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The electron spin relaxation times measured in ESR spectroscopy are physically distinct from the
electron spin relaxation times which appear in the theory of NMR Paramagnetic Relaxation
EnhancementNMR-PRE). ESR involves decay of a perturbed spin density matrix toward thermal
equilibrium, while in NMR-PRE measurements, the electron spin density matrix remains at thermal
equilibrium throughout the NMR experiment. The pertinent spin relaxation involves the thermal
decay of the time correlation functions,(@)=(S;(0)-S;(7)) (r=x,y,z), of the spin components,
quantities which describe the persistence in microscopic correlation of the spin motion in the
thermal equilibrium sample. The decay of the(@ is shown to be level-specific; i.e., &) is
composed of a sum of contribution associated with individual eigenstates, each of which decays
exponentiallyvia a process that is uncoupled to the decay in other eigenstates. This behavior differs
markedly from the decay of the nonequilibrium parts of a perturbed density matrix, which involves
coupled degree of freedom of the electron spin system. An expression for the level-specific
relaxation times has been derived in terms of Redfield matrix elements. This expression is valid for
any S=1 when the static spin Hamiltonian consists of Zeeman and zfs contributions of arbitrary
magnitude. Simple closed-form expressions are given for level-specific relaxation times in the
cylindrical and orthorhombic zfs limits for=S1 and S=3/2. The theory is used to interpret electron

and nuclear spin relaxation for=/2 with specific reference to high-spin @9, for which the zfs
splittings are typically large. For this spin system, the presence of orthorhombic terms in the zfs
tensor causes profound shortening of the electron spin relaxation times relative to the reference
cylindrical zfs case and, in consequence, a comparably large rhombicity-induced depression of the
NMR relaxation efficiency. ©2001 American Institute of Physic§DOI: 10.1063/1.1350638

I. INTRODUCTION times of ESR and NMR-PRE experiments are distinct physi-

The T, and T, electron spin relaxation times of ESR cal quantities, for which we use the symbolg, and7s, .

spectroscopy describe the decay of an electron spin magng_hough these quantities describe distinct m_acros_copic ph_e—
tization vector from a perturbed initial state toward thermal"0mMena, they result from the same underlying microscopic
equilibrium. This process is described by Redfield Thédry, SPIN transition.
which derives solutions for the equation of motion of the  Electron spin relaxation enters the NMR experiment in
spin density matrix using second-order time-dependent pethe following way’~° The NMR relaxation mechanism in-
turbation theory. volves stochastic fluctuation of the electron-nuclear hyper-
Electron spin relaxation of a somewhat different kind isfine (HF) interaction, which induces thermal transitions of
important in NMR paramagnetic relaxation enhancementhe nuclear spin. The scalar and dipolar parts of the time-
(NMR-PRB phenomena, i.e., enhancements in NMR relax-dependent HF tensor provide independent relaxation mecha-
ation rates produced by dissolved paramagnetic solutes. Inisms. Energy transfer between the electron and nuclear spin
solutions containing paramagnetic metal ions, quite smalsystemg'S and ) depends on the resonant component of the
concentrationgmilli- or microMolar) of metal ion often pro-  hyperfine interaction, i.e., it is proportional to the Fourier
vide the predominant relaxation pathway for nuclear spins omomponent of the hyperfine coupling at the nuclear spin tran-
solvent and ligand species. This phenomenon has besagition frequency. Although the coherent motions(bf and
widely used to probe molecular structure, dynamics, andS) are not resonant, the stochastic motion of the S spin
magnetic properties of paramagnetic complexes. The mecharising from electron spin relaxation and, in the case of the
nism of the NMR-PRE depends on theoretical parametergipolar HF mechanism, from Brownian reorientation of the
usually termed “electron spin relaxation times,” although in interspin I-S vector, introduce a frequency continuum into
this experiment, the electron spin density matrix remains aghe hyperfine power spectrum. The HF power peaks, which
thermal equilibrium(or very nearly sp Thus, electron spin  are centered at the electron spin transition frequencies, are
relaxation, as it pertains to NMR-PRE, does not involve dergadened into Lorentzian bands by the thermal motions of
cay of a nonequilibrium density matrix, and the relaxationg |t is this continuum aspect of the HF power spectrum that
provides the resonant Fourier component required for I-S
dFax: 734-647-4865; electronic mail: rrsharp@umich.edu energy transfer and NMR relaxation. Thus, electron spin re-
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laxation times, as they pertain to NMR-PRE, describe line- The macroscopic kinetic equations which describe the
widths in the HF power spectrum. decay of G(7) differ from those describing the decay of a
The mathematical quantities which describe electrorperturbed density matrix. However, the rate constants for
spin motions, both coherent and stochastic, in a thermal equioth types of relaxation can be expressed in terms of Red-
librium sample are the time correlation functiofBCFs of  field Matrix elements, which describe the microscopic tran-
the electron spin components, defined in the Cartesian basigion probabilities. In certain limiting cases where the spin
as Hamiltonian is particularly simple, the numerical values of
the decay constants may coincitBxamples of this are the

