becomes too small to effec- 
tively accelerate any more plasma electrons from the chan- 
nel. Subsequent beam slices then encounter stronger yet still 
very small transverse focusing forces and suffer the same fate 
while expelling yet more plasma electrons from the channel. 
Eventually, at a certain distance behind the beam front, 
enough plasma electrons are forced out of the channel and 
the beam electrons become trapped in the ion channel. The 
process by which electrons at the beam front are continually 
expended to create the ion channel for the remaining portion 
of the beam is termed erosion. Since erosion of the beam 
front constantly occurs during IFR transport it can be a 
significant source of electron loss, especially in IFR trans- 
port experiments of short beam pulses over very long dis- 
tances. 

It is seen from the positions of the beam and plasma 
electrons in the range 0.5 <z < 1.0 m at t = 3.3 nsec shown in 
Figs. 5 (a) and 6(a) that once the plasma electrons are accel- 
erated out of the channel a tight beam pinch occurs. Since 
h = 1.0 in these simulations the beam’s self-electric field is 
neutralized so that the tight beam pinch is maintained by 
achieving a balance between the magnetic pressure associat- 

ed with the beam’s self-magnetic field and the transverse 
kinetic pressure. The radius of the beam pinch is about 1.3 
cm, which agrees well with the equilibrium value given in 
Eq. (24). Figure 6(b) shows that a small fraction of the 
plasma electrons remain in the simulation just outside the 
beam channel. These remaining electrons had very little ef- 
fect on beam transport during the time scale of the simula- 
tions. 

The axial momenta (actually vyv, ) of the beam electrons 
at t = 3.3 nsec are shown in Fig. 7. The dip in the beam’s 
axial momentum in the range 0.5 <z < 1 .O m can be attribut- 
ed to the energy loss experienced by the beam electrons in the 
creation of the ion channel. This loss of beam energy appears 
as a corresponding gain of kinetic energy by the plasma elec- 
trons as they are expelled from the channel. Once plasma 
electrons are expelled from the channel no further energy is 
lost by the beam and the axial momentum approaches the 
value at injection. 

The radial momenta (actually p,. ) of the beam elec- 
trons at t = 3.3 nsec are shown in Fig. 8. The spread in the 
radial momentum of the beam in the pinched beam region is 
consistent with a 50 keV transverse temperature. Near the 
beam front it is seen that the transverse momentum spread is 
very narrow and the average radial momentum is positive. 
This occurs because those electrons with the largest trans- 
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FIG. 7. Axial momentum ( yvv, ) at I = 3.3 nsec for the beam electrons for an 
initial plasma prefill corresponding tof; = 1.0. (a) 0.5 <z< 1.0 (m). (b) 
0<2<0.5 (m). 
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FIG. 8. Radial momentum ( yu,) at t = 3.3 nsec for the beam electrons for 
an initial plasma prefill corresponding toJ, = 1 .O. (a) 0.5 <z < 1 .O (m). (b) 
0<2<0.5 (m). 

verse velocities are the first to be lost at the drift tube wall 
when focusing from the ion channel is small. 

A second simulation representing efficient transport 
with JI = 1.0 was done with the injected beam radius no 
longer well matched to the equilibrium radius predicted by 
Eq. (24). In this case, the initial beam radius and transverse 
temperature were chosen so that the beam emittance was the 
same as in the previous case. The beam emittance E is given 
by 

E = '1nj ( T~,/2y~m,c2) ‘j2, (34) 
where rinj is the beam injection radius. For the parameters 
used in these simulations the beam emittance is approxi- 
mately 88 cm mrad. The injection radius for this simulation 
was chosen to be 1.0 cm so that, to have constant emittance, 
the initial transverse temperature of the beam was increased 
to 85 keV. Positions of the beam electrons at t = 3.3 nsec for 
the case of a mismatched injection radius are shown in Fig. 9. 
A comparison of Figs. 5 and 9 shows that the transient be- 
havior of the beam electrons is very similar. The most nota- 
ble difference between these figures is the oscillation in the 
beam envelope apparent for the mismatched injection case. 
The wavelength of the envelope oscillation is estimated to be 
28 cm, which is roughly half the betatron wavelength 
(/lp = 27rc/fiD). In the next section it will be shown that the 
oscillation of the beam envelope is produced by imbalances 

FIG. 9. Beam electron positions at t = 3.3 nsec for an initial plasma prefill 
corresponding toS, = 1 .Oand mismatched injection radius (R,,, #R,, ). (a) 
0.5gz.c 1.0 (m). (b) O<z<OS (m). 

in the beam’s transverse pressure and the restoring force pro- 
vided by the ion channel. 

