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Stimulated Raman adiabatic passage in the presence of dephasing
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The prospect of employing the stimulated Raman adiabatic PasS@gRAP) technique under the
influence of pure dephasing is explored. A general analysis of how decoherence influences the
performance of STIRAP is provided. Starting from a general and fully quantum-mechanical
system—bath Hamiltonian, we derive a quantum master equ@blii) that describes the reduced
dynamics of a dissipative STIRAP system. The derivation is based on the standard assumptions of
(1) weak system—bath coupling2) Markovity, in the sense that the relaxation times are long in
comparison to the bath correlation time,; and(3) weak field—matter interaction, in the sense that

the Rabi period of the driving laser field®,” %, is longer tharr, . The dissipative term in this QME

is the same as it would have been in the absence of the driving fields, because of the assumption of
weak field—matter interaction. This type of uncontrollable dephasing is seen to diminish the
efficiency of STIRAP, although the actual loss strongly depends on the specific dephasing
mechanism. We also derive a more general QME, which is applicable to driving fields of arbitrary
intensity. The dissipative term in the new QME is explicitly dependent on the driving fields, and
therefore controllable. Intense fields are shown to effectively slow down the dephasing when
Q7.>1, which suggests that it may be possible to use STIRAP in order to transfer population
between the quantum states of a solute molecule embedded in a solvé@t032American Institute

of Physics. [DOI: 10.1063/1.1623482

I. INTRODUCTION solution-phase dynamics often involves decoherence, which
may suppress the very same coherences upon which coherent
The goal of quantum coherent control is the design ofcontrol is baseddecoherence is defined here as any nonuni-
laser pulses for controlling molecular motion and chemicakary contribution to the dynamics of the systerfihus, un-
reactivity'~® The main question is formulated in terms of derstanding the interplay between coherent control and deco-
optimal control theory: Given the constraints on the duratiorherence, as well as exploring ways of controlling the
and intensity of the pulse, what temporal changes of the amdestructive attributes of decoherence, is of paramount impor-
plitude and phase of the laser field would maximize a desiregqnce. Dephasingphase relaxation in particular, is often
objective? The objective is usually represented by an expegonceived as destructive for coherent control, as well as be-
tation value at the final state. The optimal pulse is found bying uncontrollable. However, one of us has recently analyzed
solving the optimal control problem, either computationally,the control of laser-driven intramolecular hydrogen transfer
via quantum molecular dynamics simulati6risor experi-  in the presence of dephasifigand found that, at least for
mentally, via a closed adaptive learning I0dp*> some types of dephasing mechanisms, dephasing can be ef-
Although most of the studies to date have been focusegbctively controlled, and even totally eliminated, by taking
on gas phase systems, there is a rapidly growing interest igdvantage of the field dependence of the dephasing rate con-
exploring the prospects of coherently controlling processegtants. In the present paper, we explore the prospects of using
in solution:*~*'This interest is fueled by the fact that many the ~stimulated Raman adiabatic passag8TIRAP)
important chemical and physical processes that one woulgbchniqué®-*°in order to transfer population between two
like to control take place in condensed phase solutions, aelected quantum states of a solute molecule, while the latter
well as by the development of the closed loop self-adaptives sypject to pure dephasing. We choose to focus on STIRAP
learning approach)~*#*2~*which made it possible to ex- pecause of its general applicability and the fact that it is
plore the prospects of controlling complex systems, withoupased on a relatively simple sequence of two pulses, where
a detailed knowledge of the full Hamiltonian. the main control parameter is the time delay between them.
The theoretical analysis of coherent control in solutionis e plan of this paper is as follows: A brief description
significantly more demanding than its gas phase counterpargt gephasing-free STIRAP is given in Sec. I1. A discussion of
More specifically, while gas-phase dynamics can usually bene influence of different types of relaxation processes on
treated as decoherence-free, solution-phase dynamics aggRaAP is presented in Sec. Ill, with the conclusion that
strongly influgnced by relaxation processes, which reflect inpure dephasing is the most important type of relaxation that
teractions with solvent degrees of freeddMOF). Thus,  neeqs to be considered. The influence of pure dephasing
within the framework of standard quantum master equation
3Electronic mail: eitan@umich.edu (QME) theory, which is only valid at the limit of weak driv-
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In the absence of decoherence, the system’s state can be
described in terms of a state vectan the Schrdinger pic-
ture), | #(t)), whose dynamics is dictated by the Sdafirger
equation

d NP
i g [0 =[RS WO T[9(D)). 3

In STIRAP, one subjects the system, whose staté)igt t
=0, to a “counter-intuitive” pulse sequence, where the
o _ Stokes pulse precedes, and overlaps with, the pump pulse.
%(j;at'oﬁ schematic view of the STIRAP three-level system inAheon-  This hylse sequence ideally results in a complete transfer of
' population to staté3), without ever populating statR) in
the process.

The underlying mechanism is best understood in terms
of the rotating framéRF) picture. The state vector in the RF
Blcture is defined by

ing fields, is analyzed in Sec. IV. The treatment is extended
to driving fields of arbitrary intensity in Sec. V, where it is
shown that the dephasing rate is explicitly dependent on th
driving field, and can be controlled by it. The relationship of |lpr(t)>=eiwptﬁ’zfi(wspr)tls3|lp(t)>, 4)
our results to other works that considered the influence of

decoherence effects on STIRAP, and decoherence control &nd its dynamics is dictated by

general, is discussed in Sec. VI. The main results are sum-

marized and discussed in Sec. VII. The theoretical results i —|4(t))=HL 4 (1)), (5)
necessary for deriving a QME, in the case of a driven sys- dt
tem, are outlined in the Appendix. where,
Il. DECOHERENCE-FREE STIRAP AL =%| ApPy+(Ap—AgPL+ 5 Qp(t)[F’ Lot Phl
In this section we provide a short overview of the stan- 1
dard decoherence-free treatment of STIRAP. Our goal is to +t3 Qg(t)[Phst PL,]
introduce the notation that will be used throughout the re-
mainder of this paper, as well as provide a reference point for 0 Qp(t) 0
the later analysis of STIRAP in the presence of dephasing. B h Ot oA Ot
We consider a three-level system in theconfiguration, ) p(t) P s(t) ' ©®)
as shown in Fig. 1. The field-free system Hamiltonian is 0  Qgt) 2(Ap—Ay)
given by Here, X' =el@ptP2i(ws=wp)tPsXa=iwptPoti(os=wp)tPs (note
HO=fiw|1)(1]+ 7 w,| 2)(2| + A w5 3)(3] that P =Py for k=1, 2, 3), andAp=w,— w;— wp,Qp(t)
o - - = p12ep()/fi (As=wy— 03— ws,Qg(t) = pozeg(t)/A) cor-
=hw P+ hiw;PothwsPs, (D respond to the detuning and Rabi frequency in the pump

where, {|1),12),|3)} and {fiw,%iw,,h w3} are obviously the (Stokes transitions. The matrix in Eq6) representdi’, in
eigenvectors and eigenvalues lf, respectively, and®;  terms of the basis of field-free eigenstatés the RB,
=|i)(i| (i=1,2,3). We assume that the42 and 2—3 tran-  {|1"),[2"),[3")}, which we will refer to below as th® rep-
sitions are driven by classical, circularly polarized, coherentesentation

light pulses, which can be described by the following field—  From this point on, we will assume that the two-photon
matter interaction term: resonance condition is satisfied, namely thgt=Ag=A

(deviations from this condition are known to decrease the

A _1 —iwpt jwpt ~
W(t) =35 pizep(t)[2)(L]e ™" P+ [1)(2]e"P] efficiency of STIRARB. For this case, we rewritd in terms

