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Nanotube sheets, or ‘‘bucky papers,’’ have been proposed for use in actuating, structural and
electrochemical systems, based in part on their potential mechanical properties. Here, we present
results of detailed simulations of networks of nanotubes/ropes, with special emphasis on the effect
of joint morphology. We perform detailed simulations of three-dimensional joint deformation, and
use the results to inform simulations of two-dimensional~2D! networks with intertube connections
represented by torsion springs. Upper bounds are established on moduli of nanotube sheets, using
the 2D Euler beam-network simulations. Comparisons of experimental and simulated response for
HiPco-nanotube and laser-ablated nanotube sheets, indicate that;2–30-fold increases in moduli
may be achievable in these materials. Increasing the numbers of interrope connections appears to be
the best target for improving nanotube sheet stiffnesses in materials containing straight segments.
© 2004 American Institute of Physics.@DOI: 10.1063/1.1687995#

I. INTRODUCTION

The potential mechanical properties of nanotube sheets
or ‘‘bucky papers’’1 have motivated proposal of their use in
many applications, including actuators,2,3 capacitors, elec-
trodes, and field emission devices. The moduli of these po-
rous fibrous materials are necessarily less than those of indi-
vidual nanotubes or ropes, but without realistic bounds on
the properties of the sheets themselves it is difficult to define
an ‘‘optimized’’ sheet. Measured Young’s moduli in conven-
tionally produced nanotube sheets have hovered around 2
GPa,4 or approximately 0.2% of the modulus of single-
walled nanotubes.5

Newer manufacturing approaches have produced moder-
ate improvements in modulus and strength of these porous
assemblies~Table I!. Shreekumaret al.6 obtained a Young’s
modulus of 8 GPa for nanotube films manufactured from a
single-walled carbon nanotube solution in oleum. Coleman
et al.4 reported moduli of approximately 7 GPa for polymer-
intercalated nanotube sheets. Magnetic alignment7–9 has also
produced improvements. Liet al.9 reported Young’s moduli
of 24 and 60 GPa, respectively, for two types of these rib-
bons. However, even these improved moduli are less than
10% of those of the constituent nanotubes.

Nanotube sheets~e.g., the material shown in Fig. 1! are
manufactured using the same basic approach,10 namely, via
filtration of a suspension of single-walled nanotubes
~SWNTs!. The resulting sheets have a laminar structure@Fig.
1~a!#; orientations of nanotube ropes are random within the

plane of the sheet@Fig. 1~b!#. Nanotube sheets thus comprise
fibrous networks, wherein the connective elements are ropes
of ;100–500 single-walled carbon nanotubes.5

In this work we use two-dimensional~2D! beam network
simulations to develop realistic upper bounds on the Young’s
modulus of nanotube sheets. Our objectives were threefold:

~1! to develop reasonable models for load transfer within
nanotube sheets, incorporating recent work on the impor-
tance of joint morphology;

~2! to use the models to develop bounds on likely properties
of nanotube sheets, and

~3! to compare experimental moduli with the models, to de-
termine the likely improvements possible in nanotube
sheet properties.

A. Construction of 2D fiber network models

The mechanics of paper and other fibrous materials has
been studied by many researchers, including Cox,11 who de-
veloped an upper bound on moduli of similar assemblies.
However, the fibers in this model were assumed to have neg-
ligible flexural rigidity, since they were assumed to be fully
supported. Thus, the micromechanical assumptions are not
readily transferrable to unsupported nanotube ropes. More-
over, the model did not address variable joint properties, a
key interest of the present work.

Other workers~e.g., Lu and Carlsson!12 have specifically
modeled load transfer within porous systems, such as papers,
following early work by Kallmes and Corte.13 The latter au-
thors studied the statistical geometry of idealized two-
dimensional fiber networks comprised of randomly distrib-
uted fibers, as defined by their centerpoints and orientations.
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Kallmes and Corte13 modeled elastic behavior of fibrous net-
works using three statistical quantities: the total number of
fiber crossings or intersections in the sheet, the mean number
of crossings per fiber, and the mean free fiber length, defined
as the distance between successive intersections along a fi-
ber. We note that a fiber ‘‘crossing’’ is a statistical quantity,
which may or may not result in a fiber–fiber ‘‘bond’’ in
practice, depending on manufacturing process. The impor-
tance of this distinction is described in greater detail in the
discussion section. Nonetheless, each of the three statistical
parameters must be determined experimentally, or specified
during manufacturing. In papers, for example, the ‘‘staple
length,’’ or initial cellulose fiber length, is a controllable pa-
rameter.