The beam’s transverse momenta in the region 0 <z < 0.5 
m at t = 3.3 nsec are given in Fig. 10. This figure shows that 
the oscillations in the beam envelope are accompanied by 
oscillations in the transverse temperature. An examination 
of Figs. 9 and 10 reveals that oscillations in the beam radius 
and the transverse temperature are out of phase so that 
where the beam radius is the smallest the transverse tem- 
perature is the largest, and vice versa. This behavior can be 
understood from Eq. (32) since beam emittance is con- 
served for a system of noninteracting particles in a harmonic 
potential we11.32 

The next set of simulation results are those of an under- 
ionized channel withfi = 0.1, representing a point to the left 
of the first peak in Fig. 1. For comparison with previous 
results the beam parameters are held fixed so that the only 
difference between these simulations and the previous ones 
are thatfj has been decreased from 1 .O to 0.1. The positions 
of the beam and plasma electrons at f = 3.3 nsec are shown 
in Figs. 11 and 12, respectively. The positions of the beam 
electrons show that the envelope opens very quickly after 
injection, resulting in a large loss of beam current at the drift 
tube wall. Sincef, $ l/f0 there are more than enough ions to 
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FIG. 10. Radial momentum ( yv,) in the pinched beam region 0 <z < 0.5 
(m) at r = 3.3 nsec for the beam electrons for an initial plasma prefill corre- 
sponding tof; = 1 .O and mismatched injection radius (R,, #R, ). 

neutralize the repulsive force on the beam from self-fields. 
However, as Eq. (27) shows, the net ion charge is insuffi- 
cient to counteract the beam’s transverse pressure. Some 
electrons reach the end of the drift tube, but the efficiency is 
very much reduced compared with the previous two exam- 
ples. 

The axial momenta of the beam electrons in the under- 
ionized channel at t = 3.3 nsec are shown in Fig. 13. In con- 
trast to the axial momentum in theA = 1 .O channel, the axial 

0.5 1.0 
b) z [ml 

(b) z [ml 

FIG. 11. Beam electron positions at I = 3.3 nsec for an initial plasma prefill 
correspondingtof, =O.l. (a)0.5<2<1.0 (m). (b) O<z<O.5 (m). 

FIG. 12. Plasmaelectronpositionsin theregion0.5 <Z-C 1.0 (m) at t = 3.3 
nsec for an initial plasma prefill corresponding toj; = 0.1. 

momentum of the underionized channel shows very little 
axial energy loss. Since the total mass of the plasma channel 
is ten times smaller in thex = 0.1 case, the net kinetic energy 
of the plasma electrons is much smaller as they leave the 
channel. Hence the energy needed to create the channel is 
smaller and beam energy losses are correspondingly smaller. 

Whenh is larger than unity, it is possible for a large 
number of plasma electrons to be confined in the channel. In 
this case, the plasma electrons and beam electrons can inter- 
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FIG. 13. Axial momentum ( yu,) at t = 3.3 nsec for the beam electrons for 
aninitialplasmaprefillcorresponding toj; = 0.1. (a) 0.5 <Z-C 1.0 (m). (b) 
O<z<O.5 (m). 
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act, resonantly leading to transverse oscillations that can dis- 
rupt efficient beam transport. Since the time scale for the 
development of the electron-electron interaction is too short 
for ions to participate, ions are treated in the analysis as a 
fixed charge-neutralizing background. For simplicity it is 
assumed that the beam and plasma completely fill the drift 
tube and, to be consistent with the symmetry assumed in the 
MAGIC simulations, azimuthal perturbations are ignored. 
From the cold fluid equations the linear electrostatic disper- 
sion relation for the eigenfrequencies, w, can be written 
,&33.34 

k:e, (k,,o) + k%,, (k,,w) = 0, (35) 

where k, is the effective transverse wave number, k, is the 
axial wave number, and E, and E,, are given by 

el(k,,w) = 1 --$+- 4 00 
(~-k&z)2’ 

u2 
qt (k,,w) = 1 - -$ - 4Jd 

(m-- k,cp,,P’ 

(36) 

(37) 

When the beam and plasma till the drift tube, the transverse 
wave number satisfies the relation k, r, = y,, where p, is 
the mth zero of Jo (x), the zeroth-order Bessel function of 
the first kind. Note that when k, % k, the dispersion relation 
reduces to that obtained in a one-dimensional treatment. 