+ %Mz3es(t)[|2)(3|e‘i‘”3‘+ |3)(2|eiwst] of its instantaneougigenvalues and eigenstates:
A i 5 e how
=z pisep()[Poe™ P+ P! P (t)— +( )|a T(t))at( t)|+—|a )){@%(t)]
+ 3 ases(t)[ Poge ™ s+ Pagel s, ) ho(t)
Here, u1,, €p(t) andwp [ w03, €s(t) and wg] are the tran- R la”(t))(a (V)]

sition dipole moment, amplitude and frequency of the pump

(Stokes pulses, respectively, arfe}; = [i)(j| (i,j=1,2,3) are " w () O 0
the corresponding field-free creation and annihilation opera- =—| O wo o |, 7
tors. It should be noted that the following analysis would 0 0 w_(1)

also be applicable to noncircularly polarized driving fields,
as long as the rotating-wave approximati®WA) is valid. ~ where,
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0o=0, w-(t)=A+ A2+ Q3(t)+Q%(1), (8) Z
|a®)=sin(6)sin($)|17) +cod ¢)[2") g== Dephasing
+cog 6)sin( $)|3"), 2 Zone
|a% =cog 6)[1") —sin(6)|3"), 9 2 > X
|a™)=sin(@)cog ¢)|1") —sin(¢)|2") ,'
+cog #)coq ¢)|3"), 6=0
and
tad 0(t)]= %, FIG. 2. Adescription of STIRAP in terms of a rotation of the spinorsin
s(t) thexz plane. The dynamics is shown in the absefsadid ling) and presence

10 (dashed lingof pure dephasin
[05(0)+ 03(1)]*2 (10 pure dephasing

el )= oz 02+ A7 A

From this point on, we will refer to the presentation in termsdecoherence-free STIRAP within the framework of the den-
of {|a;).[a5),|]a-)} as theA representation(it should be sity operator formalism. It is important to note that, at least
noted that bottP andA representations are defined in the RFideally, the state of a system undergoing STIRAP is restricted
picture. _ _ to the sub-space spanned by the two statés and |3').

In STIRAP, population transfer frofi") to [3), with-  This makes it possible to describe STIRAP in terms of a
out ever populat|q¢2r>, is achieved through adiabatic pas- fictitious spin-1/2 system. Thus, the corresponding density
sage. The latter is based on the assumption that the Rabperator, can be given in terms of the corresponding “spin”
frequencies(Qp(t) and 4(t) vary slowly over time, such operators:
that || <|w. — wy| (this corresponds tdg]<\Q2+0%2 11
when A =0, such that adiabaticity is easier to satisfy when 5 =_T+ —[P!P!+ p;ﬁ:;+ PP, (12)
the driving fields are more intens& STIRAP starts by turn- 2 h
ing on the Stokes pulse. Thus, as long as the pump pulse Whereﬁ’;zh(ﬁ’rﬁr PL)/2 ﬁ’{,:ih(ﬁ”m— PL)/2, PL=7 (P}

; _ _ +\ r n N ! N !
off, S'n(02_0 (?Tj ?OSQ)_L 7su_ch t.hat|a r)—cos(¢)|2r) —PD)/2, and X=(X)=Tr(psX). The state of the system
+Sm(@|3>’ |a)=|1) and|a )——sm(¢)|2_>+cos(¢)|3)_. can, therefore, be given in terms of spinor (or Bloch-
xoredﬂzo{;aenéﬁtg% ?E(T;%’);)gii%vtell_ ;,l:ao!)e:?;t:ae;isrfserﬁfgy vectop, i.e., a vector in a fictitiousx,y,z) Cartesian coordi-
S- = r r . .
from the statesa..), population transfer can start by slowly nate system, whose components Bfe Py andP; . Within .

. =/ o ) this picture, decoherence-free STIRAP amounts to a rotation
turning off the Stokgs pulse, while simultaneously turning ONof the spinor by in the (x,z) plane, from being aligned
the pump pulse. This §°Tr83p9”ds_‘° slowly changliigm along the negative axis, to being aligned along the positive
0 to #/2, such thafa®) is adiabatically transformed from 7 axis (cf. Fig. 2. It is important to note that the system

Mo or ) . : )
|17) into —|3), without ever populating the intermediate remains in a pure state throughout this process. This implies

state|2"). It should be noted that, at least in the case of : o :
truly adiabatic process, the efficiency of STIRAP will not beatsr;)?;(t)?e C\?VEIE(S)S? ndéﬂgndgm;mlictz Ig&%ﬁi;f?ﬁ?;;&??
) S

affected by population transfer from level 2 to other leVElS'zTr[f)s(t)]= 1). Such a unitary transformation is only pos-

In actual applications, the rate of change of the Rabi frequenéible if decoherence is negligible.

cies is always finite, and Iqsse§ due to nonadiabatic popula- The main goal of this paper is to examine what happens
tion transfer to level 2 are inevitable. However, these losse

b 4 ligibl I by | ing the intensit rfo STIRAP when decoherence is not negligible on the time
can be made negligibly smafl by increasing the INtensity olg., o of the experiment. To this end, it is useful to distinguish
the driving fields(a convenient condition for adiabatic pas-

sage isQlp > 1, wherety is the time delay between the between two fundamentally different types of relaxation,
P.Std™ = d : | lation relaxati hasing(ph lax-
pulsed®). Another important feature of the STIRAP effi- namely population relaxation and dephasing(phase relax

) o r L ~_ation). Population relaxation involves the diagonal elements
ciency is its relative insensitivity to the value of the time ) P 9

. of ps (in the P representation and leads to the relaxation of
delay between the Stokes and pump pulses. This is becaulshee P} component of the spinor, to its value at thermal equi-

STIRAP mostly relies on having the Rabi frequencies varypium. Dephasing involves the off-diagonal elements of

slowly enough, and the pulses overlap to some degree. and leads to the relaxation of t and P{, components of

the spinor to zero. Dephasing can be further decomposed

into two components, one that originates from population

relaxation, and another that does not. The latter is referred to
The analysis of STIRAP under decoherence first requireas pure dephasing

that we define the state of the system in terms of a density STIRAP would be rather ineffective if the life-time of

operator,ps, instead of the state vectdi/(t)). To this end, population relaxation from levels 1 and 3 is comparable to,

it is useful to briefly reconsider the description of or shorter than, the experimental time scéenveniently

Ill. STIRAP IN THE PRESENCE
OF DECOHERENCE—GENERAL CONSIDERATIONS
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defined by the time delay between the Stokes and pump |:|bs=— %fp®ﬁ’1+%(fs+fp)®|52— %128® |53_ (14)
pulses. In such a case, any deviation from the Boltzmann

distribution brought about by STIRAP, would be quickly off- Thys —T' /2, (I's+1'p)/2 and—T'¢/2 represent the fluctua-
set by population relaxation. In addition, population relax-tions of the individual energy levels of the stat#s [2), and
aFion is known to be strongly dep_endgnt on the spgctral der]3>7 respectively. The explicit form dAfs andf‘p, as well as

sity of the solvent, and controlling it would require Very g relationship between them, depends on the specific sys-

intense fields, with a Rabi frequencies comparable to the,, Below, we will consider the following three general
transition frequencie:* It is therefore a rather fortunate ¢ anarios:

coincidence that population relaxation is often found to be
significantly slower than pure dephasiifgThis is particu- (1) correlated coupling, wherEBs=T"p;
larly true in the case of a diatomic solute embedded in art2) anti-correlated coupling, whetés=—T'p;
atomic liquid, where population relaxation involves rela- (3) uncorrelated coupling, whefer(e™#HoI'gI'p) =0.
tively inefficient vibration—rotation and vibration—translation
energy transfer. For example, Everitt and Skinner have re- Coupling the three-level STIRAP system to a bath turns
cently calculated the life time of the first excited vibrational it into anopen quantum systerits dynamics is therefore not
state of oxygen in liquid Argon from MD simulations, and Hamiltonian, and cannot be described by the Sdimger
reported a value as long as 0.04*sat 85.8 K>3 For these  equation. Thereduced dynamics of such an open quantum
reasons, we will assume that the population relaxation lifesystem is dictated by an equation of mofibof the follow-
time is long compared to the experimental time scale, andhg general form:
restrict ourselves to the study of STIRAP in the presence of i i
only pure dephasing. — — 0y -