Gi(n=(S(7)-§(0)) (r=xy,2). (13 longitudinal relaxation times for S1 and S=3/2 in the cy-
An analogous quantity, (t), can be defined in the circular lindrical zfs-limit, see the followingalthough the physical
basis, meaning of the relaxation times differs in all cases.
An interesting point of comparison with our study is
G (1)=(S,(7)-S-,(0)). (p=0,£1), (1D provided by recent density matrix calculatiéff the Ts, ,

although only the Cartesian functions will be used here. Théelf"‘x"’lt'On times fOT Slin thg zfg-l|m|t. Bgrt!n|et al? havg
angle brackets denote a quantum mechanical expectatkﬂ?'”ted out that in the cylindrical ;fs-l|m|t, the Redfield
value, and the superscripting line denotes an average ovéigenvectors correspond to well-defined tensor components,
molecular degrees of freedom, which are usually treategcalar, dipolar, and quadrupolar, of macroscopic spin order,
C|a_ssica||y. The QT) are macroscopic properties of a ther- each associated with a distinct relaxation time. The scalar
mal equilibrium sample, and as such, they are not functiongart of the density matrix is associated with a zero Redfield
of the absolute timét), but rather of a time interval?). The  eigenvalue, reflecting the fact that the trace of the density
G,(7) describe the time dependence of the spin motion irmatrix does not decay. The(s‘f‘,), in contrast, describe an
terms of the expectation value of a scalar prod¢&t(0) essentially microscopic relaxation phenomenon involving
-S(7)). They are sometimes described as memory funcrandomization of the motions of individual spins. Contribu-
tions. When7=0, the memory represented by the scalartions to G(7) arise from all parts of the density matrix in-
product is perfect, and the TCF has its maximum value,  cluding the scalar component, which is, in fact, the largest

G (0):<§> @ contrib_utor to the TCF as well as to th_e_ N.MR-PRE. Tﬁ%) -

’ ' relaxation process is eigenstate-specific in a thermal equilib-

With increasingr, G,(7) in general undergoes coherent os-fium sample and does not correspond to nonequilibrium ten-
cillation, the frequencies and amplitudes of which are detersor components of macroscopic spin order or to spin coher-
mined by the static spin Hamiltonian. Superimposed on th&nce.
coherent motion, &7) relaxes thermally, and over time, the An expression is derived belo(Eq. 20 for the quanti-
spin motion loses predictable correlations with its initial stateties T(S‘fr) in terms of Redfield Matrix elements. The derivation
at =0 due to spin transitions resulting from the spin's applied to electron spin§=1, the coherent motions of
interaction with the thermal lattice. After a long interval, which are driven by a static spin Hamiltonian consisting of
G (7)—0. Zeeman and zfs terms of arbitrary magnitude. From this gen-
The relaxing processes described by the quantitigs  eral result, simple closed-form expressions #§t are de-
andTs, differ in various ways, the most important of which yjyeqd for the cases ofS1 in the cylindrical and orthorhom-
is that, as is shown below, relaxation of(@) is a level-  pic fs-limits, and for $3/2 in the cylindrical zfs-limit.

specific phenomenon; i.e., the decay process within a givefthase formulas are given in the Appendix.
spin eigenstatéx) does not couple with the decay in other

eigenstategB). Thus, level-specific relaxation times con-

stants,r(s‘f‘,) , can be computed for individual eigenstates. This
behavior differs from the thermal decay of the nonequilib-
rium part of the density matrix, in which the relaxing quan-
tities are eigenvectors of the Redfield Matrix, which in gen-

The theory is used to interpret electron and nuclear spin
relaxation for S=3/2 with specific reference to high-spin
Ca(ll), for which the zfs splittings are typically lar§é.lt is
shown that for this spin system, the presence of orthorhom-
bic terms in the zfs tensor causes profound shortening of the

eral represent coupled degrees of freedom of the Spiﬁl.ectron spin relaxation times relative to the .reference cylin-
systen?® In Density Matrix Theory (DMT), the kinetic rical _zfs case. In consequence, the zfs-limit NMR-PRE of
equations which describe the decay of the density matri-®!!) is profoundly depressed by the effects of zfs orthor-
from a perturbed state toward thermal equilibrium contain?™ompicity. A superf|.C|aIIy13 similar  phenomenon  has
cross-terms coupling different density matrix elements. As @reviously been pred|cté.‘a' and demonstrated experi-
result, any given density matrix elements decegsa kinetic ~ mentally*~**for integer spin systemS=1 and $-2). How-
process that is in general multiexponential, reflecting a suéver, the rhombicity-induced depression of the NMR-PRE
perposition of parallel relaxation modes. In contrast, thethat occurs for integer spins results form an entirely different
TCFs, G(7), which describe the state of microscopic corre-physical mechanism than that for half-integer spins. We de-
lation in the spin motion in a thermal equilibrium sample, scribe the situation for $3/2 in detail in terms of power
decayvia a single exponential process within individual spin plots of the spin motion. These plots provide a direct and
eigenstates. This result is demonstrated in the following, anéhtuitive interpretation of the NMR-PRE mechani$m'®
the physical reasons for it are discussed. (Ref. 5 reviews this arga
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Il. MOTION OF THE TCF’s S,=2"Y%5S+SS), (80)
In a thermal equilibrium sample, the time correlation . g y

functions, G(7), in Eq. (13 can be evaluated as the trace, =2 (SS+SS), (89
GH(7)=Tr{psS (1) S(0)}, @@ Sem2 ASSTSS). (89

p- The coefficientscy(t) are stochastic functions of time de-
scribing Brownian fluctuations of the zfs Hamiltonian.