An approximate form of the dispersion relation near the 
two-stream resonance can be derived by substituting 
w = tipe + S,, = k,cpb, + So into Eq. (35) and expanding 
about S, ~$0~~. Near the two-stream resonance, Eq. (35 ) has 
an approximate solution corresponding to instability, which 
can be written as 

(38) 

The first term in parentheses arises from the effects of finite 
radial geometry, whereas the term in brackets is identical to 
the result attained in a one-dimensional treatment. One con- 
sequence of finite radial geometry is the weak dependence of 
the peak growth rate on y,, . For large beam energies Eq. (38) 
shows that the peak growth rate goes to zero as y; 1’3 not as 
y; ‘, as predicted by a one-dimensional analysis. 

As a specific numerical example consider the transport 
of a beam with parameters given at the beginning of this 
section in a plasma channel withJ;. = 6.0. During the tran- 
sient period it is assumed that the beam displaces enough 
plasma electrons to achieve charge neutrality. Therefore 
whenA = 6.0 it is assumed that the plasma electron density 
is roughly five times the beam electron density, which, for 
this example, is given by A, = 3.3~ IO” cm -3. The most 
unstable wave number in this case is k T =;w,,Jc& =; 1.1 
cm-’ , which corresponds to a wavelength of approximately 
5.8 cm. The real frequency and growth rate for the most 
unstable fundamental mode (k, r, s 2.4048) are 
Re(w)r2.9~10’~sec-‘andIm(w)~5.6~10~sec-~cor- 
responding to a linear frequency and growth time given by 
Y = Re(w/2rr) ~4.67 GHz and r = Mm(w) ~0.18 nsec. 
These values compare well with the exact numerical solu- 
tions of the dispersion relation shown in Fig. 14. The growth 
time is important since it provides the expected time scale for 
small-amplitude perturbations to become large enough to 
cause a breakdown of linear theory. 

The next set of simulation results are those of an over- 
ionized channel with fi = 6.0 representing a point to the 
right of the llrst peak in Fig. 1. The beam electron positions 
at t = 3.3 nsec for this case are shown in Fig. 15. The most 
notable feature of the trajectories is the large transverse os- 
cillation in the beam electron orbits that occur over the 
length of the channel. These oscillations begin shortly after 
the beam electrons are injected at z = 0 and continue to grow 
in amplitude eventually become large enough to cause the 
beam to strike the drift tube wall resulting in a loss of trans- 
port efficiency. Evidence of nonlinear particle bunching can 
also be seen in Fig. 15 by the regions of high beam electron 
concentrations followed by regions of low concentration 
along the z direction. The large forces responsible for these 
transverse oscillations are interpreted as those arising from 
the two-stream instability. This interpretation will be sub- 
stantiated in the remainder of this section by comparing the 
wavelength and frequency of this oscillation with that ob- 
tained by linear theory. 

The axial momenta of the beam electrons at t = 3.3 nsec 
in the overionized channel are shown in Fig. 16. From this 
figure a very well-defined oscillation wavelength of approxi- 
mately 5.5 rrtr 0.2 cm is evident. This is in good agreement 

p 8.0 

g 
; 6.0 

r 
$ 4.0 
e: 

2.0 

kz [cm-t] 

1342 Phys. Fluids B, Vol. 4, No. 5, May 1992 

(b) k, [cm-i] 

FIG. 14. Numerical solution to the electro- 
static dispersion equation for a plasma pre- 
fill corresponding tof; = 6.0. (a) Real fre- 
quency, (b) growth rate. 

Swanekampetal. 1342 



(a) 

0.5 0.6 0.7 0.8 0.9 1.0 
z [ml 

(a) z [ml 

0.0 0.5 

(b) z [ml 

FIG. 15. Beam electron positions at t = 3.3 nsec for an initial plasma prefill 
corresponding tof; = 6.0. (a) 0.5 <z-z 1.0 (m). (b) 0~~~0.5 (m). 