The influence of pure dephasing on STIRAP can be gi PV = = 7 Lsps() = 7 Ln()ps()
qualitatively understood in terms of the above mentioned "
spinor-based picture. As long as the spinor is aligned along +f drK(t,t—7)pg(t—7), (15)
the z axis, as in the initial and final states, it will not be 0
influenced by pure dephasing. However, rotating the spinor 0~ ~0 . - R
by 7 in thexz plane immediately exposes itcomponentto  Where, Lsp()=[Hs,p(t)] and Ly()p(t)=[W(1).p()]
pure dephasing, which will diminish its overall amplitude "6Présent the dephasing-free Hamiltonian dynamics, while
(cf. Fig. 2. This will obviously result in less than complete Jod7X(t,t—7)p(t— ) represents the non-Hamiltonian, and
population transfefin the extreme limit of very fast pure non-Markovian, bath-induced dynamics. Unfortunately, Eq.
dephasing, the populations in thE) and|3") states would (15) is of Ilgll%pract_lcal use as such, due to the complexity of
be equal at the end of the experimerit is therefore clear A(t,t—7).7"*"In this paper, we resort to the commonly used
that pure dephasing will reduce the efficiency of populationV€@k System—bath coupling limit df(t,t—7) as a way of

transfer via STIRAP, unless it can somehow be e1‘fectively'5imp"fy?ng .the description. We _also assume that the
slowed down. correlation-time of the bath fluctuations,, is considerably

At this point, it is instructive to look more closely at the Shorter than the pure-dephasing lifetime. As is well known,
type of solute—solvent interactions that give rise to Iourethese two assumptions make it possible to describe the re-

dephasing. To this end, we introduce the following generafjuce_g4 Scéynamics in terms of a Markovian QME of the
system—bath Hamiltonian: form:

H=H2+W(D)+Hp+ Hos, (12 b= 1 L0~ - LuDBO+Lop(D.  (16)

whereH? andW(t) are as in Eqs(1) and(2), respectively, ’ " ot  the dissioati t
H, is the bath Hamiltonian, which corresponds to the other owever, the Spectiic form o the dissipative stper-operator

intermolecular and intramolecular DOF and will remain un—’/“‘D still depends on how we treat the field—matter interaction

o ) ) N term. The most popular approach is based on the, often im-
specified for the time being, andys is the system-bath icit assumption that the form dfy, is the same as it would
coupling term

have been in the absence of the driving fields. However, this
treatment is strictly valid only in the limit of weak field—
matter interaction. In the cases which are of interest for us in
this paper, this translates into assuming that the Rabi fre-
quency of the driving field is small relative tq_l (cf. Sec.

IV and the Appendix for a more detailed discussion of this
point). A more general treatment, which avoids any assump-
i ~ . . tion regarding the field—matter interaction and is therefore
only involve the operatory, P, andPs. Such termslead \4jig for driving fields of arbitrary intensity, is nevertheless
to pure dephasing, but not to population relaxatipapula-  ysssible in the case of STIRAP. It leads to a modifiég,

tion relaxation originates jrom off-diagonal coupling terms hich is explicitly dependent on the driving fielésf. Sec. V
that involve the operator®;;, wherei#j). We also note for a more detailed discussion of this poirthereby opening
thatl3|bS can be rewritten in the following way: the door for using the field for actively controlling, and pos-

Hps=T's® 3(Py—P3)+Tp® 3(Po—Py). (13

Herel's andI'p are bath operators, which will not be explic-
itly specified for the time being.

It should be noted thal, in Eq. (13) only includes
diagonal system—bath coupling, i.e., coupling terms that
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TABLE |. The pure-dephasing rate constants in
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the correldtéd(7) =Cp(7) =Cpg(7)=C(7)], anti-

correlated Cg(7) =Cp(7)=—Cpgy7) =C(7)], and uncorrelatefiC,(7)=0] coupling schemes.

"2k, hkz3 h2ks
Correlated 9C(0)/8 9C(0)/8 0
Anti-correlated ¢(0)/8 C(0)/8 C(0)/2
Uncorrelated Cp(0)/2+C4(0)/8 Cp(0)/8+Cg(0)/2 Cp(0)/8+C4(0)/8

sibly suppressing, pure dephasing. The impact of pure onr
dephasing on STIRAP in these two cases is discussed in £pPs=

detail in Secs. IV and V.

IV. STIRAP UNDER FIELD-INDEPENDENT PURE
DEPHASING (WEAK DRIVING FIELDS)

1 . N . n
— 5721Cr(O)[(Py— P/2[(P5—PY)/2,54]]
+Co(O)[(Py—P5)/2,[(Py—P5)/2,p5]]
+Cpg0)([(Py—PY/2[(Py—P5) /2,511

+[(P,—PY)2,[ (PL—P)/2,p5])}- (22)

In this section, we present a more quantitative analysigyere
of the influence of pure dephasing over STIRAP, in the case

of weak field—matter couplingin the sense thaf)r.<1).
As shown in the Appendix, the dissipative super-operator

S | drcyme, 23

becomes field-independent in this case, and assumes the ex- ) ] .
act same form as it would have had in the absence of this the Fourier transform of the bath correlation function

driving field. In the case of STIRAP, it is convenient to per-
form the derivation of the QME in terms of the RF picture.

To this end, we define the density operator of the overal| ..o |=p 5 Cl@)=C

system (system bath) in the RF picture

i‘)r(t) = eiwptlk:‘z*i(ws*wp)tlsgi)(t)efiwptlszﬂ(wspr)tf::;,

7

wherep(t) is the density operator in the original Sctioger
picture. The dynamics op'(t) is dictated by the Liouville
equation

%b’<t>=—,i;[ﬂf,ff(t>], (18)
where

H =AL+ AL+ A, (19)
HL is as in Eq.(6), H,=H,, and

Ap=Ts@ 3(Py— Py +Tpe 3(P,—P)). (20

Using the RF Hamiltonian in Eq(19) as the starting
point for the derivation, and assuming weak field—matter in
teraction, such that the dissipation term is the same as
would have been in the absence of the driving tdim.,
when Qp,Q5=0 in Eq. (6)], then leads to a QME of the
following form (cf. the Appendix

d

dt

i
ps=— 7 L'+ Lops, (22)

where £ pt=[HL,pt] is the Hamiltonian term, and

Cu(1)=Tr(pgeMem T e o)), (24
(@) andpplis as in Eq.(A5).
It should be emphasized that the Hamiltonian term in Eq.
(21), —iLgp"%, includes the driving terms to all orders,
whereas the dissipative terrﬂ,%f)r, is the same as it would
have been in its absence.

Equation(21) translates into the following set of coupled
equations for the populations and coherences irPthiepre-

sentation:
Pi=QpImP},,
PL=—QpImP,+QglmPs,
Pi=—QgImP),,
=) ; r r ; r ; r (25)
Pha=—iQg(PL—P5)/2+i1QpPly2— (1A + K3 Phs,
Pla=i1QpPL/2— i QgP /2— k13P)s.