The stochastic motions of the zfs tensor have usually
been grouped in previousﬁvgozrllk in three general categories:
_ o 7 ; (1) Brownian reorientatior;“* (2) collisionally-induced

GV(T)_E (p M“% (alS(m)]a’Ka'[S(0)]@) (3D distortions of the permanéttzfs tensof®~2° and (3) sto-
chastic vibrational modulation of the zfs tensor associated
=> Gl¥(7). (3¢)  With thermal excitation and de-excitation of the normal
@ modes of the metal coordination sphété? The time scales

Thus G(r) is composed of a sum of level-specific contribu- of these motions are generally believed to be well-separated
tions. We show next that when the spin Hamiltoniag, éan i most case®? with vibrational relaxation considerably

where pg is the density operator of S. In a thermal equili
rium sample{ps) is diagonal in the spin eigenbasis, and Eq.
(3a) evaluates to

be written as a sum of static and stochastic terms, faster(10—100 f$ and reorientation slower>20 pg than zfs
O distortional processd4 -5 pg. When this is so, it is possible
Hs=Hg +Hg(t), (4)  to consider the resulting spin relaxation as a sum of “reori-
and G (7) have the form entational,” “vibrational,” and “collisional” mechanisms. In
(@ ¢ o Eq. (7), H4(t) is taken to describe the collisional mechanism.
G =(P°) aa Equation (4) implies that molecular reorientation is slow
enough that the sample can be viewed as a powder for the
Xexp(— 71 76) 2, [(al S| B 2exp —iw.z7). purpose of the calculation. In this approximation, the reori-
B

entational relaxation contribution involves a separate calcu-
(5)  lation, which in prior work from our laboratot§'”** has
been carried out by numerical simulation of the Brownian
reorientational motion.

The general situation, where the time scales are not well-
separated and where!# is significant (i.e., outside the
Zeeman-limi}, is a complex physical problem in which the
zero-order spin Hamiltonian, ® , is not static but fluctuates
randomly as a result of Brownian reorientation. The fact that
HO =H,+H). (6)  the zero-order spin Hamiltoniafie., the largest part of &

The presence of a nonzero zfs interaction implieslS is time dependent introduges fundameqtal compllications into
the problem in that the spin wave function, matrix elements,

In the intermediate regiméH,~H'?), Eq. (5) must be av- Jtransition { . Il stochastic functi e
eraged over molecular orientations. To simplify the notation,an ransition requencies are aif stochastic functions ot time.
theoretical formulation, based on the Stochastic Liouville

we proceed assuming a fixed molecular orientation and def . X e
P g quation (SLE), that is capable of describing the general

orientational averaging to the final result situation has been developed by Bentis, Kowalewski,
A. The relaxation mechanism Westlund and their co-workef$:22Within the SLE approach
(reviewed in Ref. 4 zfs distortional motions have been
ofnodeled as a pseudorotation of the principal axis of a tran-
fient zfs tensof> and vibrational excitation/de-excitation
has been described using a Smoluchowski diffusion
operator? The SLE formalism provides a powerful platform
for describing interferences between the various degrees of
h*Hé(t)zEcA (t)Sﬁz) freedom, but iF is computationally complex. The assumption
a q q of separated time scales, which is employed here and in the
R g calculations of Refs. 6 and 7, while less general, appears
= C2(1) S+ Ce—g2(1) Sz likely to provide a good description of most practical cases,
+C35(1) St Cxa(1) Sga + (1) Sz and it leads to relatively simple closed form expressions for
the relaxation rates.

Thus G")(r) consists of a sum of contributions, each of
which oscillates at a transition frequeney, s, of the elec-
tron spin systentincluding =0 for «=B) and decays ther-
mally as described by the time consta ,r). The static
Hamiltonian, I-@f), is the sum of a Zeeman term Hplus a
permanentvibrationally-averagedzfs term.

Spin relaxation results from the effects of(t), which
is assumed to describe collisionally-induced distortions
the zfs tensor due to Brownian collisions of the solute an
solvent. The term K(t) can be expressed in the molecule-
fixed principal axis system of the permanent zfs tensor as

+4th O.T. (S=2 only). (7)

Fourth-order zfs terms will be neglected. The spin operatorg Equation of motion of the TCF

are Cartesian tensors defined as ) . ) .
In this section we calculate the equation of motion of the

$2=(3/2) "4 S, ~S(S+1)/3) (83 G(®)(7). In the Heisenberg representation,
Se-2=2 "S-, (8 S(n)=e s (0)e ©
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The static Hamiltonian, £ in Eq. (6), drives coherent spin  The first term on the r.h.s. describes the coherent oscillations
oscillation. The effects of spin oscillation can be separatedf GE“)(T). Spin relaxation is described by the second term,
form those of thermal decay by transforming to the interacfrom which the quantity, G’)(T), which exhibits motion

tion representation, only due to thermal relaxation, is defined,
— aifi T THY 7S ~ih " HP - dG(¥(7)
= . 10 ,
S(r)=e s 'S(n)e S (10 [;—T :(pO)aa Z ’ Raa’,ﬁﬁ’<:8|sr|18 >
The matrix elements of &) and $(7), expressed in the 0 « PP
eigenbasis of &, are related by X(a'[S|a). 17
(a|S,(7-)|a’)zei(“*“')f<a|~8,(r)|a’> (11) Level-specific relaxation times are defined from E5),
Gl
(the argument of the complex exponential function in Eq. (T(Sag)*l: _[éga)(o)]fl M , (18)
(11) uses the notationg=¢,% 1, with €, the energy of ' dr ],
ga??s)t?;e|a>). From Eg. (3b), the time derivative of which, with Eq.(17) plus the fact that
r T _
4G d(a|S(7)|a’) G{(0)=(p) auf @| S| ), (19
d—rT:(Po)aaZ —q, (@S]« (120 gives
(a)y—1
From Eq.(11), (7sr)
dalS(Dla’) : =(a|S|a) " X Ruar gpr(BISIB NS a).
——g— =ila—a')alS(7)]a’) <88
(20)
(o, HalS(D)]a’) : o . :
+ella-a )TT' (13)  This result is valid for all S and for arbitrary magnitudes of

the Zeeman and permanent zfs energies. The relaxation
The motion of the spin component operators is described b§fmes, 7§, describe relaxation along the principal axes (

the equation of motion, =X,¥,2) of the molecule-fixed permanent zfs tensor. As was
pointed out above, outside the Zeeman- and zfs-limit, Eq.
ds(t) o (20) must be averaged over molecular orientations.
—qr (IR, S O], (14 Using the stochastic Hamiltonian SH), of Eq. (7), the