with the wavelength of 5.6 cm for the fastest growing wave 
predicted from linear theory. A spatial growth length of 13.7 
cm can be estimated from this figure from which a temporal 
growth rate of 2.2 x lo9 set - ’ can be inferred. This is com- 
pared with the growth rate of 5.0 X lo9 set - ’ computed from 
linear theory. One source of the discrepancy is the many 
simplifications used in arriving at the dispersion relation, for 
example, that the beam and plasma completely fill the drift 
tube, purely electrostatic waves, and that pressure perturba- 
tions could be neglected. As seen from the radial momenta of 
the beam electrons at t = 3.3 nsec shown in Fig. 17, the 
transverse pressure perturbations are not small and may be 
important in properly predicting the growth rate of beam 
transport in overionized plasma channels. Nonlinear pro- 
cesses such as particle trapping and wave-wave interactions 
act to slow down wave growth and probably also account for 
some of the discrepancy between observed growth rate and 
linear theory. 

Figure 18 (a) shows the radial electric field 25 cm down- 
stream from the injection point at r,/2 = 0.65 cm from the 
axis as a function of time. The corresponding FFT of the 
radial electric field is shown in Fig. 18 (b) . The FFT shows 
three distinct Fourier components: one at roughly 500 MHz, 
the second and dominant frequency component at about 4.5 
GHz, and a third frequency component at about 9.0 GHz. It 
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FIG. 16. Axial momentum (yuz) at t = 3.3 nsec for the beam electrons fox' 
aninitialplasmaprefillcorresponding to1 = 6.0. (a) 0.5 <Z-C 1.0 (m). (b) 
O<z<O.5 (m). 

will be shown in the next section that 500 MHz is very close 
to the frequency expected in the channel for a betatron oscil- 
lation in the beam envelope. The dominant frequency com- 
ponent is the 4.5 GHz signal, which should be compared 
with 4.8 GHz, the frequency of the most unstable linear 
wave. The 9.0 GHz signal is twice the frequency of the domi- 
nant wave and is interpreted as the second harmonic of the 
fundamental wave. Since harmonic generation is a nonlinear 
phenomenon, the existence of this wave is not with the scope 
of linear theory. 

IV. ENVELOPE AND ORBIT ANALYSIS OF IFR 
TRANSPORT 

In the previous section PIC simulations of IFR trans- 
port were presented. Some of the aspects of the simulations 
such as the radial expansion of the beam front and the enve- 
lope oscillations are not explained by the Vlasov treatment 
presented in Sec. II. In this section, the beam envelope equa- 
tion is used to facilitate an understanding of the PIC results 
and provide further insight into IFR transport phenomena. 
To provide a convenient way to visualize solutions to the 
equilibrium Vlasov equation, a test particle approach is de- 
veloped at the end of this section. This illustrates the connec- 
tion between the statistical description offered by the Vlasov 
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FIG. 17. Radial momentum ( yu,) at t = 3.3 nsec for the beam electrons for 
aninitial plasmaprefill corresponding tof; = 6.0. (a) 0.5 <z < 1.0 (m). (b) 
O<z<O.5 (m). 

equation, the PIC method that follows the dynamics of a 
collection of individual ions and electrons in self-consistent 
electromagnetic fields, and the envelope approach that fol- 
lows the rrns radius of the beam. The end result is a very 
detailed picture of the dynamic force balance required for 
efficient IFR transport. 

The beam envelope equation describes the time evolu- 
tion of the rms radius of a thin axial slice of beam particles as 
a result of the average transverse forces acting on the beam 
slice. The starting point for the envelope analysis is the beam 
envelope equation of Lee and Cooper,23 

(39) 

where R is the rms beam radius. Each term in the beam 
envelope equation has physical significance. The 8 term rep- 
resents the inertia of a ‘“fictitious” particle whose trajectory 
traces out the rms radius of the beam slice while the forces 
that affect the rms radius are represented by the remaining 
terms in Eq. (39). The second term in Eq. (39) is analogous 
to friction in a mechanical system and arises from the loss of 
beam energy. These energy losses are often small in IFR 
experiments and usually confined to the initial transient pe- 
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FIG. 18. (a) The radial electric field as a function of time measured at 
r = 0.65 cm and z = 25 cm for an initial plasma prefill corresponding to 
f; = 6.0. (b) The corresponding FFT of the radial electric field. 

riod of the beam pulse. The third term in Eq. (39) arises 
from the self-electric and magnetic forces on the beam and is 
determined by current averaging the transverse electric and 
magnetic forces over the cross section of the beam. For a 
beam with a current density profile J,,* (Y) this term can be 
expressed as 

c2u 1 m 
s 

dr 
2vrJ,o (rl -=- 

R Ro 4 

x? - ( e [f&(r) -PbJeO(r)] ). (401 
iTO% r / ‘. 