Equations(25) clearly do not involve bath-induced popula-
tion relaxation. However, the coupling to the bath does give
rise to dephasing, and the pure dephasing rate constants are

given by

1

~ 1. ~
Klzzﬁz( Cp(0)+ ZCS(0)+CPS(O)> :

f:p<0>+és<0>+?:p3(0>), (26)

B

Kzszﬁz(

1 (1. 1. 1.
K13= 5272 ZCP(O)+ ZCS(O)_ECPS(O))-
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In order to gain further insight into the influence of pure
dephasing on STIRAP, it is useful to refer to the special
cases of correlatefiCy(7)=Cp(7)=Cpg(7)=C(7)], anti-
correlated Cg(7) =Cp(7)=—Cpg7)=C(7)], and uncorre-
lated[ Cpg(7) = 0] coupling schemes. The corresponding ex-
pressions for the pure dephasing rate constants are given in
Table I. It should be noted that;5 is minimized(and actu-
ally vanisheg while k;, and x,3 are maximized in the cor-
related case. The opposite happens in the anti-correlated
case, wherec;3 is maximized, whilex,, and k,3 are mini-
mized. Thus, one expects that STIRAP, which relies heavily
on maintainingP 3 during adiabatic passage, will be pro-
tected from dephasing in the case of correlated dephasing,
and destroyed by it in the case of anti-correlated dephasing.
The case of uncorrelated dephasing corresponds to an intefiG. 3. The final value o}, as a function of the time delay between the

mediate situation, where dephasing is destructive, but to &tokes and pump pulses. The results are shown in the absence of dephasing

lesser extent than in the anti-correlated case (0), and for the cases of correlatéd), uncorrelatedU), and anti-correlated

. . . A) dephasing. The parameters used in the simulation are given in the text.
We have also performed numerical simulations of the( ) dep 9 P g

STIRAP process in a system whose dynamics is dictated by

Egs. (25. The pump and Stokes pulses were assumed to

have the same shape, such that: ImP},, ImP5;, and ReP}; throughout the dephasing-free

. STIRAP process, for a specific time delaty {to=1/3). It
Qg(t)=0p(t+1g) = Qosirf(mtity) for Oststo,(ﬂ) should be noted that the real parts Rf, and P,; vanish

whenA=0. The population transfer is seen to be accompa-
wherety is the delay between the peaks of the Stokes angied by a buildup followed by a decrease Bf;, which
pump pulsest, is the pulse width andl, is the maximal reflects the rotation of the spinor in tixa plane(cf. Fig. 2.

Rabi frequency. The results will be presented below in term®eviations from adiabaticity are observed in the form of
of dimensionless variables which are all scaled relatiig 1o small buildups ofP}, P’,, and P, during the period of
The following values of the parameters have been used in théverlap between the Stokes and pump pulses. It is important
actual simulations{gto=240 andA =0 (one-photon reso- to note that the population is restricted to level 1 until the
nancg. The time origin has been set at the start of the Stokepump pulse is turned on. ThuB), is first to emerge, fol-
pulse. It should be noted thétyto>1, and therefore satisfies |owed by the creation of population in level R, , which in
the condition for efficient adiabatic passé@he dephasing  turn gives rise t},. It is also important to note that the net
parameters were chosen such t640)t,=96.042. Finally, rate of populating level 2 is proportional to the difference
we have also added population relaxation from level 2 intdbetween the(Rabi-frequency-weightedimaginary parts of
levels other than 1 and 3, such that the equation of motion oP’, and P%; [cf. Egs.(25)]. This difference is attributed to
P is given by the delay between the buildups Bf, and P5;, which oth-
erwise have the same shape.

Final population of level 3

PL=—QpImP,+QgImPL— T, *P. (28)

The value of ;/ty) 1=30.0 has been used in the actual

simulations. It should be noted that the valuesCgD)/%? Toooo0ee

and T, were chosen such that dephasing and population re- [ ——-Im(P,,) JIA T

laxation are significant on the experimental time scale, which Lo Im(P,,) ’

is set byty. The propagation of Eq925) has been per- 0 5' .—. Re(P

formed with the standard fourth-order Runge-—Kutta L e—eP . -0.04

method>® P ool LB,
In Fig. 3, we show the simulated final valueff, at the oo P,

end of the pump pulse €ty+1ty), as a function of the time GETaR

delay between the Stokes and pump pulsgs,The results i /

are shown in the absence of dephadidyg and for the cases - 0 \ /

of correlated(C), uncorrelatedU), and anti-correlatedA) 0 5' , L |

dephasing. STIRAP is seen to be very efficient in the absence ~0 0.5 1

of dephasing, with a transfer efficiency of nearly 100%, and t/'[0

a very small loss due to nonadiabatic transitions to level 2.

As is well known, the dephasing-free performance is ratheFIG. 4. The time evolution oPy, P5, P3, ImPj,, Im P53, and RePl,

insensitive to the actual value of the time delay, as indicatedoughout thelephasing-freSTIRAP process, foty /to=1/3. The Stokes

. . . pump pulse is turned on at/t,=0 (t/ty=1/3), peaks at/ty=1/2 (t/ty
0
by the wide range ofy values that give rise to nearly 100% —5/6) and is turned off atity=1.0 (t/to=4/3). Note thaPl,is purely real,

transfer efficiency. while P}, andP}; are purely imaginary throughout the dynamics. The inset
In Fig. 4 we show the time evolution d?;, P,, P5,  shows a close-up &, ImP},, and ImP};.

) -0.02
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0 0.5 1
tt,
FIG. 5. Same as Fig. 4 for STIRAP undeorrelated dephasing FIG. 6. Same as Fig. 4 for STIRAP undencorrelated dephasing

The STIRAP efficiency under correlated dephagi@gn  increasesduring the overlap time, the “sustaining power” of
Fig. 3 is seen to be relatively high<93% at the peakbut  Ph3 is lower that that ofP3,. Hence, the smaller buildup of
visibly lower than in the dephasing-free case. This is somethe former.
what surprising in light of the fact that,5=0 in this case It is also interesting to note that the maximal efficiency
(cf. Table ). It should also be emphasized that neither thein the case of uncorrelated dephasitdyin Fig. 3), corre-
dissipative term nor the Hamiltonian term in the QME cansponds to a relatively long delay from the range of delays
independently lead to additional population transfer to levethat give close to 100% efficiency in the dephasing-free case
2 (the former because it can only account for pure dephasind® in Fig. 3. This observation is consistent with the fact that
and the latter because of adiabatigitfhus, the reduction in a longer delay corresponds to shorter period of overlap
efficiency in the case of correlated dephasing must be theetween the pulses, which in turn implies shorter exposure
result of enhanced nonadiabaticity, which is due to dephagdimes to dephasing. It should be remembered that some de-
ing. Further insight into this process can be gained from Figgree of overlap is essential if STIRAP is to take place, and
5 which shows the time evolution &}, P5, P, ImP},, that this maximum represents a compromise between adiaba-
Im P},, and ReP); under correlated dephasing, for a specificticity, which benefits from longer overlap times, and dephas-
time delay €4/to=1/3). It should be noted that the overall ing, whose destructive effect also increases with the overlap
buildup of P}, and P,, is smaller in comparison to the time.
dephasing-free case, which is attributed to the fact that Finally, the STIRAP efficiency is seen to drop in value,
and ,3 are maximized in the case of correlated dephasingas well as become even more sensitive to the valug ahd
However, the dephasing appears to also break the symmetBgak at an even longer delay, under anti-correlated dephasing
in the shapes of th@®}, and P, buildups, such that the (Ain Fig. 3). Figure 7 shows the time evolution 8%, P5,
difference between them is larger than that in the dephasind®3. ImPi,, Im P53, and RePl; in this case, for a specific
free case, which results in a somewhat larger rate of populdime delay (q4/to=1/3). In this casex,3 is maximized(cf.
tion transfer into level 2. Table )), which is clearly manifested by the minimization of

The STIRAP efficiency drops dramatically and becomes
much more sensitive to the value gf under uncorrelated
dephasindU in Fig. 3). Figure 6 shows the time evolution of
P}, P5, P5, ImP},, ImP,;, and ReP}; in this case, for a
specific time delay t(;/to=1/3). In this casex3#0 (cf.
Table )), and the dephasing &5 is clearly manifested by its i
diminished buildup(cf. Fig. 2. Furthermore, the dephasing 0.5+
is found to break the symmetry in the shapes of Rje and i
P%; buildups in a much more pronounced manner, thereby
leading to enhanced nonadiabaticity that add further losses. It

od
o

0.15

°

0.05

o

T T [T T 1

-0.05

o

-0.15

is interesting to note that the buildup Bt is significantly 0 gt/

smaller than that oP’,, despite the fact that they are both I R ]
subject to the same dephasing rate constasis<«»3, cf. - A .
Table ). The reason for this can be traced back to the fact I . | . | B
that the Stokes and pump fields, which are the driving forces '0'50 0.5 1

behind the creation ofP}; and P',, respectively, must t/t
work against pure dephasing, which tends to destroy them.
Because the Stokes fieldecreasesand the pump pulse FIG. 7. Same as Fig. 4 for STIRAP undenti-correlated dephasing
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TABLE Il. The relaxation rate constants for correlated dephas@y{ 7) = Cp(7) =Cpg(7) =C(7)]. The entry
at theij line andkl column correspond trﬁzyim . The upper(lower) signs in the kl,lk) column entries
correspond t&l (k). v.=w-/2.s,, Cy, Sy, andc, correspond to sikp, Cos¢, sin g, and cos), respectively.
Note thaty;j = vji - Entries that are not explicitly shown are equal to zero.

