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Thermal relaxation of electron spin motion in a thermal equilibrium
ensemble: Relation to paramagnetic nuclear magnetic resonance
relaxation

Robert Sharpa) and Lawrence Lohr
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~Received 28 February 2001; accepted 28 June 2001!

The electron spin relaxation times measured in ESR spectroscopy are physically distinct from the
electron spin relaxation times which appear in the theory of NMR Paramagnetic Relaxation
Enhancement~NMR-PRE!. ESR involves decay of a perturbed spin density matrix toward thermal
equilibrium, while in NMR-PRE measurements, the electron spin density matrix remains at thermal
equilibrium throughout the NMR experiment. The pertinent spin relaxation involves the thermal
decay of the time correlation functions, Gr(t)[^Sr(0)•Sr(t)& (r 5x,y,z), of the spin components,
quantities which describe the persistence in microscopic correlation of the spin motion in the
thermal equilibrium sample. The decay of the Gr(t) is shown to be level-specific; i.e., Gr(t) is
composed of a sum of contribution associated with individual eigenstates, each of which decays
exponentiallyvia a process that is uncoupled to the decay in other eigenstates. This behavior differs
markedly from the decay of the nonequilibrium parts of a perturbed density matrix, which involves
coupled degree of freedom of the electron spin system. An expression for the level-specific
relaxation times has been derived in terms of Redfield matrix elements. This expression is valid for
any S>1 when the static spin Hamiltonian consists of Zeeman and zfs contributions of arbitrary
magnitude. Simple closed-form expressions are given for level-specific relaxation times in the
cylindrical and orthorhombic zfs limits for S51 and S53/2. The theory is used to interpret electron
and nuclear spin relaxation for S53/2 with specific reference to high-spin Co~II !, for which the zfs
splittings are typically large. For this spin system, the presence of orthorhombic terms in the zfs
tensor causes profound shortening of the electron spin relaxation times relative to the reference
cylindrical zfs case and, in consequence, a comparably large rhombicity-induced depression of the
NMR relaxation efficiency. ©2001 American Institute of Physics.@DOI: 10.1063/1.1350638#
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I. INTRODUCTION

The T1 and T2 electron spin relaxation times of ES
spectroscopy describe the decay of an electron spin ma
tization vector from a perturbed initial state toward therm
equilibrium. This process is described by Redfield Theory1,2

which derives solutions for the equation of motion of t
spin density matrix using second-order time-dependent
turbation theory.

Electron spin relaxation of a somewhat different kind
important in NMR paramagnetic relaxation enhancem
~NMR-PRE! phenomena, i.e., enhancements in NMR rel
ation rates produced by dissolved paramagnetic solutes
solutions containing paramagnetic metal ions, quite sm
concentrations~milli- or microMolar! of metal ion often pro-
vide the predominant relaxation pathway for nuclear spins
solvent and ligand species. This phenomenon has b
widely used to probe molecular structure, dynamics, a
magnetic properties of paramagnetic complexes. The me
nism of the NMR-PRE depends on theoretical parame
usually termed ‘‘electron spin relaxation times,’’ although
this experiment, the electron spin density matrix remains
thermal equilibrium~or very nearly so!. Thus, electron spin
relaxation, as it pertains to NMR-PRE, does not involve
cay of a nonequilibrium density matrix, and the relaxati
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times of ESR and NMR-PRE experiments are distinct phy
cal quantities, for which we use the symbols,TS,r andtS,r .
Though these quantities describe distinct macroscopic p
nomena, they result from the same underlying microsco
spin transition.

Electron spin relaxation enters the NMR experiment
the following way.3–5 The NMR relaxation mechanism in
volves stochastic fluctuation of the electron-nuclear hyp
fine ~HF! interaction, which induces thermal transitions
the nuclear spin. The scalar and dipolar parts of the tim
dependent HF tensor provide independent relaxation me
nisms. Energy transfer between the electron and nuclear
systems~S and I! depends on the resonant component of
hyperfine interaction, i.e., it is proportional to the Fouri
component of the hyperfine coupling at the nuclear spin tr
sition frequency. Although the coherent motions of^I& and
^S& are not resonant, the stochastic motion of the S s
arising from electron spin relaxation and, in the case of
dipolar HF mechanism, from Brownian reorientation of t
interspin I-S vector, introduce a frequency continuum in
the hyperfine power spectrum. The HF power peaks, wh
are centered at the electron spin transition frequencies,
broadened into Lorentzian bands by the thermal motions
S. It is this continuum aspect of the HF power spectrum t
provides the resonant Fourier component required for
energy transfer and NMR relaxation. Thus, electron spin
5 © 2001 American Institute of Physics
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laxation times, as they pertain to NMR-PRE, describe li
widths in the HF power spectrum.

The mathematical quantities which describe elect
spin motions, both coherent and stochastic, in a thermal e
librium sample are the time correlation functions~TCFs! of
the electron spin components, defined in the Cartesian b
as

Gr~t![^Sr~t!•Sr~0!& ~r 5x,y,z! . ~1a!

An analogous quantity, Gr(t), can be defined in the circula
basis,

Gr~t![^Sr~t!•S2r~0!&. ~r50,61!, ~1b!

although only the Cartesian functions will be used here. T
angle brackets denote a quantum mechanical expecta
value, and the superscripting line denotes an average
molecular degrees of freedom, which are usually trea
classically. The Gr(t) are macroscopic properties of a the
mal equilibrium sample, and as such, they are not functi
of the absolute time~t!, but rather of a time interval~t!. The
Gr(t) describe the time dependence of the spin motion
terms of the expectation value of a scalar product,^Sr(0)
•Sr(t)&. They are sometimes described as memory fu
tions. Whent50, the memory represented by the sca
product is perfect, and the TCF has its maximum value,

Gr~0!5^Sr
2&. ~2!

With increasingt, Gr(t) in general undergoes coherent o
cillation, the frequencies and amplitudes of which are de
mined by the static spin Hamiltonian. Superimposed on
coherent motion, Gr(t) relaxes thermally, and over time, th
spin motion loses predictable correlations with its initial st
at t50 due to spin transitions resulting from the spin
interaction with the thermal lattice. After a long interva
Gr(t)→0.