Unlike paper, however, the exact staple lengths of indi-
vidual ropes within nanotube sheets are presently unknown,
though they are clearly longer than the frame boundaries of
scanning electron microscopy~SEM! images typically used
to obtain other geometrical parameters. Models of fibrous
arrays as 2D networks of infinite staple fibers have been
previously developed, and provide some readily adaptable
results for defining the geometry of such systems. For ex-
ample, Goudsmit14 first studied the problem of infinite lines
randomly distributed in a plane. Miles,15,16also motivated by
the study of the structure of paper, later examined the statis-

tical properties of the polygons formed by a system of infi-
nite lines randomly distributed in a plane.

B. Bond behavior in fibrous, porous materials

As discussed by Sastryet al.,17 the mechanical response
of a large class of porous, fibrous materials is largely deter-
mined by the morphology and composition of the joints
among network elements. Stiffnesses of such materials have
been satisfactorily predicted using analyses of 2D networks
of both Euler and Timoshenko beam elements,18,19and semi-
empirical models of joint response. For example, in fibrous
substrates used in nickel/metal hydride batteries, simple 2D
torsion springs were found to satisfactorily model joint com-
pliance. Also, equivalence between a ‘‘compliant zone’’
around connected beams, and a torsion spring-jointed assem-
bly has been demonstrated.20 Thus, the properties of a torsion
spring-joined assembly can be specified by observed geomet-
ric features, and/or properties of the joint material.

Separate examination of joint material properties and
geometric properties requires modeling the full, three-
dimensional ~3D! joint morphology.21 For example, the
present authors recently used a shear factor21 to scale local
joint stresses in a 2D simulation, per calculated stress con-

TABLE I. Mechanical properties of carbon nanotube sheets and ribbons, from selected references.

Mechanical property Physical properties Experimental details

Reference

Young’s
modulus
~GPa!

Tensile strength
~MPa!

Nanotube synthesis
method

Average
tube

diameter
~nm!

Average
rope

diameter
~nm! Test method

Sample
size

24
~as grown!
60
~graphitized!

¯ Ribbons of magnetically
aligned nanotubes
synthesized by
decomposition of
hydrocarbons using
chemical vapor
deposition method

¯ ¯ Tensile test
using specially
designed
stress-strain
puller

50–140mm
34–40mm
3100mm

9

8 30 Dispersion of HiPco
SWNTs in oleum used to
form film

0.8 10–50 Tensile tests
using
Rheometrics
RSA III at
0.72%/min
strain rate

2mm3

25mm3

0.015mm

6

6.9 57 HiPco sheets
intercalated with
polymer

0.8 10–50 Tensile tests
using a Perkin
Elmer DMA7e

2mm3

20mm3

0.040mm

4

1.2 ¯ Laser vaporization
method

¯ ¯ ¯ ¯ 2

2.3 6.29 HiPco process 0.8 10–50 Tensile tests
using a Perkin
Elmer DMA7e

2mm3

20mm3

0.040mm

4

1.1 17.7 HiPco process
~annealed sheet!

0.8 ;10 Tensile tests
using a Perkin
Elmer DMA7e

1mmwide
strips

~Present article!

4 32.3 HiPco process
~unannealed sheet!

0.8 ;10

1.5
2

13.5 25.4 Laser ablation method
~annealed sheets!

1.36 ;10

2.7 33.2 Laser ablation method
~unannealed sheet!

1.36 ;10
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centrations at a 3D fiber connection, and found that joint
morphology is important in strength, as well as stiffness.

II. MODEL DEVELOPMENT

Our approach in modeling nanotube sheets builds upon
our prior finding that joint morphology and response are
critical to network response. Our general approach to the
present problem is shown schematically in Fig. 2. The nano-
tube sheet@Fig. 2~a!# is first idealized as a network of ran-
dom, infinite lines of constant, nonzero thickness@Fig. 2~b!#.
This network of thick lines can be represented by an equiva-
lent network of one-dimensional~1D! beam elements of ‘‘in-
finite’’ length having the same governing geometric property
of mean segment aspect ratio@Fig. 2~c!#. This model is fur-
ther reduced to a network of finite length beam elements
randomly distributed in a finite simulation window@Fig.
2~d!#, wherein periodic boundary conditions are imposed and
non load-bearing ends are removed@Fig. 2~e!#. Torsion
springs are used to model the joints in the network. We use
the results of 3D joint models, that are believed to be mor-
phologically similar to the actual connections@Fig. 2~f!#, to
select torsion spring constants for 2D simulations.