++ - +—,—+

++ - 3c¢)26(0) - 304,)(1 3s3)C(0) %C¢S¢(3Ci—l)§(:v+11/,)

- 2(1 3%)(1 3s¢)C(O) 2(1 3s¢)20(0) zc¢s¢(3s¢ 1C(Fv.+v)

+; 4cd,s¢(3c,,, 1)C(0) 4c¢s¢(35,,, 1)C(0) gcd)sd,C(ﬂ» v,Fv_)

. . r . . r ~ ~ ~ ~ ~ ~ ~
the ernId_up inPi5. The asymm_etry in the buildups &éf;, _ Ape=T, ® {[Ag—A,  J+T_® {Agp—A_ ]
and P, is also enhanced in this case, and leads to an in-
creased loss of population through level 2. 4T, @A, +T_,®A_,+T,0®A,,
4T, ®Ags +T_o®A_g+ Ty ®A,_, (30)

V. STIRAP UNDER FIELD-DEPENDENT PURE where

DEPHASING (INTENSE DRIVING FIELDS) 1: B [COSZ(qb) sin2(0)sin2(¢)]f“
+= - P

The validity of the QME used to describe STIRAP in
Sec. IV is limited to weak driving fieldsin the sense that
QO 7.<1). However, the fact that the Rabi period is required
to be longer than the STIRAP delay time, in order to satisfy
adiabaticity, implies that a weak field treatment of the dissi- —[sir?( ) — co(6)cod($) ]l s,
pative part may be inconsistent. To this end, we extend the N .
treatment in this section, to driving fields of arbitrary inten- ~ I'._=I'_,=— 3sin(¢)cog ¢){[1+sir()]'p
sity. As in the previous section, we start with the Liouville N
equation for the density operator of the overall system in the +[1+cos(0)IT's}, (3D
RF, Eq.(18). Howeve.r, we re_strlCt thfz perturbatlve_treatment I, o=T0. = — Lsin(8)cod B)sin(¢)(Fp—Ts),
to the system—bath interaction terid,g, and refrain from
Sggg/il)gg it to the field—matter interaction ter¢of. the Ap- T =Ty =— sin(@)cog 8)cog ¢)(Tp—T).

It should be noted that the field—matter interaction term  Following the procedure outlined in the Appendix, then
is stationary in the RF, except for the time dependence of thiead to a QME of the same form as HG1), except for the
pulse envelope€)(t) andQp(t). Adiabaticity dictates that fact that thefield-independendiissipative term£ g, is now
Qg4(t) and Qp(t) change on the time scale of the pulse replaced by the following, more generfigld-dependendis-
length, that was assumed to be longer than the dephasirfgpative term:
lifetime, which is in turn longer than the bath correlation o
time, 7. (Markovity). Thus, Qg(t) and Qp(t) can be as- Lp(ps)= Yijki[Aij »Aups]+C.C., (32
sumed to be constant over a period of the bath correlation bkl
time, such that the dissipative term has the same form as Where C.C. stands for “complex conjugate,l,j,k,1=+
would have had in the case of a truly stationary system thap,—,

corresponds to thinstantaneouHamiltonian, Hi(t). As a

—[cog( ¢p) — co(0)sir?( ) IT's,

=i

_ = —[siré( ) —sirf(8)co2( ) Tp

. ) . 1.
result, the energy levels and e_|gen-pr01ectors in the QME ?’ijkl:WCijm(—wm), (33
correspond to the A representation and are, therefore, explic-
itly time-dependenicf. Eq. (A16) in the Appendi}. o= (w— )2 [cf. Eq. (8)], and
In light of the above, it is convenient to perform the U .
actual derivation of the QME in terms of th representa- Cija (1) =Tr[pp ™o/ ;e Mo/ ] (34)

tion. To this end, we introduce the instantaneous eigen-

[also note thaﬂ“kk Fk] Explicit expressions for the rate
projectors ofA «(1):

coefficients{ y;jq } in terms of the correlation function of the
original bath operatord;» andI'g, are given in Tables Il—

At =la“(H)@'(t)|  where k,I=+,0,~. (29 |v, for the cases of correlated, uncorrelated, and anti-
_ . . ~ correlated dephasing, respectively.
Obviously, Ho(t) = (2/2)[ 0 (1) A 1 (1) + 0o(t) Age(t) It is important to emphasize that the validity of the new

+w_(t)A__(t)]. The system—bath coupling terhh,. [cf.  dissipative term in Eq(32) is not restricted to weak driving
Eqg. (13)] assumes the following form in thA representa- fields Furthermore, one expects E(2) to reduce to its
tion: weak field counterpart, E¢22), in the limit of weak driving
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TABLE Ill. Same as Table Il for uncorrelated dephasfi€p(7)=0].

++ - +-,—+
= 1 1
e A (¢ =533 °Ce(0) 2l (5 —sish) (s5—sic?) 2C4S (1 +s)(c5—s7s7)
+(c5—c3s5)?Cs(0)] Cr(0)+(c5—c3s?) Co(Fr.Frv_)+(1+c?)
. l(si—cgcf/,)ci(O)] gcfb—cgsj)cs(: veFv)]
T A(Chsish (ssich) 21(s5—sic5) *Ce(0) 2CoSiCal (1+50) (S}~ sic)
Cp(0)+ (cj: c5s) +(s5—c5c3)%C4(0)] Co(Frivv)+(1+ c?)
(s5—¢3c5)Cs(0)] (s5-cich)Co(F v Fv)]
o desdrshelosish)  desd(Lrs(sosic)  gelsil(1+s)Te(Fr T r )
-t Cr(0)+(1+c?) Cr(0)+(1+c?) +(A+c) B (F v, Fv)]
(€5 cispICs(0)] (s~ cic)C(0)] ~
+0 %CgSgS(/,[(ci—Sﬁfi)Cp(O) %Casas¢[(sﬁ—sﬁfi)cp(0) %005004,83;,[(14:8?)%(1 viFv.)
0+ . _(cfb—cisi)cs(g)] . —(sﬁ,—cgcg)cs(g)] L (1+c)Cqy FreFv)]
(;0 ZCasacqb[(Ci*S%fi)CP(o) ZCase%[(SifS%Si)CP(O) §Cesacis¢[(1i5§)cp(1 v,Fv.)
B —(c5—c7s5)C«(0)] —(s5—cic5)C(0)] —(1+c)Co(F v, Fv)]
+0,0+ -0,0-
T leC0505¢[(C<2p_ ngi)ap(I vy) %Cosecqa[(ci_ Sifi)ép(i )
—(c5—c3sy) (T v)] —(c5—cjsy)Co(x )]
T aessl(ShSIDTH(T v Fessycyl(s] - Sieh)Ce(x v
. = (s§—cjc)Ce(F v.)] ) = (s§—cje)Ce(*v-)]
- gc,,s,,cési[(li-s?g)cp(I vy) ECosyCisda[(li‘Ss)CP(i v_)
- ~(1+c))Co(F v)] ~(1+c))Co(*v)]
+0 gCisiiCa(F 1) geisicysdCo(= )
0" D) ezl
—0 §C7S7CSA Cr(+ 1) geisiealCo(=v-)
0= +Co(Fr.)] +Co(+v.)]