The relaxing processes described by the quantitiestS,r

andTS,r differ in various ways, the most important of whic
is that, as is shown below, relaxation of Gr(t) is a level-
specific phenomenon; i.e., the decay process within a g
spin eigenstateua& does not couple with the decay in oth
eigenstatesub&. Thus, level-specific relaxation times co
stants,tS,r

(a) , can be computed for individual eigenstates. T
behavior differs from the thermal decay of the nonequil
rium part of the density matrix, in which the relaxing qua
tities are eigenvectors of the Redfield Matrix, which in ge
eral represent coupled degrees of freedom of the s
system.2,6 In Density Matrix Theory ~DMT!, the kinetic
equations which describe the decay of the density ma
from a perturbed state toward thermal equilibrium cont
cross-terms coupling different density matrix elements. A
result, any given density matrix elements decaysvia a kinetic
process that is in general multiexponential, reflecting a
perposition of parallel relaxation modes. In contrast,
TCFs, Gr(t), which describe the state of microscopic corr
lation in the spin motion in a thermal equilibrium samp
decayvia a single exponential process within individual sp
eigenstates. This result is demonstrated in the following,
the physical reasons for it are discussed.
-
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The macroscopic kinetic equations which describe
decay of Gr(t) differ from those describing the decay of
perturbed density matrix. However, the rate constants
both types of relaxation can be expressed in terms of R
field Matrix elements, which describe the microscopic tra
sition probabilities. In certain limiting cases where the sp
Hamiltonian is particularly simple, the numerical values
the decay constants may coincide~examples of this are the
longitudinal relaxation times for S51 and S53/2 in the cy-
lindrical zfs-limit, see the following! although the physica
meaning of the relaxation times differs in all cases.

An interesting point of comparison with our study
provided by recent density matrix calculations6,7 of the TS1,2

relaxation times for S51 in the zfs-limit. Bertiniet al.6 have
pointed out that in the cylindrical zfs-limit, the Redfiel
eigenvectors correspond to well-defined tensor compone
scalar, dipolar, and quadrupolar, of macroscopic spin or
each associated with a distinct relaxation time. The sc
part of the density matrix is associated with a zero Redfi
eigenvalue, reflecting the fact that the trace of the den
matrix does not decay. ThetS,r

(a) , in contrast, describe an
essentially microscopic relaxation phenomenon involv
randomization of the motions of individual spins. Contrib
tions to Gr(t) arise from all parts of the density matrix in
cluding the scalar component, which is, in fact, the larg
contributor to the TCF as well as to the NMR-PRE. ThetS,r

(a)

relaxation process is eigenstate-specific in a thermal equ
rium sample and does not correspond to nonequilibrium t
sor components of macroscopic spin order or to spin coh
ence.

An expression is derived below~Eq. 20! for the quanti-
tiestS,r

(a) in terms of Redfield Matrix elements. The derivatio
applied to electron spinsS>1, the coherent motions o
which are driven by a static spin Hamiltonian consisting
Zeeman and zfs terms of arbitrary magnitude. From this g
eral result, simple closed-form expressions fortS,r

(a) are de-
rived for the cases of S51 in the cylindrical and orthorhom
bic zfs-limits, and for S53/2 in the cylindrical zfs-limit.
These formulas are given in the Appendix.

The theory is used to interpret electron and nuclear s
relaxation for S53/2 with specific reference to high-spi
Co~II !, for which the zfs splittings are typically large.8,9 It is
shown that for this spin system, the presence of orthorho
bic terms in the zfs tensor causes profound shortening of
electron spin relaxation times relative to the reference cy
drical zfs case. In consequence, the zfs-limit NMR-PRE
Co~II ! is profoundly depressed by the effects of zfs orth
hombicity. A superficially similar phenomenon ha
previously been predicted10–13 and demonstrated exper
mentally14–18for integer spin systems~S51 and S52!. How-
ever, the rhombicity-induced depression of the NMR-PR
that occurs for integer spins results form an entirely differ
physical mechanism than that for half-integer spins. We
scribe the situation for S53/2 in detail in terms of power
plots of the spin motion. These plots provide a direct a
intuitive interpretation of the NMR-PRE mechanism14–18

~Ref. 5 reviews this area!.
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II. MOTION OF THE TCF’s

In a thermal equilibrium sample, the time correlatio
functions, Gr(t), in Eq. ~1a! can be evaluated as the trace

Gr~t!5Tr$rSSr~t!•Sr~0!%, ~3a!

whererS is the density operator of S. In a thermal equili
rium sample,̂ rS& is diagonal in the spin eigenbasis, and E
~3a! evaluates to

Gr~t!5(
a

~ro!aa(
a8

^auSr~t!ua8&^a8uSr~0!ua& ~3b!

5(
a

Gr
~a!~t!. ~3c!

Thus Gr(t) is composed of a sum of level-specific contrib
tions. We show next that when the spin Hamiltonian, HS, can
be written as a sum of static and stochastic terms,

HS5HS
~o!1HS8~ t !, ~4!

and Gr
(a)(t) have the form

Gr
~a!~t!5~ro!aa

3exp~2t/tS,r
~a!!(

b
u^auSr ub&u2exp~2 ivabt!.

~5!

Thus Gr
~a!(t) consists of a sum of contributions, each

which oscillates at a transition frequency,vab , of the elec-
tron spin system~including v50 for a5b! and decays ther
mally as described by the time constants,tS,r

(a) . The static
Hamiltonian, HS

(o) , is the sum of a Zeeman term, HZ, plus a
permanent~vibrationally-averaged! zfs term.

HS
~o!5HZ1Hzfs

~o! . ~6!

The presence of a nonzero zfs interaction implies S>1.
In the intermediate regime,~HZ'Hzfs

(o)), Eq. ~5! must be av-
eraged over molecular orientations. To simplify the notati
we proceed assuming a fixed molecular orientation and d
orientational averaging to the final result.