It should be noted that the term in parentheses has the units 
of frequency and, for a uniform beam in a channel of uni- 
formly distributed immobile ions, the self-electric and mag- 
netic fields are linear in r. In this case the term in parentheses 
is independent of r and is given by sZ$ [see Eq. (22) ] so that 
Eq. (40) reduces to 

i?U/R = Rag (41) 
The fourth term in Eq. (39) arises from the focusing force 
provided by an external magnetic field. Since IFR experi- 
ments use little or no external guide fields this term is ne- 
glected in the analysis. The last term in Eq. (39) accounts for 
increases in the rms beam radius arising from the transverse 
beam pressure. In this term, the injected beam emittance is 
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represented by E2 while the integration accounts for emit- 
tance growth due to beam scatterings in the plasma and 
background gas. 

The mean-squared scattering angle per unit length in 
the background gas can be estimated by assuming that multi- 
ple small angle Rutherford scattering is the dominant mech- 
anism for emittance growth. In this case, the mean-squared 
scattering angle per unit length is independent of z and can 
be expressed as3’ 

(42) 

where 2 is the atomic number of the gas, n, is the neutral gas 
density in cm - 3, r, = e2/mec2 is the classical electron radi- 
us, and emin and f3,,, are the minimum and maximum scat- 
tering angles. Using Eq. (42) as an estimate for the mean- 
squared scattering angle, a first-order approximation for 
emittance growth due to multiple small angle scatterings in 
the background gas can be calculated by assuming R E R,, 
and performing the integration in Eq. (40) to yield 

L 
dz’R2 6’e~)-20x10-24 n,Z2 -= . 

6Z’ 

Xln(204Z -1’3)R fnjL,, (43) 
where L, = cfibzr is the distance traveled by the beam in the 
gas in time r. This last equation is valid when changes in 
emittance from gas scattering are small compared to the ini- 
tial beam emittance and the injected rms beam radius is close 
to the rms beam radius averaged over L,. A scale length for 
emittance growth can be defined by requiring that Eq. (43) 
be 10% of the initial beam emittance. With this definition 
and using Eq. (34) to eliminate R,, one can arrive at the 
following scale length for emittance growth from multiple 
small angle scatterings in the background gas, 

L, Z3.0 YOP iz T,o 
pZ2 ln(204Z -“3) ’ 

(4-4) 

where p is the gas pressure in Torr (at room temperature 
n,1:3.2~10’~p),L,isincm,andT,,isineV.Fora5MeV 
beam with a transverse temperature of 50 keV in 0.1 Torr of 
argon (Z = 18)) the scale length for emittance growth pre- 
dicted by Eq. (44) is 116 m. In 10 Torr of argon the scale 
length decreases to 1.16 m. Since this paper is primarily con- 
cerned with IFR transport over several meters in a low pres- 
sure gas (p < 0.1 Torr), beam scattering in the background 
gas is neglected in the subsequent analysis. However, as this 
example illustrates, emittance growth from multiple small 
angle scatterings can be important in the high-pressure 
transport regime. 

With the simplifying assumptions outlined in the pre- 
ceding paragraphs, the beam envelope equation relevant to 
IFR beam transport can be simplified to 

pz d2R a:, 
q+yR-$=o, C (45) 

where z = cPbzt has been substituted as the independent 
variable. The equilibrium rms radius predicted by Eq. (45 ) 
is given by 

R;=&-&; % % (46) 

where the second form assumes that the rms injected radius 
is well matched with the equilibrium radius. For a uniform 
channel the rms radius is related to the beam radius by 
R, = r,,/ti so that Eqs. (24) and (46) produce the same 
estimate for beam radius. 