fields, i.e., wher()prc,ﬂsrc<1.51'52Im_pprtantly, the dissi-  (22) only involves C(0). However, this is no longer true
pative term in Eq.(32) becomes explicitly field-dependent whenQp and (g become comparable, and even larger than
when we venture beyond this limit. This dependence comes-1 In fact, (= v,), C(zv ), and C(£v, = v ) all

" 1 —V+/) — V-] — V-V

; : : c
about throughy, ¢, andwy. The Latter IS of~part|cular M- vanish whenQp7.,Qg7:>1, which can lead to a dramatic
portance, due to the occurrence@f*=v,), C(xv_), and

s field-induced suppression of dephasing. Thus, the driving
C(xv,xwv_) (cf. Tables lI-1V, and note that_ = wy_/2

/4 fields provide a potentially valuable control over dephasing,
and v, =w,¢/2). Close to resonanceA¢0), the termsC  and intense fields can be used to suppress dephasing in sys-
(£vy), C(xv_), andC(x v, = v_) all reduce toC(0) in

tems undergoing STIRAP in solution.
the weak field limit Qp7.,Qgs7.<<1), which is why Eqg. Numerical simulations based on E§2) have been car-

TABLE IV. Same as Table Il for anti-correlated dephasji@y(7)=Cp(7)=—Cpg(7)=C(7)].

++ - +—,—+
1, 2 212,47 1 2 22,2 2% 1, 2 2 3R —  —
T 15(C0759)25¢C(0) 5(1C0759)20¢3¢C(0) - E(Cof 50)20¢5¢C(+ v,Fv.)
—_ 2_ 21202 275 2 2\2.47 2_2\2:80 Bp— . —
5200—59) €485C(0) g(cy—sy) c,C(0) —lz(cg—s(,) CySC(FrviFv.)
_ 2_ 2 3R 2_ 22030 & 2 \2.2 2R (=, —
+ — a(c5—35)°cys3C(0) —a(cy— 59)2C¢5¢C(0) g(cy— 59)2C¢S¢C(+ viFv_)
-+
1, 2 2 3= 1, 2 2 2R 1, 2 2 2=, —  —
(;LO 3(C5—55)C4S65,C(0) 3(C5—55)SeC4SsC5C(0) 7(S5=CH)CeSeCySC(F v+ 1)
+
— 1, 2 2 2% 1, 2 2 3% 1,2 2 20 Rp— . —
0 0 5(Cy=55)CSeCyS3C(0) 3(Cy—S5) e84, C(0) 7(S5—Cy)CeSeCySeC(F v+ v.)
+0,0+ -0,0—
1, 2 =2 3=, — 1, 2 2 2=
++ lg(cg—sg)c,,s,,sz/)C(Jr vy) ggcg—sg)cgsgc¢s¢0(t v_)
__ 2_ 2 20 Bp— 2_ 2 3R
?(CH*SB)CgsgC¢S¢C(+ vy) 12(00* Sp)CeSeCyC(Ev_)
_ 2_ 2 23— 2 2 2. &
+ 7(s5=Cy)CySiCySC(F vy) 7(sy=Cy)CySiCySC(Ev.)
-+
1202027 — 122 =
a‘f 7¢55555C(F vy) 5C585C454C(=v_)
_ 122 — 1202 2%
0 5C385¢,45,C(F v4) 7e585c5C (£ v0)
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1

Final population of level 3

—— Dephasing-free .

L | L 1 L o
0 0.2 0.4 0.6
t d/tO

FIG. 8. The final value oPj as a function of the time delay between the
Stokes and pump pulses, under field-dependentelatedpure dephasing,
for different value ofQ)y7.. The dephasing-free results are also shown for
reference. The parameters used in the simulation are given in the text.

ried out in order to gain further insight into the interplay

Q. Shi and E. Geva

Population of level 3

FIG. 10. Same as Fig. 8, undanti-correlateddephasing.

7. (Which is usually not controllable in actual experiments
Increasing(}, instead of 7. would actually also slightly
modify the Hamiltonian term, such that it better satisfies the

between the driving fields and dephasing rate. The model an@diabaticity criterion{l,ty>1. However, by using the same

parameters used are the same as in Sec. IV. The bath cor
lation function was assumed to decay exponentially

C(7)=C(0)e" "', (35)
such that

where, as beforel(0)t,=2C(0)7.t,=96.0h2. It should be
noted thatC(w)— C(0) whenw7.<1, and thatC(w)—0
when w7.>1 (which correspond to the limits of weak and
strong driving fields in our case

Figures 8—10 show the final value Bf as a function of
the time delay between the Stokes and pump pulsgsas
obtained from simulations of STIRAP under correlaté€x,
uncorrelatedU), and anti-correlatedA) dephasing, respec-
tively. In each figure, we show the results obtained for dif-

ferent values of)y7.. It should be noted thaE(0) is held

fixed, such that the dephasing term in the QME depends on

Q,7., rather than separately éd, and 7. Thus, increasing
Q¢ (which is controllablg¢ has the same effect as increasing

e 2
~

: _ \\\\ \ ]
\\:-.

N

| ' k

04 0.6

t cl/tO

Final population of level 3

FIG. 9. Same as Fig. 8, undancorrelateddephasing.

yalue of Qg as in Sec. IV (2otp=240.0) we insure that this

effect is negligible.

Figures 8—10 show an improvement in the STIRAP ef-
ficiency and robustness &7 is increasedwhich could be
realized in practice by employing more intense figldghe
improvement is rather modest in the case of correlated
dephasing, where the efficiency is high even when the
dephasing is field-independent. However, the improvement is
dramatic in the cases of uncorrelated and anti-correlated
dephasing. In those cases, the transfer efficiency rapidly in-
creases from 35% and 33% whék,7.=0.08, to 95% and
93%, respectively, whef),7.=8.0.

Figures 11-13 show the time evolution Bf, P}, P,
ImP},, ImP;, and RePj; under correlated, uncorrelated
and anti-correlated dephasing, respectively,Ogtr.= 4.0,
and for a specific time delayt{/t,=1/3). It is instructive to

FIG. 11. The time evolution oP}, P5, P5, ImP},, Im P, and ReP},
throughout the STIRAP process, @y 7.=4.0, forty/to=1/3, under field-
dependentorrelated dephasing. The Stokgpump pulse is turned on at
t/ty=0 (t/ty=1/3), peaks at/t,=1/2 (t/t,=>5/6) and is turned off at/t,
=1 (t/t,=4/3). Note thatP’; is purely real, whileP}, and P, are purely
imaginary throughout the dynamics. The inset shows a close-Bj pP},,
andP);.
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. , . assumed classical, such that theantum-mechanicabath
operatord’p andI’ g may be replaced by fluctuatirgdassical
random variablesl p(t) andI'g(t). The fluctuations of the
classical stochastic forcelSp(t) and I'g(t) were then as-
sumed to be uncorrelated, and to follow Gaussian statistics,
with a zero first moment and an exponentially decaying cor-
relation function. Demirplak and Rice performed stochastic
simulations within the framework of this model, which in-
NSt volved extensive averaging over solutions of the Sdimger

’ equation for the STIRAP system, obtained for different his-
tories of the bath fluctuationét should be noted that the