A. The relaxation mechanism

Spin relaxation results from the effects of HS8(t), which
is assumed to describe collisionally-induced distortions
the zfs tensor due to Brownian collisions of the solute a
solvent. The term HS8(t) can be expressed in the molecul
fixed principal axis system of the permanent zfs tensor a

\21HS8~ t !5(
q̂

cq̂ ~ t !Sq̂
~2!

5cẑ2~ t !Sẑ21cx̂22 ŷ2~ t !Sx̂22 ŷ2

1cx̂ŷ~ t !Sx̂ŷ1cx̂ẑ~ t !Sx̂ẑ1cŷẑ~ t !Sŷẑ

14th O.T. ~S>2 only). ~7!

Fourth-order zfs terms will be neglected. The spin opera
are Cartesian tensors defined as

Sẑ25~3/2!1/2~Sẑ
22S~S11!/3) ~8a!

Sx̂22 ŷ25221/2~Sx̂
22Sŷ

2!, ~8b!
.

,
er

f
d

rs

Sx̂ẑ5221/2~Sx̂Sẑ1SẑSx̂!, ~8c!

Sŷẑ5221/2~SŷSẑ1SẑSŷ!, ~8d!

Sx̂ẑ5221/2~Sx̂Sŷ1SŷSx̂!. ~8e!

The coefficientscq̂(t) are stochastic functions of time de
scribing Brownian fluctuations of the zfs Hamiltonian.

The stochastic motions of the zfs tensor have usu
been grouped in previous work in three general categor
~1! Brownian reorientation;19–24 ~2! collisionally-induced
distortions of the permanent25 zfs tensor,26–30 and ~3! sto-
chastic vibrational modulation of the zfs tensor associa
with thermal excitation and de-excitation of the norm
modes of the metal coordination sphere.31,32 The time scales
of these motions are generally believed to be well-separa
in most cases,33 with vibrational relaxation considerabl
faster~10–100 fs! and reorientation slower~.20 ps! than zfs
distortional processes~1–5 ps!. When this is so, it is possible
to consider the resulting spin relaxation as a sum of ‘‘reo
entational,’’ ‘‘vibrational,’’ and ‘‘collisional’’ mechanisms. In
Eq. ~7!, HS8(t) is taken to describe the collisional mechanis
Equation ~4! implies that molecular reorientation is slo
enough that the sample can be viewed as a powder for
purpose of the calculation. In this approximation, the reo
entational relaxation contribution involves a separate ca
lation, which in prior work from our laboratory16,17,34 has
been carried out by numerical simulation of the Browni
reorientational motion.

The general situation, where the time scales are not w
separated and where Hzfs

(0) is significant ~i.e., outside the
Zeeman-limit!, is a complex physical problem in which th
zero-order spin Hamiltonian, Hzfs

(o) , is not static but fluctuates
randomly as a result of Brownian reorientation. The fact t
the zero-order spin Hamiltonian~i.e., the largest part of HS!
is time dependent introduces fundamental complications
the problem in that the spin wave function, matrix elemen
and transition frequencies are all stochastic functions of tim
A theoretical formulation, based on the Stochastic Liouvi
Equation ~SLE!, that is capable of describing the gener
situation has been developed by Bentis, Kowalews
Westlund and their co-workers.21,22Within the SLE approach
~reviewed in Ref. 4!, zfs distortional motions have bee
modeled as a pseudorotation of the principal axis of a tr
sient zfs tensor,29,35 and vibrational excitation/de-excitatio
has been described using a Smoluchowski diffus
operator.32 The SLE formalism provides a powerful platform
for describing interferences between the various degree
freedom, but it is computationally complex. The assumpt
of separated time scales, which is employed here and in
calculations of Refs. 6 and 7, while less general, appe
likely to provide a good description of most practical cas
and it leads to relatively simple closed form expressions
the relaxation rates.

B. Equation of motion of the TCF

In this section we calculate the equation of motion of t
Gr

(a)(t). In the Heisenberg representation,

Sr~t!5ei\21HStSr~0!e2 i\21HSt. ~9!
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The static Hamiltonian, HS
(o) in Eq. ~6!, drives coherent spin

oscillation. The effects of spin oscillation can be separa
form those of thermal decay by transforming to the inter
tion representation,

Sr~t!5ei\21HS
~o!tS̃r~t!e2 i\21HS

~o!t. ~10!

The matrix elements of Sr(t) and S̃r(t), expressed in the
eigenbasis of HS

(o) , are related by

^auSr~t!ua8&5ei ~a2a8!t^auS̃r~t!ua8& ~11!

~the argument of the complex exponential function in E
~11! uses the notation,a[ea\21, with ea the energy of
eigenstate ua&!. From Eq. ~3b!, the time derivative of
Gr

(a)(t) is

dGr
~a!

dt
5~ro!aa(

a8

d^auSr~t!ua8&
dt

^a8uSr ua&. ~12!

From Eq.~11!,

d^auSr~t!ua8&
dt

5 i ~a2a8!^auSr~t!ua8&

1ei ~a2a8!t
d^auSr~t!ua8&

dt
. ~13!

The motion of the spin component operators is described
the equation of motion,

dSr~ t !

dt
5~ i /\!@HS~ t !,Sr~ t !#, ~14!

which differs from that for the density operator only by
negative sign. Equations of the time dependence of the
matrix elements can be derived using a procedure analo
to that of Redfield Theory,1,2 leading to the result,

Fd^auS̃r~t!ua8&
dt G

0

5 (
b,b8

Raa8,bb8e
2 i ~a2a82b1b8!t^buSr~0!ub8&, ~15!

where the subscript on the brackets denotest50. Equation
~15! has the same form as the corresponding equation for
density matrix elements except for a change of sign of
argument of the complex exponential factor. Inserting E
~13! and~15! into Eq. ~12! and using Eq.~11!, gives for the
motion of Gr

(a)(t),

FdGr
~a!~t!

dt G
0

5(ro)aa(
a8

i ~a2a8!^auSr~t!ua8&^a8uSr~0!ua&

1 (
a8,b,b8

Raa8,bb8^buSr ub8&^a8uSr ua&]. ~16!
d
-

.

y

in
us

he
e
.