The usual procedure in the envelope analysis is to linear- 
ize Eq. (45 ) about R, and solve the resulting linear equation 
for small oscillations about the equilibrium rms radius. In 
contrast to this approach, a procedure for constructing exact 
solutions to Eq. (45) will be outlined. This not only pro- 
duces a more general result but provides more physical in- 
sight into the nature of the envelope oscillations. If the beta- 
tron frequency is independent of z then 

2 2+fk;R2+1~ 
2 R2D;z (47) 

is a constant of the motion, where kp = as/cfibz is the beta- 
tron wave number. Equation (47) is a statement of energy 
conservation for the pseudoparticle. The first term in Eq. 
(47) is related to the kinetic energy of the pseudoparticle, 
the second term represents the potential energy of the beam 
in the equilibrium electric and magnetic fields in the chan- 
nel, and the third term is related to the transverse thermal 
energy of the beam. Insight into the nature ofthe equilibrium 
can be gained by noting that, when dR /dz = 0, R = R, and 
the two remaining terms in Eq. (47) are equal. Therefore in 
IFR equilibria the net transverse energy is partitioned equal- 
ly between the beam’s potential energy in the channel elec- 
tric and magnetic fields and the transverse thermal energy of 
the beam. 

An exact equation for the beam envelope can be ob- 
tained from Eq. (47) by separating variables and integrating 
to give 

s R(r) R dR z= (48) 
R ,“, (2HR2-k;R4--/~~~)1’2 * 

This equation can be integrated to yield an implicit equation 
for R (z), which can then be inverted and expressed as 

R(z) =-$- H+ (H-k;R&) 
sin( 2k0z - e, ) r/2 

a > sin(&) ’ 
(49) 

where the initial phase angle 0, is given by 

H - k;R f 
sin(eo) = (H- k;.2/fl;r),/2 ’ (50) 

One of the interesting features of Eq. (49) is that the nonlin- 
ear envelope oscillations all have the same wavelength 
il = /2,/2, where il, = 2rr/k, is the betatron wavelength. 
The constant H can be evaluated from Eq. (47) in terms of 
the injected rms beam radius and slope at z = 0. For the 
special case where dR /dz = 0 at z = 0, Hcan be expressed as 
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H=:k~R~“j(l +R~/R~j), 

and Eq. (47) simplifies to 

(52) 
Note that if the injection radius is well matched to the equi- 
librium radius then Eq. (52) shows that R(z) = R, and is 
independent ofz. Furthermore, for small perturbations from 
equilibrium it is possible to show that the results obtained 
from the linearization of Eq. (45) are recovered. 

Figure ( 19) shows a plot of the beam envelope comput- 
ed from Eq. (52) for a beam-plasma channel with the pa- 
rameters i2b0 = 6.65 X 10” cm - 3, (y. - 1 )m,c2 = 5 MeV, 
andA = 1 with injection radii of OS, 1.1, and 2.0 cm. For this 
choice of parameters the oscillation frequency and wave- 
length are vp = R, /2a = 500 MHz and A = /2, /2 r 30 cm, 
which agree well with the oscillation frequency and wave- 
length observed in the simulations. Recall that the equilibri- 
um radius for this example was r, = v’i?R, = 1.3 cm. Notice 
that when the injection radius closely matches the equilibri- 
um radius, as in the 1.1 cm case, the oscillations are small 
and a tight beam pinch is maintained. However, if the injec- 
tion radius does not closely match the equilibrium radius, as 
in the 0.5 and 2.0 cm cases, the oscillations are not small and 
the tight beam pinch is lost. The large amplitude of these 
oscillations can be traced to imbalances in the transverse 
forces on the beam. To get a better understanding of this 
force imbalance, consider the 0.5 cm injection case shown in 
Fig. 19. As the beam enters the channel the forces due to 
beam pressure greatly exceed the restoring force of the ion 
channel causing the beam envelope to rapidly expand. As the 
beam expands the transverse kinetic pressure decreases and 
the restoring force provided by the ion channel increases. 
Since the beam envelope has inertia as it moves through the 
point of zero force it continues to expand. However, past the 
equilibrium point the restoring force from the ion channel 
exceeds the transverse pressure and envelope expansion 
slows down and eventually comes to rest. Since the focusing 
force now greatly exceeds the transverse pressure, the beam 
envelope pinches past the equilibrium point and the whole 
process repeats itself. 