Redfield Matrix element can be written
which differs from that for the density operator only by a
negative sign. Equations of the time dependence of the spip :Z (a|S,] "8y’ Y(kg(a' — B') +k
. . . aa’ BB 31 IB><B Sq a >( q(a ﬁ ) q(a
matrix elements can be derived using a procedure analogous q
to that of Redfield Theor}? leading to the result,

{d<al§<f>|a'> =B 8w 2 (S| B)alS|V)ko( 7= B)

dt

—%Ey (YISyle" MBSyl Vke(y—8") |, (2D
=2 Ruarpp® T TFEBIS0B), (15 pere
B.B

where the subscript on the brackets denate$. Equation K /(w)zzflfw 1 0)en(Dcog wt)dt. (22
(15) has the same form as the corresponding equation for the d o a

density matrix elements except for a change of sign of theI'he stochastic motions of the various Cartesian modes are
argument of the complex exponential factor. Inserting Eqsassumed to be uncorrelated to the decay exponentially, so
(13) and(15) into Eq.(12) and using Eq(11), gives for the '

motion of G (1), that
dG(DI)(T) Cq(O)Cq,(t)=|Cq(0)|ze_t/7q5q’q,, (23
{ ;Ir o giving
_ T~
=(p%) gu i(a—a'){a|S(7)|a'a'|S(0)]a) kq(w)_cql_,_—szé_quq(w)- (24)

Equations(21)—(24) allow for the possibility that the mean-

+ E Raa’,ﬂﬁ’<ﬁ|sr|13’><al|S’|a>]- (16) squared a_mplitu_dqu, and motiona_\l correlation times,,
o' B8 of the various distortional modes differ.
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Ill. LEVEL-SPECIFIC SPIN RELAXATION sample destroy existing correlations in the state of spin mo-
tion but do not transfer the state of correlation from one

The spin relaxation described by E&0) has the follow- eigenstate to another.

ing noteworthy aspects:

(1) The decay is level-specific; i.e., the decay associated
with a specific element of the density matrix is mMOoNoexpo- , Limiting behavior
nential and uncoupled to the decays associated with other’
density matrix elements. Equati¢d@0) does not, of course, Equation(20) describes the relaxation times"), de-
describe the decay of the density matrix, which is constant ifined in the molecule-fixed zfs principal axis system, in the
a thermal equilibrium sample, but rather randomization ofpresence of Zeeman-limit, the orientationally-averaged val-

spin motions as described by decay of the spin TCF'spes ofrgy, 7sy, andrg; necessarily coincidéThis is true
éga)(T)_ Both kinds of decay constarifg, andrs,, depend ~ €vVen if the laboratory framey; and 7, relaxation times
on the Redfield Matrix elements, which describe the micro-differ, since the molecule-fixed coordinate frame is randomly
scopic transition probabilities. The macroscopic rate equaoriented with respect to the Zeeman field and since, in the
tions for the two types of relaxation differ, reflecting physical Zeeman-limit, the M-F axes are physically equivalent after
differences in the macroscopic decay processes. orientational averagingln test calculations, we have exam-
(2) The rg, relaxation times describe a fundamentally ined the Zeeman-limit behavior of E20) and have con-
microscopic phenomendhe., persistence in the state of cor- firmed this point; namely, that thesy, 7sy, 7s; relax-
relation in the microscopic spin motidbrwhich, unlike the — ation rates equal each other and reduce to the average of the
Ts, relaxation times of DMT, is unrelated to specific mac- laboratory-frame relaxation rates of Bloembergen-Morgan
roscopic tensor components of spin order or spin coherencdheory?®
The 7, decay involves all parts of the density matrix, in-  Simple zfs-limit formulas for the level-specific relax-
cluding particularly the scalar component, which is almostation times can be derived from EO) in certain cases.
always the largest contributor to,(&) as well as to the 1he formulas for $1 in the cylindrical and orthorhombic
NMR-PRE. In contrastTs, relaxation of the scalar part of ZfS limits are given in the Appendix, along with formulas for
the density matrix is described by the zero eigenvalue of theé=3/2 in the cylindrical zfs-limit. As is noted in the Appen-
Redfield Matrix, corresponding to the fact that the trace ofdiX, relaxation times are undefined for certain polarizations

the density matrix does not decay in ESR experiments.  IN SPecific eigenstates. In the cylindrical zfs-limit, for ex-
Wi ity the phvsi derlving the ei at ample,<0|§2|0)=0, and hence relaxation along the z di-
e amplify the physics underiying the Igenstales- o ction is  undefined. In the orthorhombic zfs-limit,

specific nature of the decay Sﬁ‘é(r) with an example. For _ _ —_0- Xy — )
definiteness, we assume a Zeeman Hamiltonian antl. & <X|§|X> <Y|§|Y> <Z|§|Z> 0; thus é‘ (7) Gy (7)
is assumed that individual electron spifis are uncoupled
with each other, so that,Gr) equals a sum of single particle
TCF's,

=G§Z)(r)=0, and the relaxation of these quantities is like-
wise undefined.

