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The application of a two-electron crystal-field model to the electronic structure of xenon hexafluoride 
is extended to include the calculation of oscillator strengths for absorption transitions to the largely 
spin singlet and the largely spin triplet excited states. Band shapes are calculated in terms of their 
spectral moments by obtaining vibrational energies and wavefunctions for the mixed quadratic-quartic 
potential energy functions calculated from the crystal-field model. The key experimental features of 
the absorption spectrum of the vapor are reproduced, namely the pronounced red shift and the 
increased bandwidth with rising temperature. The over-all similarity of the vapor spectrum to that of 
the isovalent hexahalotellurate (IV) complexes in solids is noted. It is concluded that the 
experimental data of Claassen, Goodman, and Kim are compatible with the pseudo-lahn-TeUer model 
of Gillespie as developed by Bartell and Gavin and by Wang and Lohr, and that the data do not 
require the use of the electronic isomers model of Goodman, although the latter model is not 
excluded. 

I. INTRODUCTION 

In a recent paper1 we outlined a two-electron crystal 
field model of the electronic structure of the XeF 6 mol­
ecule and presented detailed numerical results in the 
form of potential energy curves for ground and excited 
electronic states. This was followed by another study2 

in which comparisons were made between the XeF~ re­
sults and those for the related Xe(VI) systems XeOF 4, 

2 . 
Xe02F 2, xe03, and XeFa-. We return now to XeFa and 
consider the application of the results of the first study 
to the problems of the ultraviolet absorption spectrum 
of the gaseous state. An extremely interesting feature 
of the reported3 spectrum is the long "tail" of the first 
absorption band at approximately 3400 A (29400 cm-1), 

with this tail not only extending well into visible (to about 
4500 A), but also showing a marked increase in absor­
bance upon increasing the sample temperature from 25 
to 90 DC. By contrast the absorbance decreases with in­
creasing temperature in the spectral range 3000-3300 
A. These and other features of the XeF 6 spectrum, in­
cluding Raman data, 3 were interpreted by Claassen, 
Goodman, and Kim using an electronic isomers model, 4 

in which it is proposed that XeF 6 vapor consists of a 
thermally equilibrated mixture of octahedral, spin-sin­
glet ground state molecules and trigonally distorted (both 
prolate and oblate), spin-triplet excited state molecules. 
The estimated fraction in the ground state at room tem­
perature (298.1 OK) is 0.388, with a fraction 0.538 hav­
ing an oblate structure at a nonvertical energy of 446 
cm -1 and a fraction 0.074 having a prolate structure at 
a nonvertical energy of 1229 cm-1 • The spectral changes 
with temperature are then related to changes in the frac­
tions for each of the three isomers. Since the results 
of our crystal-field study offered little support for the 
electronic isomers model and instead tended to support 
the pseudo-Jahn-Teller model expressed by Bartell and 
Gavin5 following the ideas of Gillespie, 6 it is important 
to test our theoretical results to see if they are compat­
ible with the spectral data. Specifically it will be re­
called that our XeFs potential energy curves in the t21l 

bending space did not, for what we took to be reasonable 
choices of electronic parameters, give excited state 

Jahn-T,eller stabilizations of sufficient magnitude to pro­
duce spin-triplet isomers which could be thermally pop­
ulated. Rather it is the instability of the ground state 
forward t1u bending and/or stretching deformations, to­
gether with mixing between t1u and other modes which is 
suggested to be the explanation for many of observed dif­
ferences between XeF 6 and other hexafluorides. 

II. ELECTRONIC CONSIDERATIONS 

We write wavefunctions for the electronic and nuclear 
degrees of freedom in the adiabatic form 

(1) 

where q and Q denote the sets of electronic and nuclear 
coordinates, respectively. The electronic factor 1/Ie is a 
solution of the SchrOdinger equation with .nuclei held fixed 
at a structure Q, which is not necessarily the equilibrium 
structure Qo• The nuclear factor <P n is a solution with 
quantum number v of the SchrBrlinger equation containing 
the nuclear kinetic energy relative to the center of mass 
and an effective potential energy which is the total elec­
tronic energy dQ). Electric dipole transition moments, 
in the dipole length formulation, between states with dif­
ferent electronic factors may then be written 

(lP;(q, Q)<p~(Q, v') IqllPe(q, Q)<Pn(Q, v) 

= (<p~(Q, v') I RQ(Q) I <Pn(Q, v) Q (2) 

where 

(3) 

and q denotes the sum o'f the vector coordinates of the 
electrons. The subscripts q and Q on the matrix ele­
ments indicate the integration variable. Terms with the 
operator Q do not enter because of the orthogonality of 
1/Ie and 1/1~. If Re(Q) in (3) is taken to be independent of Q, 
say by assuming it to have at all Q its value at Qo, then 
(2) reduces to 

(4) 

where the second factor in (4) is a vibrational overlap 
integral whose square is a Franck-Condon factor. 
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TABLE 1. State functionsa for tAt,. and t,3Ttu at 0h symmetry. 