0.5

T T T
-
-
-~
~
T S R

-0_50 . 0'5 . [I . classical nature of the bath fluctuations allows for a descrip-
. th tion in terms of a wave function for each realization of the
0 noise history, followed by ensemble averaging over those

histories. It should be emphasized that such an approach is
not computationally feasible in our case, because of the
guantum-mechanical treatment of the bath. As a result, one
compare these figures with Figs. 5—7 which show the predihas to resort to an alternative approach in the quantum case,
cated temporal behavior under the same conditions, based emely one that describes the system in terms of a density
the weak field treatment. In the case of correlated dephasingperator and the dephasing in terms of a QME. The advan-
we see that the improved STIRAP efficiency is mostly due tatage of the QME-based approach lies in its ability to avoid
weakening of the nonadiabatic population transfer to level Zhe extensive averaging over histories of bath fluctuations,
(cf. insets in Figs. 5 and 1lwhich is in turn due to the which makes it more economical and easier to interpret. Its
weaker dephasing. On the other hand, the improved STIRARajor disadvantage has to do with the fact that the quantum
efficiency in the cases of uncorrelated and anti-correlatedynamics described by the QME is not equivalent to the
dephasing is primarily due to field-induced suppression otjuantum analogue of the classical bath model of Ref. 30,
the dephasing oP,3, as indicated by the buildup ¢%,3in  since it involves the additional assumptions of weak system—
Figs. 12 and 13, which is comparable to that in thepath coupling and Markovity.

dephasing-free case. The diminished dephasinggfand The results presented in Ref. 30 were obtained for dif-
P,; also weaken the nonadiabatic transitions to level 2ferent values of the correlation time &fp(t) and I'g(t),
which provide further improvement to the STIRAP effi- which is analogous to our, and at a fixed value of the
ciency in those casesCompare insets in Figs. 6 and 7 to peak Rabi frequency. It was found that the STIRAP effi-

FIG. 12. Same as Fig. 11, for field-dependantorrelateddephasing.

those in Figs. 12 and 13, respectively. ciency approaches its dephasing-free value in the two oppo-
site limits of 7.>t4 and r.<ty4 [cf. Fig. 2 in Ref. 3Q. It
VI. RELATIONSHIP TO OTHER STUDIES should be noted that our analysis assumes at the outset that

In this section, we discuss the relationship of the resultgc<ta- Furthermores >ty implies that the energy levels do
presented in this paper to these in two other recent studig?°t fluctuate on the time scale of the experiment, and hence
that considered the influence of decoherence on STIBAP, that the system is not subject to dephasing. It is interesting to

In Ref. 30, Demirplak and Rice have considered thehote that the system is subject to inhomogeneous broadening
prospect of using STIRAP in liquid solutions. Their basic N this case, which would lead to deviations from the two-

model is similar to ours, except for the fact that the bath ig?hoton resonance condition and result in a lower STIRAP
efficiency. However, the Gaussian distributionIgf(t) and

I'g(t) was assumed to be very narrow in comparison to the
Rabi frequency in Ref. 30, which made this effect negligible.
The opposite limit,7.<ty, corresponds to that of motional
narrowing, where the dephasing rate constant essentially di-
minishes whenr; is decreased. It should be noted that
C(0)=2C(0)7., when the bath correlation function is ex-
ponential, and tha€(0), rather thanC(0), is held fixed in
Ref. 30. Thus, in this case, decreasingessentially sup-
presses the dephasing ratete however that, in practice,
is usually not a controllable quantjtyln our caseC(0) is
held fixed at a value that corresponds to significant field-
independent dephasing, in order to avoid this possibility and
~0 0.5 1 focus on the dependence upon the field intensity, which is a
t/t controllable quantity. Finally, we note that the STIRAP effi-
ciency in situations wheréy7.>1 [cf. Figs. Zc)-2(f) in
FIG. 13. Same as Fig. 11, for field-dependanti-correlateddephasing. ~ Ref. 30 is relatively high, either because the dephasing is

-
-
-~
T R
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suppressed by the field whed,7.>1 [plots 2c) and 2d) prospects of applying it under the influence of pure dephas-
there, or simply because.>t, [plots 2e) and Zf) there. ing. In the limit of weak driving fields Q 7.<1), we found

In Ref. 50, Bergmann and co-workers have consideredhat the rate of pure dephasing is field-independent, and
the effect of phase noise in the driving fields, on the STIRAPends to lower the population transfer efficiency. The actual
efficiency, using a model which is very similar to that in Ref. reduction in efficiency increases with the ability of the bath
30. The great similarity between those two papers originatefiuctuations to directly dephag®, (the coherence that cor-
from the fact that phase noise in the Stokes and pump lasefgsponds to the transition between the initial and final states
leads to fluctuations in the diagonal elements of the systerpyrther reduction in the efficiency occurs due to dephasing
Hamiltonian, and is therefore mathematically equivalent tGanhanced nonadiabaticity, which results from symmetry
the d_escription of sollvent—ind.uced dephasing in terms ofyeaking in the buildups P}, and P, (the coherences that
clas_smal bath fluctuations, as in Ref. 30. Here too, the fluczorrespond to the Stokes and pump transitions, respectively
tuations were assumed to follow exponentially correlatedrye net result is a rather poor efficiency, except in the case of

Gaussian statistics, although different degree of correlatiopqrajated dephasing, wheR§, is not subject to direct pure
between the dephasing in the Stokes and pump transitio%phasing_ ’ 3

were considereduncorrelated, as in Ref. 30, as well as cor-
related and partially correlatgdlhe authors of Ref. 50 pre-

sented results that show the dependence of the STIRAP efg?
ciency on the Rabi frequency of the driving fields, up to
relatively high values of the latter. In the case of uncorrelate
dephasing, they found that the STIRAP efficiency ap-
proaches its noise-free value whél,7.>5, while in the

case of correlated dephasing, they found that the STIRA
efficiency is very close to the noise-free value even for wea
fields. Those results are consistent with the observation

based on the QME-based approach, which were reported m—:lative insensitivity to the value of the time delay between

Secs. IV and V of the present paper. Interestingly, the differthe Stokes and pump pulses, ,Wr@mc>,4' regardiess of the
ence between a description in terms of explicitly fluctuatingP@ticular dephasing mechanism. This rather remarkable re-
frequency modulations, as opposed to relaxation rate corsult suggests that STIRAP may be feasible in condensed-
stants in a QMEthe present work gave rise to seemingly Phase solutions. o _
different interpretations of those behaviors. For example, the |t should be noted that efficient dephasing-free STIRAP
authors of Ref. 50 attributed the reduced efficiency in thedlready requires thddqty>1, in order to secure adiabaticity.
uncorrelated weak-field regime to detuning away from theHowever, we have assumed that-t, is larger than the pure
two-photon resonance condition, while we attribute the saméephasing life times, which are in turn assumed to be longer
effect to dephasing within thg1),|3)} subspacécf. Fig. 2.  than the bath correlation time, in the derivation of the
However, those two interpretations represent the same physRME. In pulsed-laser-based dephasing-free STIRAP,
cal phenomenon as viewed from either the frequency domain-ns, whiler,~ps is a typical correlation time in room tem-
point of view (detuning and line broadenipgor the time  perature liquid solutions. Thus realizing the conditions that
domain point of view(dephasiny Similarly, the slight de- allow for the suppression of pure dephasing would require
crease of the efficiency in the correlated case has been attritiat the Rabi frequency of the driving field is increased by a
uted to enhanced nonadiabaticity due to dynamical detunintactor of 1¢ relative to the minimum required by adiabatic-
away from the one-photon resonance condition in Ref. 50ity. However, it should be noted that Demirplak and Rice
which is the frequency domain analogue of what we de-have recently argued that it may be feasible to use ps pulses
scribed as dephasing-enhanced nonadiabaticity, from a tima order to perform STIRAP in liquid solutior’,in which
domain perspective. case the condition for adiabaticity will essentially coincide
We would also like to draw attention to the fact that the with that required for the suppression of dephasing. It should
general idea of utilizing intense driving fields to suppressalso be noted that by increasing the field intensity, it becomes
dephasing is not new, and has been suggested and dem@jbssible to satisfy adiabaticity with shorter pulses. However,
strated in the past, in different contexts. Early work in thisysing shorter pulses may invalidate our assumption that the
general area has been motivated by the observation of devigariation of the pulse envelope is slow relative g, and

tions from the standard Bloch equations in magnetic resomake it necessary to extend the theory so as to account for

nance experiments, and later on in optical spectros€opy this scenario.