In our simulations, we necessarily use beams of finite
length, randomly distributed in a finite simulation window.
Bond density~number of intersections/unit area! and seg-
ment lengths~obtained from image analysis of nanotube

sheets! are used to generate these finite networks. Several
parameters are determined or estimated from image analysis,
as described in the following sections.

A. Network geometry

The critical parameters of mean number of crossings per
fiber and the mean segment length can be calculated given
the total number of fiber crossings,Nc . Kallmes and Corte13

expressed the total number of fiber crossings in a random 2D
network of areaA, consisting of straight lines of negligible
width, as

Nc5
~NfL f !

2

Ap
, ~1!

whereNf and L f are the number of fibers and the average
fiber length, respectively. Miles15 defined t, the average
length of 1D lines per unit area, as

t5
NfL f

A
~2!

and expressed the total number of fiber crossings

FIG. 1. SEM images of nanotube sheets, at magnifications~a! 6253 and~b!
160 0003. Nanotubes were synthesized using the HiPco process.

FIG. 2. Schematic of modeling approach to determine the modulus of a
typical nanotube sheet. Initially, the sheet is imaged via SEM to obtain the
mean nanorope diameter and the area fraction of nanotubes~a!, whereupon
the sheet is then idealized as a network of thick lines of ‘infinite’ length~b!.
Using Eq.~11! the mean segment aspect ratio can then be calculated. This
parameter is then matched, using Eq.~14! to a network of infinitesimally
thin lines used to simulate network behavior~c!. For a sufficiently large
number of infinitesimally thin lines, a network of finite lines of infinitesimal
width randomly distributed in a finite simulation window can be used to
simulate the array~d!. Finally, finite element analysis is performed on the
reduced network~e!, informed by 3D finite element joint models~f!.
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Nc5
At2

p
. ~3!

Substitution of Eq.~2! in Eq. ~3! confirms that the expres-
sions of Kallmes and Corte13 and Miles15 are indeed equiva-
lent for 1D lines.

Considering a random network of thick lines of widthw,
Miles15 developed an expression for the fraction of the plane
not covered by thick lines, from which we can derive an
expression for the mean fraction of the sheet covered by
thick lines. This value, the coverage or area fractionH, is
given by

H512e2tw, ~4!

wheret is defined in Eq.~2!. It follows that the number of
fiber crossings is given by

Nc5
A log2~12H !

pw2
. ~5!

The details of the derivation of this expression are reserved
for discussion in a companion paper focusing on statistics of
random networks.22

Corte23 also presented an expression forNc , for a net-
work of areaA, comprised of randomly distributed and ori-
ented thick fibers based on the mean coverage of the sheet.
The coverage was defined as ratio of the total area of fibers
to the sheet area. Corte’s23 expression for coverage differs
from that of Miles,15 since Miles15 explicitly accounted for
the overlap area of crossing fibers into account. ForH
,10%, the expressions differ by less than 5%, but for large
area fractions the difference is more significant, with a dif-
ference atH525%, for example, of approximately 12%.
Here, we adopt the approach of Miles,15 since it fully ac-
counts for overlap area.

Derivation of other geometrical parameters follows. For
a random fiber network, the mean number of fiber crossings
per fiber is

c̄5
2Nc

Nf
, ~6!

and the mean segment length,L̄s is given by

L̄s5
L f

c̄
. ~7!

By substituting Eq.~5! into Eq. ~6!, Eq. ~7! can be rewritten
as

L̄s52
pw

2 log~12H !
. ~8!

The mean segment length for 1D lines is obtained by substi-
tuting Eq.~1! in Eq. ~6! and rewriting Eq.~7! as

L̄s5
pA

2NfL f
. ~9!

Average rope diameter can be found from image analy-
sis, though it is difficult to obtain values ofNf andL f in this
way. We are able, however, to estimate the coverageH from
image analysis using a thresholding function to calculate the

proportion of a single layer of the sheet covered by nano-
tubes. Using SEM images for this purpose introduces a field-
of-depth error, but by adjusting the thresholding level, it is
possible to use SEM images to reasonably distinguish ropes
lying in the top layer from those in other layers.