In certain limiting cases where the spin Hamiltonian is
particularly simple, the numerical values of the decay con-
stants,rs, and T, , may coincide, although the macroscopic
~ R - _ ~(a decay processes which they describe differ. An example of
Gi(n)=2 Gr'i(T)_Z 25,: Gﬁvi)(T)' this is the cylindrical zfs-limit situation for S1, where the
longitudinal decay constant-§;) coincides with the dipolar
decay constant of DM¥,although the physical significance

We consider the contribution to the sum from a specific spin S . . . L
. ) P : . of the relaxation times differ. We have examined this point in
j, which at7=0 is in the|+1); eigenstate. At some time

70, the spin undergoes a thermal transition, e[ty 1), test calculationgdescribed beloywvhich compare the results

Ay : e . . of Eqg. (20) with those of DMT (evaluated in previous
! 1)j}. This transition randomizes the phase of the SplnWork‘”). These calculations compared longitudinal and

motion in the transverse plane and thus clearly destroys X nsverse relaxation times for=3. 3/2. 2 and 5/2 in the

isting microscopic correlation in the spin motion that con-C lindri . TP .
. . . ylindrical and orthorhombic zfs-limits. The results coin

tributes to G,,(7). The same transmqn results in the Ch""mg(_:"cided only for longitudinal relaxation times of=8 and

(ms=+1)—(ms=—1), in(S,;). It might be asked whether S=3/2 in the cylindrical zfs-limit.

the transition does not transfer spin correlation out of MacLachlaf® has shown that in the fast motion limit

ca(+1) i -1 i i i . . .
Gz, '(7) into G; ;7(7). However, for this particular particle, \pere allw,z74<1, the relaxation times along any spatial

(=1]p°(0)|-1);=0, and cﬁjl)(?)zo- After the transition,  girection approach the limiting value of
—1|p°(7)|—1);=1, while GV)(7) remains equal to zero _
Ethe |Iatter |becz;]use the den(s%’t]y matrix element corresponding (75)o '=[as(s+ 1)—3](At2/5) Tq- (29
to the| — 1), spin state vanished at=0). ngl)(r) describes  McLachlan’sA? is the trace of the mean-squared transient
the persistence of correlation in spin motion across the interzfs tensor and is equivalent ®C,, in our expressions. We
val t=0 to t=7. The transition does not create a state ofhave confirmed by calculation that in the fast motion limit,
motional correlation corresponding to a nonzero value ofEq. (20) reduces to McLachlan’s result for S in the range,
ngl)(r) when Ci]l)(O):O. This example illustrates the 1=<S<5/2, as do the zfs-limiting formulas given in the Ap-
fact that relaxation transitions in a thermal equilibrium pendix.
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FIG. 1. Energy(in units of D) vs the zfs rhombicity rati¢E/D) for S=3/2

in the zfs-limit. The wave functions marked correspond to the cylindrical FIG. 2. Mixing of the circular basis functions of=%8/2 by zfs rhombicity.

(E/D=0) zfs-limit. Nonzero zfs rhombicity mixes eigenfunctions for which The ratio of coefficientsg, /c, , is defined by Eq(263 to the text. E/D is

Amg=*2. the zfs rhombicity ratio. Also showfdashed lingis the magnitude of the
diagonal matrix elements dfS2_2).

E/D

IV. S=3/2—EFFECTS OF ZFS RHOMBICITY |+1/2'y wave functions is shown in Fig. 2. The wave func-

. : . e . tions in the orthorhombic zfs-limit can be written
This section examines level-specific electron spin relax-

ation behavior for $3/2 and the consequences of this be-  |£3/2')q=Co| £3/2')+cp| F1/2'), (263

havior for the NMR-PRE. Spin power plots that are useful N , ey

for visualizing the NMR relaxation mechanism are de- | = 1/2') o=Ca| £ 1/12) + ¢y 7 3/2'), (26b)

scribed. We specifically consider the case of high-spirFigure 2 shows the variation of the ratio of coefficients,

Cao(ll), an S=3/2 ion for which the zfs splittings are charac- |cp/c,| versus E/D between the cylindrical zfs-lini/D=0)

teristically large®® D~10° cm%, and show that for this to the limit of maximum rhombicitfE/D=1/3). The mixing

ion, zfs orthorhombicity has a very large influence on theof the circular basis functions has a profound effect on both

electron spin relaxation behavior. As a consequence, th#e electron spin relaxation times and the NMR-PRE.

NMR-PRE is likewise strongly affected by zfs rhombicity The zfs-limit electron spin relaxation times, calculated

and may be suppressed by an order of magnitude or more imsing Eq.(20), are shown as a function of rhombicity in Fig.

the orthorhombic complexes relative to the reference cylin3. The calculationgdescribed in the followingused physi-

drical zfs case. A superficially similar phenomenon involving

integer spins has been described theoretitlly and docu-

mented experimentaf§/~8 for both S=1 and S=2. How- 1E+13

ever, the physical mechanism by which zfs rhombicity exerts

its profound effect on the NMR-PRE is very different for

integer and half-integer spin systems. 1E+12 -
The level diagram(Fig. 1) of S=3/2 in the zfs-limit

consists of two Kramers doublets, the energies of which are, [1;§°,‘r)]‘1

for positive D,

1E+11 -
6(i3/2):[D2+ 3E2]l/2

+1/2) _ 2 211/2 "'
€12 =—[D2+3E%"2 1E+104 ¢

In the cylindrical zfs-limit, the spin eigenbasis is the circular
basis{|+3/2") and|+1/2")} with an axis of spatial quantiza-
tion parallel to the unique axis of the zfs tengtre prime 1E+09 T T T
denotes a molecule-fixed quantization axi&n orthorhom- 0.0 0.1 0.2 0.3
bic componentE) in the zfs tensor does not break the level E/D

degeneracies but mixes the eigenstgtes/2’) with |—1/2')

and|+1/2’> with |_3/2r>_ The effect of zfs rhombicity on the FIG.3. Level specific relaxation ratesr(sff))’l, versus the zfs rhombicity

. . . ratio for S=3/2 in the zfs-limit. Calculations are intended as representative
level _energ'es IS m_o_deStF'g' D, _bUt the eﬁe_Ct of for Co(ll) with D=50 cni’?, all 7,=2ps, allC,=5 cm 2 Curves are
rhombicity-induced mixing on the spin wave functions andspown for relaxation along the zfs principal axes;X,y,z, in the|+1/2")

transition probabilities is large. The effect on {He3/2') and  and|+3/2') Kramers doublets.