The first term on the r.h.s. describes the coherent oscillat
of Gr

(a)(t). Spin relaxation is described by the second ter
from which the quantity, Gr

(a)(t), which exhibits motion
only due to thermal relaxation, is defined,

FdG̃r
~a!~t!

dt
G

0

5(ro)aa (
a8,bb8

Raa8,bb8^buSr ub8&

3^a8uSr ua&. ~17!

Level-specific relaxation times are defined from Eq.~5!,

~tS,r
~a!!2152@G̃r

~a!~0!#21FdG̃r
~a!~t!

dt
G

0

, ~18!

which, with Eq.~17! plus the fact that

G̃r
~a!~0!5~ro!aa^auSr

2ua&, ~19!

gives

~tS,r
~a!!21

5^auSr
2ua&21 (

a8,b,b8
Raa8,bb8^buSr ub8&^a8uSr ua&.

~20!

This result is valid for all S and for arbitrary magnitudes
the Zeeman and permanent zfs energies. The relaxa
times, tS,r

(a) , describe relaxation along the principal axesr
5 x̂,ŷ,ẑ) of the molecule-fixed permanent zfs tensor. As w
pointed out above, outside the Zeeman- and zfs-limit,
~20! must be averaged over molecular orientations.

Using the stochastic Hamiltonian, HS8(t), of Eq. ~7!, the
Redfield Matrix element can be written

Raa8,bb85(
q

F ^auSqub&^b8uSqua8&~kq~a82b8!1kq~a

2b!!2da8b8(
g

^guSqub&^auSqug&kq~g2b!

2dab(
g

^guSqua8&^b8uSqug&kq~g2b8!G , ~21!

where

kq,q8~v!5221E
2`

`

cq~0!cq8~ t !cos~vt !dt. ~22!

The stochastic motions of the various Cartesian modes
assumed to be uncorrelated to the decay exponentially
that

cq~0!cq8~ t !5ucq~0!u2e2t/tqdq,q8, ~23!

giving

kq~v!5Cq

tq

11v2tq
2 5Cqj q~v!. ~24!

Equations~21!–~24! allow for the possibility that the mean
squared amplitudes,Cq , and motional correlation times,tq ,
of the various distortional modes differ.
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III. LEVEL-SPECIFIC SPIN RELAXATION

The spin relaxation described by Eq.~20! has the follow-
ing noteworthy aspects:

~1! The decay is level-specific; i.e., the decay associa
with a specific element of the density matrix is monoexp
nential and uncoupled to the decays associated with o
density matrix elements. Equation~20! does not, of course
describe the decay of the density matrix, which is constan
a thermal equilibrium sample, but rather randomization
spin motions as described by decay of the spin TCF
G̃r

(a)(t). Both kinds of decay constant,TS,r andtS,r , depend
on the Redfield Matrix elements, which describe the mic
scopic transition probabilities. The macroscopic rate eq
tions for the two types of relaxation differ, reflecting physic
differences in the macroscopic decay processes.

~2! The tS,r relaxation times describe a fundamenta
microscopic phenomenon~i.e., persistence in the state of co
relation in the microscopic spin motion! which, unlike the
TS,r relaxation times of DMT, is unrelated to specific ma
roscopic tensor components of spin order or spin cohere
The tS,r decay involves all parts of the density matrix, i
cluding particularly the scalar component, which is alm
always the largest contributor to G˜

r(t) as well as to the
NMR-PRE. In contrast,TS,r relaxation of the scalar part o
the density matrix is described by the zero eigenvalue of
Redfield Matrix, corresponding to the fact that the trace
the density matrix does not decay in ESR experiments.

We amplify the physics underlying the eigenstate
specific nature of the decay of G˜

r
(a)(t) with an example. For

definiteness, we assume a Zeeman Hamiltonian and S51. It
is assumed that individual electron spins~i! are uncoupled
with each other, so that G˜

r(t) equals a sum of single particl
TCF’s,

G̃r~t!5(
i

G̃r ,i~t!5(
i

(
a

G̃r ,i
~a!~t!.

We consider the contribution to the sum from a specific s
j, which at t50 is in the u11& j eigenstate. At some time
t.0, the spin undergoes a thermal transition, e.g.,$u11& j

→u21& j%. This transition randomizes the phase of the s
motion in the transverse plane and thus clearly destroys
isting microscopic correlation in the spin motion that co
tributes to G̃x,y(t). The same transition results in the chang
(ms511)→(ms521), in ^Sz, j&. It might be asked whethe
the transition does not transfer spin correlation out
G̃z, j

(11)(t) into G̃z, j
(21)(t). However, for this particular particle

^21uro(0)u21& j50, and G̃z, j
(21)(0)50. After the transition,

^21uro(t)u21& j51, while G̃z, j
(21)(t) remains equal to zero

~the latter because the density matrix element correspon
to theu21& j spin state vanished att50!. G̃z, j

(11)(t) describes
the persistence of correlation in spin motion across the in
val t50 to t5t. The transition does not create a state
motional correlation corresponding to a nonzero value
G̃z, j

(21)(t) when G̃z, j
(21)(0)50. This example illustrates th

fact that relaxation transitions in a thermal equilibriu
d
-
er

in
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sample destroy existing correlations in the state of spin m
tion but do not transfer the state of correlation from o
eigenstate to another.

A. Limiting behavior

Equation~20! describes the relaxation times,tS,r
(a) , de-

fined in the molecule-fixed zfs principal axis system, in t
presence of Zeeman-limit, the orientationally-averaged v
ues oftS,x̂ , tS,ŷ , andtS,ẑ necessarily coincide.~This is true
even if the laboratory framets1 and ts2 relaxation times
differ, since the molecule-fixed coordinate frame is random
oriented with respect to the Zeeman field and since, in
Zeeman-limit, the M-F axes are physically equivalent af
orientational averaging.! In test calculations, we have exam
ined the Zeeman-limit behavior of Eq.~20! and have con-
firmed this point; namely, that thetS,x̂ , tS,ŷ , tS,ẑ relax-
ation rates equal each other and reduce to the average o
laboratory-frame relaxation rates of Bloembergen-Morg
Theory.26

Simple zfs-limit formulas for the level-specific relax
ation times can be derived from Eq.~20! in certain cases.
The formulas for S51 in the cylindrical and orthorhombic
zfs limits are given in the Appendix, along with formulas fo
S53/2 in the cylindrical zfs-limit. As is noted in the Appen
dix, relaxation times are undefined for certain polarizatio
in specific eigenstates. In the cylindrical zfs-limit, for e
ample,^0uSẑ

2u0&50, and hence relaxation along ther 5 ẑ di-
rection is undefined. In the orthorhombic zfs-lim
^XuSx̂

2uX&5^YuSŷ
2uY&5^ZuSẑ

2uZ&50; thus Gx̂
(x)(t)5Gŷ

(y)(t)
5Gẑ

(z)(t)50, and the relaxation of these quantities is lik
wise undefined.