For uncorrelated fiber centers, we can assume that for-
mation of a random network of a large number of fibers is a
2D Poisson process. This allows derivation of distribution
functions for all other geometric characteristics of the net-
work. For example, the segment length distribution is given
by

f ~Ls!5
1

L̄s

expS 2
1

L̄s

LsD , ~10!

whereL̄s is both the mean segment length and the standard
deviation.

If the total length of lines per unit area of a random
network is constant, the averages of the geometric features of
the resultant interior polygons~e.g., area, number of sides,
etc.! are independent of the linewidth.15 Thus the mean seg-
ment length for a network of infinite thick lines is the same
as that of a network of 1D lines of finite length, provided that
the total length of beams is the same for both networks.

1. Determination of the minimum number of fibers
required in simulations

To determine the minimum number of fibers per unit
area required in our simulations, random networks were gen-
erated as shown in Fig. 3, and as described in earlier work.18

Briefly, beam elements with random orientations and center-
points were distributed within the simulation window. Peri-
odic boundary conditions were imposed and the nonload-
bearing beam segments were removed. A square simulation
window was used for each network, with side lengthsLu

5L f51.
Twenty network ‘‘realizations,’’ of 10–120 fibers each,

were generated for each value ofNf examined. Resulting
mean segment lengths versusNf are shown in Fig. 4, with
error bars representing61s ~assuming normally distributed
data!, along with the analytical result for 1D lines@Eq. ~9!#,
with L f51 andA51. ForNf>60, simulated mean segment
lengths were within 5% of the analytical predictions. Based
on these findings, and practical limits of computing time, our
simulations were run withNf5200.

2. Determination of beam diameter for finite
element analysis

For the experimental materials, the average rope diam-
eter,d and area fraction,H were determined via image analy-
sis, from which segment lengths were calculated. Mean seg-
ment aspect ratio was calculated by considering fibers of
circular cross section having diameterd; replacingw with d
in Eq. ~8!, we have

L̄s

d
52

p

2 log~12H !
. ~11!

A comparison of this result with that of Corte23 is given in
Fig. 5.
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Equation~9! gives the mean segment length for a net-
work of lines of negligible thickness. For our finite element
analyses, these segments were modeled as beam elements of
diameterd and aspect ratio

L̄s

d
5

pA

2NfL fd
. ~12!

Setting Eq.~11! (L̄s /d for an actual material! equal to Eq.
~12! (L̄s /d for a simulation of beam elements! yields

2
p

2 log~12H !
5

pA

2NfL fd
, ~13!

whereNf , L f , d, andA are properties of the simulated beam
network, andH is determined from image analysis of a ma-
terial. For beams and simulation windows of unit length and
side length, Eq.~13! becomes

Nfd52 log~12H !. ~14!

Thus, the diameter of beam elements can be calculated, using
the number of beam elements and the area fraction,H.

In experimental nanotube sheets, Smithet al.24 reported
the ‘‘empty’’ volume ~i.e., the volume of sheet not occupied
by nanotube material! to be;70%–90%. Based on thermo-
gravimetric analysis, Colemanet al.4 found the empty vol-
ume of a nanotube sheet, prior to polymer intercalation, to be
73%. For a negligible volume fraction of impurities in a
sheet, the volume fraction can thus reasonably be approxi-
mated to be;10%–30%. Assuming a circular cross section
of diameterd for each nanotube rope, the volume fraction of
a layer of thicknessd of the nanotube sheet can be written as

v.f.5
NfpdLf

4A
, ~15!

whereNf and L f are the number and length of a nanotube
ropes, andA is the plane area of the sheet. The volume frac-
tion can be rewritten in terms of the area fractionH, andH
can in turn be expressed as

H512e24/pv.f.. ~16!

Using the range of volume fractions given by Smith,24 the
range of area fractions for unaligned nanotube sheets can be
calculated@per Eq. ~6!# to be ;12%–32%. The measured
area fractions for the nanotube sheets studied in this work
were between 45% and 50%; these higher values may have
been due in part to 2D/3D imaging artifact~field-of-depth
error in SEM!.

In our simulations, we used a range of area fractions of
10%–50% in order to bound both reported values in the
literature and those obtained by the present authors, from
image analysis. For each of value ofH considered, the num-
ber of beams in each simulation was kept constant and the
beam diameter,d was calculated using Eq.~14!.