J. Chem. Phys., Vol. 115, No. 11, 15 September 2001 Thermal relaxation of electron spin motion 5011

cal parameters that are representative ofiG®=50 cm %, 1E+00 7.32)
Cq=5 cm 74=2 ps. We focus attention on the longest ... S A
relaxation times, which have the most sensitive influence on j;(ﬂ/z)

the NMR-PRE.(Relaxation times shorter than about 2 ps in

the figure violate the Redfield assumption, and for these 1E-01 -

7
quantities, calculations based on Eg0) are not accurate; $.(x1/2)

for the longer relaxation times, however, the Redfield as- g (w)
sumption is amply satisfied.

In the cylindrical zfs-limit, 753" and
to each other and are much longer than the transverse rela
ation times. As is shown in the Appendix, these quantities
depend only on(2wp), i.e., on the spectral density func-

(232 are equal 1E-02 -

F(1172), JR(£3/2)

tions at the interdoublet transition frequency, quantities 1E-03 ; ;
which are very small in the case of @i, since 2vp7,<1. 1E-02 1E-01 1E+00
Rhombicity-induced mixing of the wave functions intro- w/op

duces transition probability proportional }60), and incon- ' ' _ o
sequence of thissg’) shortens dramatically as the thombicity 2 . TP SRR 5 (8 0 T e ave the same eleciion spin
ratio increases from zero. In the calculations of Figf(s%m) relaxation time, 7%?=20/wp. Calculated values are normalized to
shortens by a factor of about2@nd 755"? by a factor of ~ 7#"¥%0)=1.

about 18 as E/D rises from zero to its maximum value of

1/3. This shortening of the electron spin relaxation times is

reflected in a comparable suppression of the NMR-PRE i
the rhombic zfs situation relative to the reference cylindrica
case(see the followingy

hows the magnitude of the diagonal matrix elements of
| Sk2-y2) as a function of the zfs rhombicity rati@ll the
diagonal elements have equal magnitudéne diagonal ele-
ments of(Sz2_;2) provide the sole low frequencly~j(0)]
pathway in the zfs-limit. These matrix elements are nonvan-

_ _ o ishing only when the zfs tensor contains orthorhombic ele-
The fact that the electron spin relaxation alanis very  ments.

inefficient in the cylindrical zfs-limit results from the fact

that low frequencyi.e., proportional tg(0)] transition prob- g Effects on the NMR-PRE

abilities vanish when E/B0. We examine in detail the tran- . o

sitions contributing to7{Y. The transient Hamiltonian, To describe the effect on the NMR-PRE, it is useful to

HX(t), contains terms which induce transitions between levconsider the mot|l(inlz%\|_ properties of thé“tﬁ_r) in the form

els for whichAme=0 (S2), Ame=+1 (S;, ;). and of power spectrd;**®i.e., plots of the cosine transforms
Amg=*2 (§y, S y2). Transitions coupling+3/2") with %

|—-3/2'y are disallowed in second order time-dependent per- k%a)(w)zf G (7)cog wr)d. (27)
turbation theory. TheAmg==*2 transitions coupling the 0

[+3/2'y and|+1/2') levels have probabilities proportional to Figure 4 shows the power plots for=8/2 in the cylindrical
j(2wp), which is small when @, is large. TheAm=+1  zfs-limit, calculated assuming initially, for the purpose of
transition coupling|+1/2')y with |=1/2') have probabilities comparison, that all electron spin relaxation times are equal,
proportional toj(0). However, in the zfs-limitboth cylindri- T(Sf?=20/wD. In the slow reorientation situation, NMR re-

cal and orthorhombijc the matrix elements(=1/2S; laxation efficiency is proportional to the zero frequency
|=1/2), and (*+1/2|Sy5|+ 1/2), vanish, and hence likewise power density(or more precisely, to the power density et

the probabilities of theintradoublet transitions within the =, for T, relaxation and atwv=0, w, for T,). The power

mg= =+ 1/2 doublet manifold. AlthougkS;2) is diagonal, its  terms Iabeledjﬁztllz) and:%tyz) arise from diagonal ma-
matrix elements contribute only trg and T(S“)z , not to T(S“Z) trix elements of S;) and are centered at zero frequency. The
(becaus€(S;2 S;]=0). Thus the only nonvanishing transi- widths of the power bands are given by the inverse electron
tion probabilities contributing to-(s‘fi) in the cylindrical zfs-  spin relaxation times, which are assumed in these calcula-
limit are forinterdoublet transitions, for which the associatedtions, as stated above, to be equal. There are two transverse
spectral density functions are small. For(Th where 2D is  power bands, Iabele(jZfA(“), both of which arise from off-

characteristically very large, theterdoublet transition prob- diagonal matrix elements df;). One of these, that associ-