In certain limiting cases where the spin Hamiltonian
particularly simple, the numerical values of the decay co
stants,tS,r andTs,r , may coincide, although the macroscop
decay processes which they describe differ. An example
this is the cylindrical zfs-limit situation for S51, where the
longitudinal decay constant (tS,ẑ) coincides with the dipolar
decay constant of DMT,6 although the physical significanc
of the relaxation times differ. We have examined this point
test calculations~described below! which compare the result
of Eq. ~20! with those of DMT ~evaluated in previous
work6,7!. These calculations compared longitudinal a
transverse relaxation times for S51, 3/2, 2, and 5/2 in the
cylindrical and orthorhombic zfs-limits. The results coi
cided only for longitudinal relaxation times of S51 and
S53/2 in the cylindrical zfs-limit.

MacLachlan36 has shown that in the fast motion lim
where allvabtq!1, the relaxation times along any spati
direction approach the limiting value of

~tS!o
215@4S~S11!23]~D t

2/5!tq . ~25!

McLachlan’sD t
2 is the trace of the mean-squared transie

zfs tensor and is equivalent toSCq in our expressions. We
have confirmed by calculation that in the fast motion lim
Eq. ~20! reduces to McLachlan’s result for S in the rang
1<S<5/2, as do the zfs-limiting formulas given in the Ap
pendix.
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IV. SÄ3Õ2—EFFECTS OF ZFS RHOMBICITY

This section examines level-specific electron spin rel
ation behavior for S53/2 and the consequences of this b
havior for the NMR-PRE. Spin power plots that are use
for visualizing the NMR relaxation mechanism are d
scribed. We specifically consider the case of high-s
Co~II !, an S53/2 ion for which the zfs splittings are chara
teristically large,8,9 D'102 cm21, and show that for this
ion, zfs orthorhombicity has a very large influence on t
electron spin relaxation behavior. As a consequence,
NMR-PRE is likewise strongly affected by zfs rhombici
and may be suppressed by an order of magnitude or mo
the orthorhombic complexes relative to the reference cy
drical zfs case. A superficially similar phenomenon involvi
integer spins has been described theoretically10–13and docu-
mented experimentally14–18 for both S51 and S52. How-
ever, the physical mechanism by which zfs rhombicity exe
its profound effect on the NMR-PRE is very different fo
integer and half-integer spin systems.

The level diagram~Fig. 1! of S53/2 in the zfs-limit
consists of two Kramers doublets, the energies of which
for positiveD,

e~63/2!5@D213E2#1/2

e~61/2!52@D213E2#1/2.

In the cylindrical zfs-limit, the spin eigenbasis is the circu
basis$u63/28& and u61/28&% with an axis of spatial quantiza
tion parallel to the unique axis of the zfs tensor~the prime
denotes a molecule-fixed quantization axis!. An orthorhom-
bic component~E! in the zfs tensor does not break the lev
degeneracies but mixes the eigenstates,u13/28& with u21/28&
andu11/28& with u23/28&. The effect of zfs rhombicity on the
level energies is modest~Fig. 1!, but the effect of
rhombicity-induced mixing on the spin wave functions a
transition probabilities is large. The effect on theu63/28& and

FIG. 1. Energy~in units of D! vs the zfs rhombicity ratio~E/D! for S53/2
in the zfs-limit. The wave functions marked correspond to the cylindri
~E/D50! zfs-limit. Nonzero zfs rhombicity mixes eigenfunctions for whic
Dms562.
-
-
l
-
n

e
e
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u61/28& wave functions is shown in Fig. 2. The wave fun
tions in the orthorhombic zfs-limit can be written

u63/28&or5cau63/28&1cbu71/28&, ~26a!

u61/28&or5cau61/28&1cbu73/28&, ~26b!

Figure 2 shows the variation of the ratio of coefficien
ucb/cau versus E/D between the cylindrical zfs-limit~E/D50!
to the limit of maximum rhombicity~E/D51/3!. The mixing
of the circular basis functions has a profound effect on b
the electron spin relaxation times and the NMR-PRE.

The zfs-limit electron spin relaxation times, calculat
using Eq.~20!, are shown as a function of rhombicity in Fig
3. The calculations~described in the following! used physi-

l FIG. 2. Mixing of the circular basis functions of S53/2 by zfs rhombicity.
The ratio of coefficients,cb /ca , is defined by Eq.~26a! to the text. E/D is
the zfs rhombicity ratio. Also shown~dashed line! is the magnitude of the
diagonal matrix elements of^Sx̂22 ŷ2&.

FIG. 3. Level specific relaxation rates, (tS,r̂
(a))21, versus the zfs rhombicity

ratio for S53/2 in the zfs-limit. Calculations are intended as representa
for Co~II ! with D550 cm21, all tq52 ps, all Cq55 cm22. Curves are
shown for relaxation along the zfs principal axes,r 5 x̂,ŷ,ẑ, in the u61/28&
and u63/28& Kramers doublets.
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cal parameters that are representative of Co~II ! D550 cm21,
Cq55 cm21, tq52 ps. We focus attention on the longe
relaxation times, which have the most sensitive influence
the NMR-PRE.~Relaxation times shorter than about 2 ps
the figure violate the Redfield assumption, and for th
quantities, calculations based on Eq.~20! are not accurate
for the longer relaxation times, however, the Redfield
sumption is amply satisfied.!