FIG. 3. Methodology used for generating random beam networks used in
finite element analysis, including~a! random distribution of beams, using
centerpoints and orientations,~b! imposition of periodic boundary condi-
tions on the arrays, and~c! removal of non load-bearing beam segments.

FIG. 4. Simulated and analytical results@Eq. ~9!# for mean segment length
vs number of fibers per unit area for fibers of negligible width and unit
length distributed randomly in a unit cell.

FIG. 5. Mean segment aspect ratio vs area fraction or coverage,H obtained
using the formulations of Miles~see Ref. 15! and Corte~see Ref. 23!.
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B. Beam geometry

Nanotube ropes were modeled as porous beams having
diameterd. Hexagonal close packing of tubes within each
rope was assumed as shown in Fig. 6; tubes were modeled as
a hollow, circular cross-sectioned cylinders, of wall thickness
0.34 nm.5,25,26The lattice constant,a, was determined from

a5dNT1s, ~17!

where dNT is the average nanotube diameter~0.8 nm for
HiPco-nanotubes; 1.36 nm for laser ablation-manufactured
nanotubes!. Per other reported values, an intertube distance
of 0.34 nm was assumed in all cases.25,27

Correction factors were used to scale the cross-sectional
areas and moments of inertia of each beam. For each real
material simulated, the average rope diameter was found us-
ing image analysis. The number of tubesN, in an average
rope was calculated assuming hexagonal close packing. Ef-
fective area,Arope was calculated as the product ofN and
cross-sectional area of a single tube,ANT . Effective moment
of inertia I rope was found using the parallel axis theorem.
Area and moment of inertia correction factors were com-
puted using the ratiosArope/Asolid and I rope/I solid, where
Asolid and I solid are the cross-sectional area and moment of
inertia of a beam of solid cross section with diameter equal
to the rope diameter.

C. Joint modeling

Previously observed nanotube joint types are illustrated
in Fig. 7, and summarized by type in Table II. Briefly, con-
nections between nanoropes and nanotubes include follow-
ing distinct types:

• crossed ropes;
• nanosoldered joints, with connecting material possibly

comprised of contaminants introduced in the manufacture
and purification processes~for example remains from surfac-
tant pyrolysis!;

• branched ropes;

• adhered ‘‘live’’ ends of nanotube ropes to the sides of
other ropes; and

• coated ropes; with coatings comprised of other materi-
als ~e.g., remains of surfactant pyrolysis, or hydrocarbon
contaminants!.

An expression for degree-of-intersect~d.o.i.! was previ-
ously introduced by Berhan and Sastry21 to describe the in-
terpenetration of joined fibers. This parameter is defined as
the ratio of the beam diameterd, to the width of the jointT,
as shown in Fig. 8. We used this concept in our approach to
modeling the various connection scenarios, as summarized in
Table III. 3D finite element simulations were performed on
two-beam assemblies having joint morphologies defined by
d.o.i., ratio of fillet radius to beam radius, and ratio of fillet
modulus to beam modulus. A diagram of a typical assembly
with joint detail is shown in Fig. 9~a!. For each joint, simu-
lations were performed for beam aspect ratios 5,(L1 /d)
,15. For each simulation, the node at one end~‘‘ A’’ ! was
fixed and a displacementX was applied to the opposite node
~‘‘ C’’ !. Resultant forcesPc , Qc , and momentMc were
found, and normalized effective modulus was calculated
from

Eeffective

E
5

QcL2

pr 2XE
, ~18!

wherer andE are the beams’ radius and Young’s modulus,
respectively.

FIG. 6. Hexagonal close packed configuration assumed for nanotubes within
a nanorope.

FIG. 7. Various observed morphologies of joints in nanotube mats, includ-
ing ~a! crossed or entangled ropes~b! T- andY-branched tubes,~c! nanow-
elded tubes,~d! nanosoldered tubes, and~e! coated tubes/ropes.
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The horizontal resultant force atC, Qc8 , was calculated
using beam theory, following the same method as previously
for the compliant zone model.20,21 This force was calculated
for each 2D torsion spring joined beam having the same
values ofL1 , L2 , d, E, and X, as for each 3D simulation
@Fig. 9~b!#. By settingQc5Qc8 , and solving forK, the value
of the torsion spring constant required to produce the same

effective modulus for the 2D and 3D cases was found. This
torsion spring constant was normalized to give the rigidity
parameter,K̄, using the normalization36

K̄5
KL1

EI1KL1
. ~19!