A. Effects of mixing on the transition probabilities

abilities are very small and(sog correspondingly long. ated with the matrix element$;-3/2'| S| +1/2'), connects
The presence of zfs rhombicity changes this situatiorlevels of different Kramers doublets and is centered at the
qualitatively by mixing levels for whichAmg==2 (i.e.,  interdoublet transition frequency,« . The other(marked

|=3/2") with |+1/2")), with the result that the transition Wwith an asteriskarises from(+1/2'|S|+1/2'), and is cen-
probabilities proportional tg(0) no longer vanish. Specifi- tered at zero frequencfsince the levels connected are de-
cally, the mixing creates diagonal matrix elements ingeneratg The NMR relaxation efficiency, which is propor-
(Sx2—j2) which provide significant zero frequency transition tional to the power at zero frequency, is determined largely
probability for relaxation along. The dashed line of Fig. 2 by 7 "¥? and 72 """ The contribution from 7" is
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FIG. 6. Power spectra of the spin motion for=$/2 in the orthorhombic

FIG. 5. Power spectra of the spin motion fo=%2 in the cylindrical e ) ) . )
zfs-limit. The calculations, which are intended to be representative of high-ZfS limit. The calculations are as described in the legend of Fig. 5 except

. o A T E/D=0.2. Solid lines are the contributions @;(w), dashes are contribu-
spin Cdll), employ level-specific electron spin relaxation times, calculatedtions 10 7;(w), dash-dot are contributions ' ()
from Eq. (20) in the text assuming the values of B,, C, given in the SR wy(w)-

legend of Fig. 3. The calculations are normalized}éfw’(O):l.

have comparable magnitude in a strongly orthorhombic zfs
field (E/D~1/3).

In summary, high-spin Gti) complexes with cylindrical
smaller but not insignificant, 1/9 that gifs/z). The longi-  zfs symmetry are predicted to exhibit much higher NMR
tudinal (z) and transversex(y) power bands produce con- relaxivity than comparable orthorhombic complexes. How-
tributions to the NMR relaxation efficiency that have differ- ever, the influence of electron spin relaxation on the dipolar
ent orientation dependence, an experimental aspect that MMR-PRE is masked by Brownian reorientation wheg
described further in the following. <r7s,, and thus the large predicted lengtheningry) will

Figure 5 shows a corresponding power plot in which thebe reflected much more prominently in the NMR-PRE of
T(S‘}), no longer assumed equal, have been computed usirgjowly reorienting, rather than rapidly reorienting, solutes.
Eq. (20) [this of course provides a much more realistic de-The NMR relaxation properties of high-spin @9 have
scription of Cdll)]. Becauser(sf;(”zk 7(333/2) (see Fig. 3 the  been studied in numerous orthorhombic complexes and the
transverse contribution of the NMR-PRE is strongly sup-inferred electron spin relaxation tilmes are, as expgcted, gen-
pressed. In the cylindrical ZfS-limitr,(;il/Z)= T(s?/z)’ and we _erally very .short,'the ordgr o.f a plcosgcﬁf&.Experlments
thus expect that, sinq@ﬁza)(o)mmg, 9/10 of th NMR relax- involving high-spin Cdll) in sites of cylindrical z.fs symme-
ation efficiency arises frongzia/z) and 1/10 from%ilﬂ), try have not, to our knowledge, been reported, in part reflect-

with no significant transverse contribution. In tkireore re- ing the fact that Cdl) porphyrinates tend to be low spin

alistic) description of the cylindrical zfs-limit, the orientation species”” An experimental study of high-spin @b) in a

dependence of the NMR-PRE is entirely longitudinal in char-.cy“ndncal. zfs —environment that is reorientationally-
. immmobilized [e.g., a Cdl) tetraazamacrocycle complex
acter(see the following

The presence of zfs rhombicity changes this picture in|mmob|I|zed in a gel or dissolved in a high viscosity solvent

i i First d ibed ab gg/z) d would obviously be interesting in the present context.
WO main ways. First, as described above, ecreases Nilsson and KowalewsR? have used the SLE formalism
rapidly as rhombicity increases, and thus the magnitude

L . L ; Olfo calculate the effects of zfs rhombicity on the NMR-PRE
the NMR-PRE likewise decreases rapidly with increasin

E/D. S d £ th - buti Yor s=3/2. In their calculations, the introduction of zfs rhom-
- >econd, one of the static transverse contrl Utlons‘Dicity produced a mild depressigr=30%) of the zfs-limit

7599, that arising from the matrix elements+1/2S; NMR-PRE that is much smaller than the profoufw2 or-

= 1/2+)3,/2i)ncreases in magnitude with increasing rhombicity asyers of magnitude rhombicity-induced depression of zfs-
75% decreases, such that the quantities become equal gt 75 relaxation rate shown in Fig. 3. In part, this differ-
E/D=1/3. Thus in the strongly orthorhombic zfs-limit, sig- ence in result is due to differences in the static zfs parameter,
nificant transverse and longitudinal terms contribute to theyhich were much smaller in the calculation of N4R<10
NMR-PRE. A representative power plot computed for E/Dcm™?) than in ours(D=50 cn%). However, the major dif-
=0.2 is shown in Flg 6. While in the orthorhombic situation ference probab|y results from the effects of Brownian reori-
the spin matrices are relatively complex, the NMR-PRE reentation: N—K assumedg=70 ps, while our calculations
sults almost entirely from just two terms, one longitudinal assume the slow reorientation limit. Reorientation affects the
(74°%?), the other transverse; “*?). This situation re-  NMR-PRE through modulation of th interspin I-S vector as
sults form the fact that, as shown in Fig.4:"? and7$;*®  well as through modulation of the permanent zfs interaction,
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this and similar experiments than was available to us previ-
z ously. As shown in Fig. 6, the observed result occurs at a
rhombicity ratio of E/B~0.2.