In the cylindrical zfs-limit,tS,ẑ
(61/2) andtS,ẑ

(63/2) are equal
to each other and are much longer than the transverse r
ation times. As is shown in the Appendix, these quantit
depend only onj (2vD), i.e., on the spectral density func
tions at the interdoublet transition frequency, quantitie
which are very small in the case of Co~II !, since 2vDtq!1.
Rhombicity-induced mixing of the wave functions intro
duces transition probability proportional toj (0), and incon-
sequence of this,tS,ẑ

(a) shortens dramatically as the rhombici
ratio increases from zero. In the calculations of Fig. 3,tS,ẑ

(63/2)

shortens by a factor of about 102 and tS,ẑ
(61/2) by a factor of

about 103 as E/D rises from zero to its maximum value
1/3. This shortening of the electron spin relaxation times
reflected in a comparable suppression of the NMR-PRE
the rhombic zfs situation relative to the reference cylindri
case~see the following!.

A. Effects of mixing on the transition probabilities

The fact that the electron spin relaxation alongẑ is very
inefficient in the cylindrical zfs-limit results from the fac
that low frequency@i.e., proportional toj~0!# transition prob-
abilities vanish when E/D50. We examine in detail the tran
sitions contributing totS,ẑ

(a) . The transient Hamiltonian
HS8(t), contains terms which induce transitions between l
els for which Dms50 (Sẑ2), Dms561 (Sx̂ẑ , Sŷẑ ), and
Dms562 (Sx̂ŷ , Sx̂22 ŷ2). Transitions couplingu13/28& with
u23/28& are disallowed in second order time-dependent p
turbation theory. TheDms562 transitions coupling the
u13/28& and u71/28& levels have probabilities proportional t
j (2vD), which is small when 2vD is large. TheDms561
transition couplingu61/28& with u71/28& have probabilities
proportional toj~0!. However, in the zfs-limit~both cylindri-
cal and orthorhombic!, the matrix elementŝ 61/2uSx̂ẑ

u71/2&, and ^61/2uSŷẑu71/2&, vanish, and hence likewis
the probabilities of theintradoublet transitions within the
mS561/2 doublet manifold. AlthougĥSẑ2& is diagonal, its
matrix elements contribute only totS,x̂

(a) andtS,ŷ
(a) , not totS,ẑ

(a)

~because@(Sẑ2,Sẑ#50). Thus the only nonvanishing trans
tion probabilities contributing totS,ẑ

(a) in the cylindrical zfs-
limit are for interdoublet transitions, for which the associat
spectral density functions are small. For Co~II !, where 2D is
characteristically very large, theinterdoublet transition prob-
abilities are very small andtS,ẑ

(a) correspondingly long.
The presence of zfs rhombicity changes this situat

qualitatively by mixing levels for whichDms562 ~i.e.,
u63/28& with u61/28&!, with the result that the transition
probabilities proportional toj~0! no longer vanish. Specifi
cally, the mixing creates diagonal matrix elements
^Sx̂22 ŷ2& which provide significant zero frequency transitio
probability for relaxation alongẑ. The dashed line of Fig. 2
n
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shows the magnitude of the diagonal matrix elements
^Sx̂22 ŷ2& as a function of the zfs rhombicity ratio~all the
diagonal elements have equal magnitude!. The diagonal ele-
ments of ^Sx̂22 ŷ2& provide the sole low frequency@'j~0!#
pathway in the zfs-limit. These matrix elements are nonv
ishing only when the zfs tensor contains orthorhombic e
ments.

B. Effects on the NMR-PRE

To describe the effect on the NMR-PRE, it is useful
consider the motional properties of the Gr

(a)(t) in the form
of power spectra,5,14,15 i.e., plots of the cosine transforms

J r
~a!~v!5E

0

`

Gr
~a!~t!cos~vt!dt. ~27!

Figure 4 shows the power plots for S53/2 in the cylindrical
zfs-limit, calculated assuming initially, for the purpose
comparison, that all electron spin relaxation times are eq
tS,r̂

(a)520/vD . In the slow reorientation situation, NMR re
laxation efficiency is proportional to the zero frequen
power density~or more precisely, to the power density atv
5v I for T1 relaxation and atv50, v I for T2!. The power
terms labeledJ ẑ

(61/2) and J ẑ
(63/2) arise from diagonal ma-

trix elements of̂ Sẑ& and are centered at zero frequency. T
widths of the power bands are given by the inverse elect
spin relaxation times, which are assumed in these calc
tions, as stated above, to be equal. There are two transv
power bands, labeledJ x̂

(a) , both of which arise from off-
diagonal matrix elements of^Sx̂&. One of these, that assoc
ated with the matrix elements,^63/28uSx̂u61/28& , connects
levels of different Kramers doublets and is centered at
interdoublet transition frequency, 2vD . The other~marked
with an asterisk! arises from̂ 61/28uSx̂u71/28& , and is cen-
tered at zero frequency~since the levels connected are d
generate!. The NMR relaxation efficiency, which is propor
tional to the power at zero frequency, is determined larg
by J ẑ

(63/2) andJ x̂
* (61/2) . The contribution fromJ ẑ

(61/2) is

FIG. 4. Power spectra of the spin motion for S53/2 in the cylindrical
zfs-limit. The calculations assume that all levels have the same electron
relaxation time, tS,r̂

(a)520/vD . Calculated values are normalized t
J ẑ

(63/2)(0)51.
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smaller but not insignificant, 1/9 that ofJ ẑ
(63/2) . The longi-

tudinal (ẑ) and transverse (x̂,ŷ) power bands produce con
tributions to the NMR relaxation efficiency that have diffe
ent orientation dependence, an experimental aspect th
described further in the following.

Figure 5 shows a corresponding power plot in which
tS,r̂

(a) , no longer assumed equal, have been computed u
Eq. ~20! @this of course provides a much more realistic d
scription of Co~II !#. BecausetS,x̂

(61/2)!tS,ẑ
(63/2) ~see Fig. 3!, the

transverse contribution of the NMR-PRE is strongly su
pressed. In the cylindrical zfs-limit,tS,ẑ

(61/2)5tS,ẑ
(63/2), and we

thus expect that, sinceJ ẑ
(a)(0)}ms

2, 9/10 of th NMR relax-
ation efficiency arises fromJ ẑ

(63/2) and 1/10 fromJ ẑ
(61/2) ,

with no significant transverse contribution. In this~more re-
alistic! description of the cylindrical zfs-limit, the orientatio
dependence of the NMR-PRE is entirely longitudinal in ch
acter~see the following!.