This normalization replaced our earlier convention,K̄
5KL/EI,17,19,21since it scales the rigidity of the joint to be
between zero and one, representing pin-jointed and rigid
connections, respectively.

Figure 10 shows a plot of the rigidity parameters ob-
tained for the seven joint morphologies considered, versus

TABLE II. Descriptions of types of nanotube joints, with selected refer-
ences.

Joint Description
Selected

references Figure

Crossed/
entangled
tubes

Load transferred among
crossed and/or entangled
nanotubes via friction and
van der Waals forces

28, 29, 30 7~a!

Y andT
joints

Branched SWNT formed
during nanotube synthesis.
‘‘Live’’ ends of tubes or
ropes may adhere to the
sides of other tubes/ropes
and resembleT or Y
joints

31, 32, 33 7~b!

Nanowelding Irradiation of nanotube
crossing sites leads to
defects in tube structure
which allow tubes to
coalesce

30, 34 7~c!

Nanosoldering Crossed nanotubes
connected by a deposit of
amorphous carbon with no
coalescence of the tubes

30, 35 7~d!

Joints
between
coated
tubes or
ropes

Indivdual tubes and/or
ropes coated with by-
products of tube synthesis
or processing may be
joined by a bond between
the coatings of the
individual tubes/ropes

35 7~e!

FIG. 8. Definition of d.o.i.

TABLE III. Approach to 3D modeling of various nanotube joint configura-
tions.

Joint d.o.i.
2D

model 3D model

Crossing/
entangled
ropes

0.5 Torsion
spring

Contact elements

Y andT
joints

1 Rigid
bond

Filleted joint with fillet
material same as that of
the connected beams

Nanowelding 0.5–
1

Rigid
bond

Filleted joint with fillet
material same as that of
the connected beams

Nanosoldering <0.5 Torsion
spring

Filleted joint with fillet
material different from that
of the connected beams

Joining of
coated
tubes or
ropes

<0.5 Torsion
spring

Filleted joint with fillet and
coating modeled as a
material different from that
of the connected beams

FIG. 9. Modeling of joints between nanotubes, including~a! 3D finite ele-
ment joint model, used to inform a~b! 2D torsion spring-jointed model.

4341J. Appl. Phys., Vol. 95, No. 8, 15 April 2004 Berhan et al.



beam aspect ratio. Table IV describes the joints defined as
cases 1–7. Figure 10 confirms that a range of 3D joint mor-
phologies can readily be represented by suitable torsion
spring constants in 2D beam models. However, for some
combinations of beam aspect ratio and joint architecture, an
equivalent linear torsion spring cannot be found, and a re-
storing moment is required at the joint of the 2D model in
order to produce the same response as the 3D joint, as evi-
denced by the negative rigidity parameters obtained for some
of the cases considered.

D. Finite element simulations: Networks

In the network finite element analyses, joints were mod-
eled as torsion springs to simulate the various joint mor-
phologies. All torsion springs in a given simulation were
assigned the same rigidity parameter,K̄, with L1 in Eq. ~19!
replaced byL̄s . For each network, a MATLAB finite ele-
ment analysis was performed for rigidity parameters 0.05,
0.1, and 1~with 1 representing the rigid bond case!. Euler–
Bernoulli beam elements having torsion springs at each end
were used, following Kassimali’s36 formulation for beams
with semirigid joints. The local torsion spring constants for
the springs at the end of each element were chosen such as to
achieve the desired rigidity parameter at each joint of the
network.

Random beam networks were generated as shown in Fig.
3. The nodes on the bottom boundary (y50) were fixed, and
those on the top boundary (y5Lu) were given a displace-
mentdy50.001 in they direction. The total resultant force
in the y direction on the top boundary,Fy8 was found for
each simulation. The effective modulus,Eeffective was then
calculated from

Eeffective5
FyLu

dLudy
, ~20!

whered is the beam diameter, andLu is the length of the
sides of the simulation window (Lu51 for the unit cell!. The
values ofEeffectivewere then normalized by the beam Young’s
modulus,E. Finite element analyses were performed on net-
works of 200 fibers, with area fractionsH of 10%, 20%,
30%, 40%, and 50%, respectively. Ten networks were gen-
erated and analyzed for each area fraction.