The PIC simulations show that the transverse focusing 

force is small during the time that it takes for plasma elec- 
trons to be accelerated from the channel. This implies that 
the betatron frequency is small at the beam front and rises to 
its full value in the main body of the beam. A heuristic model 
of the beam front physics can be obtained by letting the fo- 
cusing force vary from slice to slice in the beam envelope 
equation. In this situation the equation of motion for therms 
radius each beam slice is given by replacing fii in Eq. (45) 
with ajsZ& where aj is much smaller than one at the beam 
head and unity in the main body ofthe beam. The rms radius 
for thefih beam slice then becomes 

8 
> 1 l/2 

a,kiR fnj 
cos(2&kBz) * (53) 

In the limit that 2&kpz< 1, Eq. (53) reduces to 

R, (z) z Ri, ( 1 + tit/R kj ) I”. (54) 
This shows that the beam freely expands due to its finite 
emittance when the pinch force is weak. To obtain a snap- 
shot of the rms beam radius over the entire length of the 
channel one must string together envelope solutions for 
many beam slices. Results from this calculation will be 
shown in conjunction with the test particle analysis for 
aj = Fp (6,)) where lj locates the distance of the jth slice 
behind the beam head. The shape for F, used in these calcu- 
lations is shown in Fig. 20. 

Since electron beams are ultimately comprised of many 
individual electrons, it is important to understand IFR 
transport on the basis of an individual beam electron. In this 
section it is seen that a small number of electron trajectories 
not only provide a useful way to visualize solutions of the 
Vlasov-Maxwell equations but also provide a useful connec- 
tion between solutions of the Vlasov-Maxwell equations, the 
beam envelope equation, and the PIC model. Under the as- 
sumption of the paraxial approximation and in the small Y/Y 
limit, the equations of motion for an individual test particle 
in a uniform beam-plasma channel simplify to 

d’r. a.0; L: 
P&*i*ri---;;-=O, 

I 
(55) 

where r, and Li = ri& are the radial position and constant 

0 
0 20 40 60 80 100 

2 km1 

FIG. 19. Solutions to the beam envelope equation for three different injec- 
tion radii ( r,“, = 0.5, 1.1, and 2.0 cm) for a beam-plasma channel whose 
equilibrium radius is 1.3 cm. 

0 20 40 
t tcml 

60 no 100 

FIG. 20. Axial shape function used in the beam envelope equation and test 
particle analysis to heuristically model the beam front physics at t = 3.3 
nsec. 
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angular momentum of the ith test particle and ai controls 
the strength of the focusing force. A comparison of the beam 
envelope equation [ Eq. (45) ] and the test particle equation 
of motion [ Eq. (55) ] reveals that they are very similar in 
form. In the solution of Eq. (55), however, the initial radial 
position and transverse velocity of each test particle are cho- 
sen by sampling the distribution function. Since, in general, 
each test particle has a different angular momentum, Li var- 
ies from one test particle to the next. In this paper the initial 
conditions of the test particles are determined by sampling 
the distribution given in Eq. (17). As shown in previous 
sections, this distribution represents a beam with uniform 
density and parabolic temperature profiles. In contrast the 
beam envelope equation [ Eq. (45) ] determines the average 
behavior of all the particles in a beam slice, whereas Eq. (55) 
follows the trajectory of a particular particle in that beam 
slice. 

Since Eqs. (45) and ( 55) are similar in form, the solu- 
tion to Eq. (55) is constructed in a similar manner and can 
be written as 

r,(z) = ika [Hi +,,/Hf-aikiLf 

xsin( + 2&ksz - 6&)] “*, (56) 
where 

H, =&oh,) +&6 (57) 
is the normalized single particle energy and 

0, = sin - ’ 
Hi - aikir$ 

H;-qk;Lf > 
(58) 

is the initial phase angle. In Eq. (56) the positive sign is 
taken if the initial radial velocity of the particle is positive 
and the negative sign is taken if the initial radial velocity is 
negative. The transverse velocity that appears in Eq. (57) is 
given by 

P:, (ro 1 = T*, (ro v?wbc2, (59) 
where the transverse temperature is given in Eq. (26). 

Figure 2 1 shows the solution of Eq. (56) for six streams 
of test electrons in a transport channel that is well matched 
to the equilibrium radius. Each solid line in the figure repre- 
sents a stream of test electrons created at z = 0 with identical 
initial conditions. The dashed line in this figure is the beam 
envelope obtained from stringing many solutions to the en- 

velope equation together for many beam slices. This figure 
demonstrates the relationship between the three apparently 
different models used in this paper to describe IFR trans- 
port; the Vlasov-Maxwell model presented in Sec. II, the 
PIC treatment presented in Sec. III, and the envelope treat- 
ment presented in this section. Since all the beam electrons 
are contained within the envelope, the interpretation of the 
beam envelope as the turning point in the radial orbits of the 
individual beam electrons is justified. Figure 21 further illus- 
trates the expansion of the beam envelope due to force imba- 
lances at the beam front. This behavior agrees qualitatively 
with the PIC results of Sec. III. 