The presence of zfs rhombicity changes this picture
two main ways. First, as described above,tS,ẑ

(63/2) decreases
rapidly as rhombicity increases, and thus the magnitude
the NMR-PRE likewise decreases rapidly with increas
E/D. Second, one of the static transverse contributio
J ẑ

* (63/2) , that arising from the matrix elements,^61/2uSŷ

71/2&, increases in magnitude with increasing rhombicity
J ẑ

* (63/2) decreases, such that the quantities become equ
E/D51/3. Thus in the strongly orthorhombic zfs-limit, sig
nificant transverse and longitudinal terms contribute to
NMR-PRE. A representative power plot computed for E
50.2 is shown in Fig. 6. While in the orthorhombic situatio
the spin matrices are relatively complex, the NMR-PRE
sults almost entirely from just two terms, one longitudin
(J ẑ

(63/2)), the other transverse (J ŷ
* (61/2)). This situation re-

sults form the fact that, as shown in Fig. 3,tS,ŷ
(61/2) andtS,ẑ

(63/2)

FIG. 5. Power spectra of the spin motion for S53/2 in the cylindrical
zfs-limit. The calculations, which are intended to be representative of h
spin Co~II !, employ level-specific electron spin relaxation times, calcula
from Eq. ~20! in the text assuming the values of D,tq , Cq given in the
legend of Fig. 3. The calculations are normalized toJ ẑ

(63/2)(0)51.
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have comparable magnitude in a strongly orthorhombic
field ~E/D'1/3!.

In summary, high-spin Co~II ! complexes with cylindrical
zfs symmetry are predicted to exhibit much higher NM
relaxivity than comparable orthorhombic complexes. Ho
ever, the influence of electron spin relaxation on the dipo
NMR-PRE is masked by Brownian reorientation whentR

,tS,r , and thus the large predicted lengthening intS,r will
be reflected much more prominently in the NMR-PRE
slowly reorienting, rather than rapidly reorienting, solute
The NMR relaxation properties of high-spin Co~II ! have
been studied in numerous orthorhombic complexes and
inferred electron spin relaxation times are, as expected, g
erally very short, the order of a picosecond.3,37 Experiments
involving high-spin Co~II ! in sites of cylindrical zfs symme-
try have not, to our knowledge, been reported, in part refle
ing the fact that Co~II ! porphyrinates tend to be low spi
species.38 An experimental study of high-spin Co~II ! in a
cylindrical zfs environment that is reorientationally
immmobilized @e.g., a Co~II ! tetraazamacrocycle comple
immobilized in a gel or dissolved in a high viscosity solven#
would obviously be interesting in the present context.

Nilsson and Kowalewski39 have used the SLE formalism
to calculate the effects of zfs rhombicity on the NMR-PR
for S53/2. In their calculations, the introduction of zfs rhom
bicity produced a mild depression~'30%! of the zfs-limit
NMR-PRE that is much smaller than the profound~.2 or-
ders of magnitude! rhombicity-induced depression of zfs
limit tS,ẑ relaxation rate shown in Fig. 3. In part, this diffe
ence in result is due to differences in the static zfs parame
which were much smaller in the calculation of N–K~D<10
cm21! than in ours~D550 cm21!. However, the major dif-
ference probably results from the effects of Brownian reo
entation: N–K assumedtR570 ps, while our calculations
assume the slow reorientation limit. Reorientation affects
NMR-PRE through modulation of th interspin I-S vector
well as through modulation of the permanent zfs interacti

-
d

FIG. 6. Power spectra of the spin motion for S53/2 in the orthorhombic
zfs-limit. The calculations are as described in the legend of Fig. 5 exc
E/D50.2. Solid lines are the contributions toJ ẑ(v), dashes are contribu
tions toJ x̂(v), dash-dot are contributions toJ ŷ(v).
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the latter contributing a mechanism of electron spin rel
ation. Both processes contribute to the dipolar correlat
time and will tend to mask the large rhombicity-induc
lengthening oftS,ẑ that is evident in Fig. 3.

C. Orientational dependence of the NMR-PRE

Another aspect of the zfs-limit NMR-PRE that is d
scribed by the spin power plots concerns the orientatio
dependence of the NMRT1, i.e., the dependence of th NMR
T1(2) on the orientation of the I-S interspin vector with r
spect to the zfs principal axis system. It has been show14

that the angular dependence of the zfs-limit NMR-PRE p
duced by the power termJ r

(a) is the same as that of th
mean-squared dipolar field produced by a classical magn
dipole located at the origin and directed alongr̂ . The math-
ematical function which describes this dependence is

F~u r̂ !5@11P2~cosu r̂ !#, ~28!

whereu r̂ is the angle between the I-S vector andr̂ , and P2(x)
is the second order Legendre Polynomial. Polar plots of
functions,F(u r̂), have a characteristic bi-lobed shape sho
in Fig. 7, for which the axial/equatorial ratio,F(0)/F(p/2),
equals 4. Each term,J r̂

(a) , of the spin power plots contrib
utes NMR relaxation efficiency with a spatial dependen
described by the corresponding angular function,F(u r̂); i.e.,
the transverse power terms,J x̂

(a) , produces an NMR-PRE
corrected to constant interspin distance, that is largest
nuclei located on thex̂ molecular axis, while the relaxatio
efficiency produced byJ ẑ

(a) is largest alongẑ, etc.
In a previous experimental study,37 we reported the ori-

entation dependence of the zfs-limit NMR-PRE for t
S53/2 complex, Co~II !~H2O!2~acac!2. The measured~axial/
equatorial! proton NMRT1 ratio, corrected to constant inte
spin distance, was 2.760.4. Based on this result, it was con
cluded that the observed NMR-PRE results from compe
longitudinal and transverse power terms, the former ab
five times larger than the latter. The calculations of Figs
and 6 give a more quantitative framework for interpreti

FIG. 7. Polar plots of the angular functions,F(u r̂), for r 5 ŷ and ẑ.
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this and similar experiments than was available to us pre
ously. As shown in Fig. 6, the observed result occurs a
rhombicity ratio of E/D'0.2.