D. Computational procedures

Calculations of electron spin relaxation times used rou-

tines which are incorporated in the computer program, which
y ParRelax.2 has been written in this laboratbt{This pro-
gram, which incorporates and supercedes earlier versions,
PARELAX,* and RotJmpDyn.f, implements theory of the
NMR-PRE at various levels of sophistication. These include
(1) Zeeman-limited (SBM) Theory; (2) the slow-
reorientation theory of the zfs-limit,3) slow-reorientation
theory of the intermediate regime; dd) Spin-Dynamics
simulation techniqué&®”3* which describe the effects of
Brownian reorientation in the intermediate regime. Each
level of theory has both advantages and limitations and
should be selected as appropriate for specific problems. The
program also contains algorithms which evaluate electron
spin relation times using E@20). It is available to the sci-

the latter contributing a mechanism of electron spin relax£ntific community upon request. .
ation. Both processes contribute to the dipolar correlation ~1he calculations of Fig. 3 were performed in the follow-

time and will tend to mask the large rhombicity-induced "9 Way. At each plotted value of E/D, the zfs-limit Hamil-
lengthening ofrs; that is evident in Fig. 3. tonian for S=3/2 was diagonalized. Using the spin eigen-

functions, the matricegS;) and (S;) that are needed for
evaluation of Eqs(20) and (21) were computed in the spin
eigenbasis. The spectral density functidk(sv,z), where
Another aspect of the zfs-limit NMR-PRE that is de- computed from the transition frequencies. The relaxation
scribed by the spin power plots concerns the orientationaimes of Eq.(20) were evaluated using these quantities.
dependence of the NMRy, i.e., the dependence of th NMR The calculations of Fig. 3 involve the zfs-limit physical
T1(2) on the orientation of the I-S interspin vector with re- situation, where spatial averaging over molecular orienta-
spect to the zfs principal axis system. It has been stibwn tions is not required. In the intermediate regitmenere both
that the angular dependence of the zfs-limit NMR-PRE pro-a Zeeman and a permanent zfs interaction are predeqt
duced by the power terrerﬁ") is the same as that of the (20) must be averaged over molecular orientations. The av-
mean-squared dipolar field produced by a classical magnetraging algorithms used in ParRelax.2 performs this average
dipole located at the origin and directed alangrhe math- by orienting the Zeeman field with respect to the zfs princi-
ematical function which describes this dependence is pal axis system at 92 sampled orientations defined by the
polar angles corresponding to the 60 vertices and 32 face
@ (67) =[1+Py(cos)], (28) centers of the truncated isocahedibuickeybal). This pro-
whereé: is the angle between the I-S vector an@nd B(x)  cedure provides highly effective, unbiased averaging.
is the second order Legendre Polynomial. Polar plots of the
functions,®(6;), have a characteristic bi-lobed shape shown
in Fig. 7, for which the axial/equatorial ratid (0)/® (7/2),
equals 4. Each termig“) , of the spin power plots contrib-

utes NMR relaxation efficiency with a spatial dependence (1) The electron spin relaxation process which influences
described by the corresponding angular functiofg;); i.e.,  NMR paramagnetic relaxation enhancem@iiiR-PRE) in-

the transverse power termgzi® , produces an NMR-PRE, volve decay of the spin time correlation functions( & (r
corrected to constant interspin distance, that is largest forx y 7), defined by Eq(1), rather than decay of nonequi-
nuclei located on th& molecular axis, while the relaxation librium parts of the spin density matrix. In a thermal equi-
efficiency produced bﬂéa) is largest along, etc. librium sample, the decay of ,Gr) is level-specific; i.e.,

In a previous experimental stud{we reported the ori- G,(7) is composed of a sum of contributions associated with
entation dependence of the zfs-limit NMR-PRE for theindividual eigenstates, each of which decays exponentially
S=3/2 complex, Cdl)(H,0),(acagd,. The measuredaxial/  via a process that is uncoupled to the decay in other eigen-
equatorial proton NMRT ratio, corrected to constant inter- states.
spin distance, was 2:70.4. Based on this result, it was con- (2) An expression for the level-specific decay constants
cluded that the observed NMR-PRE results from competindias been derived in terms of Redfield matrix elements. This
longitudinal and transverse power terms, the former abouexpressior[Eq. (20)] is valid for arbitrary S when the spin
five times larger than the latter. The calculations of Figs. 3Hamiltonian consists of Zeeman and zfs contributions of ar-
and 6 give a more quantitative framework for interpretingbitrary magnitude. Spin relaxation is assumed to result

FIG. 7. Polar plots of the angular function®(6;), for r=y andz.

C. Orientational dependence of the NMR-PRE

V. CONCLUSIONS
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from collisional modulation of the zfs tensor, when zfs dis- — - (T(siaslz))_1=12k(2wo)
tortion is rapid compared to molecular orientation. (:’1/2) (=32

(3) Simple zfs-limit expressions are presented for level- Tsz T Ts;
specific relaxation times of=S1 in the cylindrical and ortho-
rhombic zfs-limits, and of $3/2 in the cylindrical zfs-limit.

(4) The theory is used to interpret electron and nuclear
spin relaxation for $3/2 with specific reference to high- 'A. G. Redfield, Adv. Magn. Resor, 1 (1965.
spin Cdll), for which the zfs splittings are typically large. 2C. P. SlichterPrinciples of Magnetic Resonancard ed.(Springer, Berlin,
For this spin system, the presence of orthorhombic terms in3199c), Ch.5. . .
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relaxation times relative to the reference cylindrical zfs case. New York, 1991.
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induced depression of the NMR relaxation efficiency.
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