The trajectories of six streams of test electrons for which 
the injected radius is mismatched with the equilibrium radi- 
us are shown by the solid curves in Fig. 22. The beam enve- 
lope is again represented by the dashed line in the figure. 
From this figure it is seen that the trajectories of all six 
streams of test particles are contained within the envelope. 
Notice that the transverse beam pressure (as deduced by the 
slope of the test particle trajectories) is the largest where the 
beam pinch is the tightest and smallest where the beam pinch 
is weak. Therefore the explanation of the envelope oscilla- 
tion as an exchange between the transverse thermal energy 
of the beam and the potential energy of the beam in the focus- 
ing channel is justified. 

V. SUMMARY AND CONCLUSION 

This paper has presented three distinct models of REB 
transport in low-density plasma channels: Vlasov-Maxwell 
theory, PIC computer simulations, and a beam envelope 
analysis. The equilibrium solutions to the relativistic Vla- 
sov-Maxwell equations show that efficient IFR transport is 
maintained by providing a sufficient number of ions to bal- 
ance radial beam expansion caused by the radial self-electric 
field and transverse beam pressure. Equation (30) gives the 
number of ions necessary to achieve this balance and it is 
shown that this condition is insensitive to the details of the 
assumed functional form for the distribution. To avoid dis- 
ruptive electron-electron instabilities and also provide radi- 
al confinement the charge neutralization fraction computed 
from Eq. (30) should also satisfyh < 1. 

PIC simulations of IFR transport performed in situa- 
tions where jJ satisfies Eq. (30) show that, after an initial 
transient period, the beam relaxes into a confined equilibri- 

0 
0 20 40 60 80 100 

7. km1 2 WI 

FIG. 2 1. Test particle trajectories in the beam-plasma channel for an injec- FIG. 22. Test particle trajectories in the beam-plasma channel for an injec- 
tion radius that is well matched to the equilibrium radius. tion radius that is not well matched to the equilibrium radius. 
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urn that is maintained over a large portion of the channel. 
When the injected beam radius is mismatched from the equi- 
librium radius, PIC simulations show envelope oscillations 
that cause by transverse force imbalance. These oscillations 
could lead to emittance growth through phase mixing in 
nonuniform beam profiles. PIC simulations performed with 
fi smaller than required by Eq. (30) show that, while the ion 
charge in the channel is sufficient to neutralize the space 
charge of the beam, it is insufficient to overcome the trans- 
verse beam pressure and fail to provide radial confinement of 
beam electrons. In this case, transport efficiency drops as 
electrons expand radially and strike the drift tube wall. PIC 
simulations performed with J; = 6 show growing oscilla- 
tions in the beam electron orbits; the wavelength and fre- 
quency of these oscillations agree well with a linear descrip- 
tion of the two-stream instability. Therefore the results of the 
PIC simulations indicate that to achieve efficient IFR trans- 
port the charge neutralization must be large enough to pro- 
vide sufficient beam confinement yet small enough to avoid 
the two-stream instability. The simulations presented in this 
paper are explicit and therefore limited by the Courant sta- 
bility criterion (At < Ax/c). This effectively limits the time 
scale of the simulations to several nsec and makes the simu- 
lation of electron-ion interactions difficult since the time 
scale for these interactions can be more than an order of 
magnitude larger. An additional weakness of the simulations 
is that they are two dimensional and miss many features of 
the beam-plasma channel, such as the ion hose interaction, 
which require a three-dimensional treatment. 

In Sec. IV it was shown that emittance growth from 
multiple small angle scattering in the background gas is neg- 
ligible and a scale length for emittance growth is estimated 
for low pressure IFR transport. A method for solving the 
nonlinear envelope is developed that shows the oscillations 
in the beam envelope observed in simulations of focused but 
mismatched beam-plasma channels is due to an imbalance 
between the repulsive force provided by beam pressure and 
the restoring force provided by channel ions. The connec- 
tions between the three apparently different models used in 
this paper to describe IFR transport are demonstrated by the 
test particle approach presented at the end of Sec. IV. It is 
also shown that many aspects of the IFR equilibrium can be 
produced with relatively few test particle streams. 

In conclusion, the results of this work provide a firm 
theoretical foundation and predictive capability that should 
be beneficial to future studies of relativistic electron beam 
transport in the ion-focused regime. 
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