D. Computational procedures

Calculations of electron spin relaxation times used ro
tines which are incorporated in the computer program, wh
ParRelax.2 has been written in this laboratory.5,17 This pro-
gram, which incorporates and supercedes earlier versi
PARELAX,40 and RotJmpDyn.f, implements theory of th
NMR-PRE at various levels of sophistication. These inclu
~1! Zeeman-limited ~SBM! Theory; ~2! the slow-
reorientation theory of the zfs-limit,~3! slow-reorientation
theory of the intermediate regime; an~4! Spin-Dynamics
simulation techniques16,17,34 which describe the effects o
Brownian reorientation in the intermediate regime. Ea
level of theory has both advantages and limitations a
should be selected as appropriate for specific problems.
program also contains algorithms which evaluate elect
spin relation times using Eq.~20!. It is available to the sci-
entific community upon request.

The calculations of Fig. 3 were performed in the follow
ing way. At each plotted value of E/D, the zfs-limit Hami
tonian for S53/2 was diagonalized. Using the spin eige
functions, the matriceŝSr& and ^Sq& that are needed fo
evaluation of Eqs.~20! and ~21! were computed in the spin
eigenbasis. The spectral density functionsk(vab), where
computed from the transition frequencies. The relaxat
times of Eq.~20! were evaluated using these quantities.

The calculations of Fig. 3 involve the zfs-limit physica
situation, where spatial averaging over molecular orien
tions is not required. In the intermediate regime~where both
a Zeeman and a permanent zfs interaction are present!, Eq.
~20! must be averaged over molecular orientations. The
eraging algorithms used in ParRelax.2 performs this aver
by orienting the Zeeman field with respect to the zfs prin
pal axis system at 92 sampled orientations defined by
polar angles corresponding to the 60 vertices and 32 f
centers of the truncated isocahedron~buckeyball!. This pro-
cedure provides highly effective, unbiased averaging.

V. CONCLUSIONS

~1! The electron spin relaxation process which influenc
NMR paramagnetic relaxation enhancement~NMR-PRE! in-
volve decay of the spin time correlation functions, Gr(t)(r
5 x̂,ŷ,ẑ), defined by Eq.~1!, rather than decay of nonequ
librium parts of the spin density matrix. In a thermal equ
librium sample, the decay of Gr(t) is level-specific; i.e.,
Gr(t) is composed of a sum of contributions associated w
individual eigenstates, each of which decays exponenti
via a process that is uncoupled to the decay in other eig
states.

~2! An expression for the level-specific decay consta
has been derived in terms of Redfield matrix elements. T
expression@Eq. ~20!# is valid for arbitrary S when the spin
Hamiltonian consists of Zeeman and zfs contributions of
bitrary magnitude. Spin relaxation is assumed to res
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from collisional modulation of the zfs tensor, when zfs d
tortion is rapid compared to molecular orientation.

~3! Simple zfs-limit expressions are presented for lev
specific relaxation times of S51 in the cylindrical and ortho-
rhombic zfs-limits, and of S53/2 in the cylindrical zfs-limit.

~4! The theory is used to interpret electron and nucl
spin relaxation for S53/2 with specific reference to high
spin Co~II !, for which the zfs splittings are typically large
For this spin system, the presence of orthorhombic term
the zfs tensor causes profound shortening of the electron
relaxation times relative to the reference cylindrical zfs ca
This phenomenon produces a comparably large rhombic
induced depression of the NMR relaxation efficiency.

~5! Zfs rhombicity-induced depression of the NMR-PR
has previously been described for integer spin systems~S51
and S52!. These latter phenomena, however, originate fr
a different physical mechanism than that which produ
rhombicity-induced depression of the NMR-PRE for ha
integer spins.

APPENDIX

Level-specific electron sin relaxation times for S51 in
the cylindrical and orthorhombic zfs-limits. Relaxation tim
are defined along the molecule-fixed zfs principal axis dir
tions ~x̂, ŷ, ẑ!. The quantitiesvD , vE are the zfs D,
E-parameters in angular frequency units. The Cartes
modes of Hs8(t) are described by a single correlation tim
tq , and mean-square amplitude,Cq . In the fast motion limit
where allk(v)'Cqtq , all of the following expressions ar
given by Eq.~25! of the text.

SÄ1, cylindrical zfs-limit „circular basis…:

r 5 x̂: ~tS,x̂
~61!!215~3/2!k0~0!1~5/2!k1~vD!1k2~0!

tS,x̂
~0!5tS,x̂

~61!

r 5 ẑ: ~tS,ẑ
~61!!2154k2~0!1k1~vD!

~tS,ẑ
~0!!215undefined

SÄ1, orthorhombic zfs-limit „Cartesian basis…:

r 5 x̂: ~tS,x̂
~x! !215undefined

~tS,x̂
~y,z!!2152k~0!1~1/2!k~2vE!1~1/2!k~vD2vE!

12k~vD1vE!

r 5 ŷ: ~tS,ŷ
~x,z!!2152k~0!1~1/2!k~2vE!12k~vD2vE!

1~1/2!k~vD1vE!

~tS,ŷ
~y! !215undefined

r 5 ẑ: ~tS,ẑ
~x,y!!2152k~0!12k~2vE!1~1/2!k~vD2vE!

1~1/2!k~vD1vE!

~tS,ẑ
~z! !215undefined

SÄ3Õ2, cylindrical zfs-limit „circular basis…:

r 5 x̂: ~tS,x̂
~63/2!!2156@k~0!1k~2vD!#

~tS,x̂
~61/2!!215721@18k~0!166k~2vD!#
-

-

r
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in
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-

n
,

r 5 ẑ: ~tS,ẑ
~63/2!!21512k~2vD!

tS,ẑ
~61/2!5tS,ẑ

~63/2!
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