III. EXPERIMENTAL APPROACH

A. Materials manufacture

Free-standing SWNT sheets were made by filtration of
SWNT dispersions using Triton X-100 surfactant~Aldrich!.10

Purified SWNTs produced by both the pulsed laser vaporiza-
tion technique37 ~Tubes@Rice, lot No. R062900!, and puri-
fied as described by Rinzleret al.1 and the HiPco~high-
pressure CO disproportionation!38 method ~Carbon
Nanotechnologies, Inc., lot No. CM26-0024-1, in the form of
BuckyPearls™! were employed in this work. By applying
vacuum or, alternatively, pressure~500 kPa of nitrogen!, the
SWNT dispersions were passed through Millipore Mitex 5
mm LS membrane filters. The resulting sheets were exten-
sively washed with water and methanol to remove the sur-
factant, and dried. Thermal annealings comprising 9 hour
long temperature ramps to 1000 °C, followed by 10 min resi-
dence times, were carried out to remove residual surfactant
and solvent.

B. Mechanical testing

The mechanical properties of the carbon nanotube sheets
were measured using a dynamic mechanical analyzer Perkin
Elmer DMA7e. 1 mm wide strips were tested at room tem-
perature, byapplying an initial force of 5 mN~15 mN for
sample No. 84 annealed! and a static stress rate of 20 mN/
min. The papers were tested using a static stress test with the
force increasing at a rate of 20 mN per min. The probe height
and the applied force were determined every 0.6 s, from
which stress and strain were calculated. Samples were di-
rectly deposited onto conducting carbon tape, and imaged
using a LEO 1530 VP scanning electron microscope.

IV. RESULTS

A. Simulation results

Figure 11 illustrates the effect of altering the rigidity
parameter on effective modulus, in simulations of 200 fiber
HiPco sheets. Points represent mean values ofEeffective/E for
ten simulations at each area fraction, and the errors bars
shown are for61s.

B. Comparison with experimental results

Stress-strain plots obtained for the five samples tested
are shown in Fig. 12; numerical values of Young’s moduli,
maximum strains, tensile strengths, and the area fractions are
presented in Table V. Experimentally determined Young’s
moduli were normalized with that of the constituent ropes.

FIG. 10. Plot of rigidity parameter vs beam aspect ratio for the seven dif-
ferent joint morphologies examined~Table IV!.

TABLE IV. Description of 3D joints modeled in finite element simulations.

Case No. d.o.i. Rfillet /r Efillet /E

1 0.465 1.0 0.10
2 0.465 0.5 0.10
3 0.5 0.1 1.00
4 0.465 1.0 0.01
5 0.465 0.3 0.10
6 0.465 0.5 0.01
7 0.465 0.3 0.01
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The latter value was adopted from Lu,5 who used an empiri-
cal force constant model to obtain the elastic properties of
nanoropes comprised of single walled carbon nanotubes of
various radii. For the constituent ropes of the HiPco and laser
ablation sheets we usedE50.736 and 0.563 TPa, which are
the values of Young’s modulus for ropes comprised of tubes
of radius 0.4 and 0.67 nm, respectively, as reported by Lu.5

Final comparisons of the normalized experimental results
with the Euler beam/rigid bond simulations for 200-fiber
HiPco and laser ablation sheets are shown in Fig. 13.

V. DISCUSSION

Figure 13 shows the effective modulus of the nanotube
obtained from 2D Euler beam simulations using both
Corte’s23 and Miles’15 expressions for area fraction and num-
ber of fiber crossings per unit area. The difference between
the two approaches becomes more significant as the area
fraction is increased. Miles’15 formulation is more accurate
since he takes into account the overlapping area of fibers at
crossing points. We thus take these as the upper bounds on
achievable modulus for the nanotube sheets.

A plot of L̄s /d vs H ~Fig. 5! shows that forH.27% the
mean segment aspect ratio is less than 5. For this range of
area fractions, therefore, simulations using Timoshenko,
rather than Euler beam elements would be more appropriate.
However, implementation of Timoshenko beam theory

would require knowledge of the shear modulus of the nano-
tube ropes, as well as a model for the load transfer mecha-
nism among the tubes of the rope so that an appropriate shear
correction factor could be selected. At this time, the load
transfer mechanism within nanotube ropes is still the subject
of intensive investigation; shear moduli values reported in
the literature differ by as much as an order of magnitude.39,40

Even if there were broad agreement on the values, however,
the effective moduli obtained from use of Timoshenko beam
elements would be lower than those obtained from Euler
beam elements.