Ref. 51 and references thergirSimilar ideas have resur- The experimental realization of the above scheme may

faced more recently in the literature on decoherence, anfg complicated by several factors: First, producing such in-

partlgléll_%r(')ly in the context of quantum computifgand ion 1o se light pulses on the ns time scale may be challenging.

traps. Second, applying such intense fields to a condensed phase
sample may result in undesired secondary processes and/or

radiation damage. Third, the assumption of weak system-—

STIRAP is a general and versatile technique for control-bath coupling will not always be vali¢e.g., in the case of
ling population transfer. In this paper we considered thepolar solute and solvent with pronounced solvation dynam-

A more encouraging picture emerges once we venture
eyond the limit of weak driving fields. The dissipative term
in the QME becomes explicitly field-dependent in this case,

hereby turning the dephasing rate inte@ntrollable quan-

ity. In fact, we have found that pure dephasing can be effec-
tively suppressed when the Rabi frequen€y, becomes
@rger than the inverse bath correlation timg,l. More spe-
lgifically, we have shown that the STIRAP efficiency be-
gomes comparable to its dephasing-free value, and regains it

VII. CONCLUSIONS
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ics). A more detailed analysis of those issues will be the  For the sake of simplicity, let us restrict ourselves to a

subject of future studies. system—bath coupling of the form
Finally, it should be noted that the STIRAP efficiency .
provides a rather unique and very sensitive probe of solvent— Hps=F®T, (AB)

solute interactions. For example, a high STIRAP efficiency . .

in the limit of weak driving fields would be indicative of WhereF is a Hermitian system operator ahids a Hermitian
correlated dephasing, which implies that the Stokes an@ath operator(the following results can be extended in a
pump transitions are dephased by the same bath DOF. Altestraightforward manner to the more general case, wﬁ%ge
natively, measuring the STIRAP efficiency as a function ofconsists of a sum of such terinsVe will also assume, for
the Rabi frequency, beyond the limit of weak driving fields, simplicity, that(I')e;=Tr(ppT)=0 ((T')eq#0 would sim-
provides direct information om, i.e., on the dynamics of p)y require thatAWGASUb§tithas(t)+<f2e£ for FI(t) in Eq.

the bath DOF which are coupled to the system. (A3), and usesT" =T"—(T")qinstead ofl" in the analysis that
follows). Substitution of Eq(A6) into Eq.(A4), followed by
ACKNOWLEDGMENT some algebra, then leads to the following result:
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APPENDIX A: THE QUANTUM MASTER EQUATION X 1 [ Lt ey
OF A DRIVEN SYSTEM R(t)= ;zfo drC(7) T [e V=AU EAE (A8)

In this Appendix, we outline the derivation of the QME
in the case of a system which is driven by an explicitly @nd
time-dependent driving field. B A
Consider a system with an explicitly time dependent ~ C(7)=Tr[ppe o/ Te Mo/ T], (A9)

Ham!lton?an,ﬂHS(t), which is coupled to a_ bath, V\_"th the is the equilibrium autocorrelation function of the bath opera-
HamiltonianH,, such that the overall Hamiltonian is tor. T

A=A 0)+H,+ .. (A1) Two limits of Eq. (A7).are pf .particular importance for
. . _ the present paper. The first limit corresponds to a system
Here, Hy is the system—bath interaction term, ands a  Hamiltonian of the formH(t) =H2+\W(t), whereA? is

coupling coefficient, which will be used in order to Keep g.ionary andi(t) is explicitly time-dependerfie.g., W(t)
track of the order in the ensuing perturbation expansion. | ay represent driving by laser light, when the latter is treated

the I!m|t of weak system—bath coupling and Mgrkowan dy- as a classical field It should be noted that the same coupling
namics, one can show that the reduced dynamics of the sys- Hicientn. i d fol(t) andf ¢ bl ¢
tem is governed by the following QME*61.62 coefficient,\, is used foW/(t) andH,s, So as to enable us to

treat the corresponding powers in the perturbation expan-
W -~ R sions on equal footing. We note théf, in Eq. (A7) is al-
JiPs(D =~ = LD+ Lo(D)ps(t), (A2) " (eady of second order in, which originates from treating
the system—bath interaction termH,s, as a small pertur-
bation. To this, one may now add the assumption that the

Ly(t)=[Hy(1),] (A3)  field—matter interaction term\W(t), can be treated as an
represents the bath-free Hamiltonian contribution to the dy€dually ~small perturbation. - One may then expand
namics, and T.[e Wi-A9UL)2] in powers ofx, and only keep the zero-
order term, such that

wherep(t) is the system’s reduced density operator

)\2 * s _act ’ ’
ED(t): — %2 fo dTTrb{Ebse ILbT/hT+[e ifi_ At Lg(t )/ﬁ] W(t)ﬂo’\

r 1( —icOnnp
o R(t) = RWC:? . drC(r)e '"=s""F, (A10)
X LogppT-[€e-At £y, (A4)

is the dissipation super-operator. Hem,c=[Fs,-], T.  The substitution ofR,c in _Eq._(AlO) into Eq. (A7) then _
correspond to positive+), and negativé—) time ordering?®  Yields the exact same dissipative term that one vxiould obtain
and in the case of field-free dissipation, i.e., whblrngg [the
req il s same result can also be obtained by starting out with an
pp'=e ProlTr(e ). (AS) overall Hamiltonian of the formF=F%+H,+\(W(t)
It should be noted that in deriving EGA4), we assumed an +H,J), and treating\ (W(t) +H,J), rather than jushH,s,
initial state of the formps(0)® ppd for the overall system. as a small perturbation, in the derivation of the QMBow-
This choice does not limit the generality of the treatment, agver, it is important to emphasize that this result is an ap-
it is always possible to alter the initial state via equilibration proximation which is only valid in the limit of weak driving
and/or use of the driving term in the system Hamiltonian. fields. It should also be emphasized that the driving term still
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affgcts the reduced system _dynamics through the .Har.nil-l—husy in the case of a slowly varyirfgljs(t), Lp in the QME
tonian part of the QME, despite the fact that the d|SS|pat|vqs designed so as to relax the system toward a “moving tar-

part is independent of it in this limit.
The result in Eq(A10) can be further simplified if one

rewritesF in terms of the eigen-projectors 6f°:
(A11)

'AZZ%: fij|i><j|a

where H2|i)=E?|i). Upon substitution into Eq(A10) this
yields
IA?wc:iEj fisliDG (i +i650), (A12)

where the rate constantsy;i}, and Lamb shifts{ 5}, are
given by the following standard expressions:

mfi%éwm (A13)
and
1 (= Clo)
5“:W7>fmdww_w“ : (A14)
with wji=—w;=(E)—E))/h and C(w)

=[*.drC(7)e'“". The Lamb shifts{5; ;}, make a purely

imaginary contribution to EqA12), and therefore amount to

get,” in the form of a Boltzmann equilibrium state which
corresponds to the instantaneous system Hamiltai&H.®®

The relaxation dynamics in the case of moderate to
strong coupling to rapidly varying driving fields, would gen-
erally require a direct numerical solution of the QME with
the dissipative term in EqA7). Included in this category are
optical and infraredIR) driving fields, where the period of
the oscillating electromagnetic field is comparable to, or
smaller than, the time scale of the fastest molecular motions.
However, one may still bypass EGA7) in cases involving
circularly polarized fields, or when the RWA applies. This
can be done by working in the RF, where the explicit time-
dependence of the effective Hamiltonian is only due to that
of the pulse envelop. For nonultrafast pulses, where the
variation of the envelop over time is slow relative to the bath
correlation time, one can use the above-mentioned limit of
slowly varyingH¢(t), within the RF picture. The end result
is a standard-looking QME for the reduced density operator
in the RF, with the dissipative part dictated by the instanta-
neous effective RF system Hamiltonigaf. Eq. (A16)]. This
approach is applied to STIRAP in Sec. V.
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