FIG. 12. Stress vs strain results of mechanical tests on nanotube sheet
samples.

FIG. 13. Comparison of experimental and simulation results for normalized
effective modulus, for nanotube sheets containing nanotubes synthesized by
the ~a! HiPco and~b! laser ablation processes. Simulation results derived
using both Miles~see Ref. 15! and Corte~see Ref. 23! are shown. An
average rope diameter 10 nm was assumed in all cases.

TABLE V. Description and mechanical properties of nanotube sheet
samples used.

Sample No. Description

Average diameter~nm! Area
fraction

~%!Nanorope Nanotube

84 Laser ablation
~annealed!

;10 1.36 45

84 Laser ablation
~unannealed!

;10 1.36 49

94 HiPco
~annealed!

;10 0.8 48

112 HiPco
~unannealed!

;10 0.8 46

104 Laser ablation
~annealed!

;10 1.36 45

FIG. 11. Plots of normalized effective modulus vs area fraction for HiPco
sheets, forK̄51, 0.1 and 0.05. An average rope diameter 10 nm was as-
sumed in all cases.

4343J. Appl. Phys., Vol. 95, No. 8, 15 April 2004 Berhan et al.



Also in keeping with our aim to determine upperbound
properties, we selected correction factors to scale cross-
sectional areas and moments of inertia in beams, by assum-
ing equal load sharing among the tubes within a rope. We
thus modeled conditions wherein nanotubes within ropes
were physically bonded, as might occur with irradiation or
chemical treatment of the ropes. Recent experiments on
SWNTs40 and composites comprised of SWNTs41 have
pointed to intertube sliding as a mechanism for load sharing
in a bundle, which would certainly lower resulting moduli.

Our experimental moduli fell well below upper bound
predictions~as shown in Fig. 13!, as expected. Further, com-
parison of Fig. 13~a! and Fig. 11 show the experimental re-
sults fell well below the results for simulations with a low
rigidity parameter of 0.05, suggesting that the nanoropes are
physically connected at some crossing points, and not at all
at others.

We reiterate the distinction between fiber crossing and
fiber bond: though a statistically based prediction of fiber
crossings is available for 2D networks, it may not comprise
the actual density of fiber bonds, if crossing fibers do not
always fuse. Specifically, if nanoropes are connected at a
fraction, b, of crossings, then the mean segment length is
increased by a factor of 1/b, and the corresponding value of
maximum normalized modulus is shifted to the value given
at area fractionb•H. The upper bounds for effective moduli
obtained here~Fig. 13! suggest that optimization of process-
ing of nanotube sheets, to produce connections at each and
every fiber crossing, could increase effective moduli by a
factor of ;2.5–30. For example, if the area fractions esti-
mated from image analysis are correct, the effective moduli
of the laser and HiPco sheets can be increased by;15 times
and ;32-fold, respectively, if a connection were made at
every crossing.

Finally, if the actual volume fractions of the sheets tested
were within the range given by Smith24 of between 10% and
30% ~i.e., if area fractions obtained from image analysis
were an overestimation!, we must revise the potential im-
provement in nanotube mat properties. If this is the case, the
effective moduli of the laser sheets can potentially be in-
creased by a factor between 2.5 and 8, and that of the HiPco
sheets by between 5% and 16%.

VI. CONCLUSIONSÕFUTURE WORK

In this work we present a method for calculating upper
bounds on the Young’s moduli of nanotube sheets comprised
of randomly oriented nanotube ropes. Similar methods could
be employed to obtain upper bounds on the moduli of films
comprised of aligned ropes. Experimental moduli fall signifi-
cantly below simulated upper bounds, indicating that there is
still room for improvement in manufacturing, to realize
higher bond densities and thus higher moduli. However, even
the maximum achievable moduli are still rather low as com-
pared to the Young’s moduli of the nanotubes themselves.
The upper bounds are therefore useful in determining
whether the modulus desired for a particular application is
attainable.

While the effects of joint morphology and beam model
have been interrogated in this work, the rope segments were
modeled as straight beams. The inherent waviness of the
nanotube ropes would certainly reduce the sheet modulus,
and may be a separate feature which can be optimized in
sheet manufacture. This factor will be addressed in future
work.
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