Parameter 6E 
setb (5s-5p) F t F2 t(5P) at b t Ct a2 b2 

1 3.5 1. 91 0.32 1. 70 0.9460 0.1366 0.2938 0.9709 0.2394 
2 3.5 1. 00 0.17 0.87 0.9817 0.0386 0.1866 0.9728 0.2318 
3 3.5 0.70 0.11 0.87 0.9889 0.0299 0.1454 0.9567 2.2911 
4" 3.5 0.50 0.08 0.87 0.9936 0.0227 0.1103 0.9379 0.3470 
5 3.5 0.30 0.05 0.87 0.9974 0.0144 0.0702 0.9066 0.4221 
6 2.0 0.50 0.08 0.87 0.9802 0.0740 0.1835 0.9379 0.3470 
7 1.0 0.50 0.08 0.87 0.8655 0.3519 0.3565 0.9379 0.3470 
8 0.5 0.50 0.80 0.87 0.4631 0.7526 0.4681 0.9379 0.3470 

~he functions are defined in Eq. (5) in terms of at> bt> ct> a2 and b2• 

bAll four energy parameters in electron volts. 
"The so-called "best" set of Ref. 1. 

For XeF 6 with assumed 0h symmetry and considering 
only the 28 two-electron states associated with the 58 
(al,) and 5p(tlu ) orbitals, there are only two allowed 
electric dipole transitions from'the lSo(582) ground state. 
These are to the lpr and 3p~ levels of the 585p configura­
tion, where the spin multiplicity labels are used simply 
to indicate the principal basis state in each case and 
are not meant to imply eigenstates of 82. The two ex­
cited multiplets can also be designated as lTlu and 3Th , 

where the symmetry for the J = 1 spin-orbit level is T lu 
for each. We now evaluate Re(Q = 0h) for the transitions 
using the wavefunctions 

lAl,.=allS 0(582) + b1
3P o(5p2) + CllS 0(5P2) 

ITlu =alP~ + b23p~ 

STlu(T1u) = - b2
1 P~ + a23 P~ 

(5) 

where the atomic designations are used here for ILSJM) 
basis functions. USing standard methods for construct­
ing the latter functions from I LSMLMs) functions, the 
desired matrix elements are 

(lAlllq =ql +q21 1,3T1u) 

= (581 q 15p) [21/ 2ala2 - ml /2(b1b2 + cla2)] for lTlu (6) 

and 

(581 q 15P) [- 21/2a1 b2 - (i)l( 2(bla2 - Cl b2)] for 3Tlu 

Note that (5) and (6) consider spin-orbit mixings for both 
ground and excited states, as well as configuration in­
teraction for the ground state. Thus the mixings are 
fully treated within the manifold of the 28 two-electron 
states. The magnitude of the one-electron integral 
(58 I q15P) with q equal to vector r is 3-1/ 2 times that with 
scalar r appearing as a parameter in the l = 1 compo­
nent of the crystal-field treatment for distorted XeF 6' 

Again we assume the value 2. 055 a. u. (1. 087 A) for 
(58 I r I 5p) as computedl from Gaussian baSis set Xe atom 
SCF radial functions. The coefficients at> bl> etc., ap­
pearing in (5) and (6) are given in Table I for 8 of the 20 
electronic parameter sets we used. 1 

The oscillator strength f may be written 7 

f= (8rmv/h) lu. (lAl,.lqll.3T1U> 12 

where u is a unit vector in the direction of the polariza­
tion and where m is the electron mass, v the transition 
frequency, and h is Planck's constant. The constant in 

(7) is for oriented molecules with nondegenerate states, 
but the same value is obtained after averaging over ori­
entation and polarization direction and considering the 
triple degeneracy of the final J = 1 level. The tranSition 
moments (6) and resulting f values (7) are given in Ta­
ble II together with the computed t:.E values for the pa­
rameter sets the wavefunctions in Table 1. We observe 
for parameter sets 1-7 that the ratio of the f values for 
the transitions to the mostly spin-singlet and mostly 
spin-triplet excited states is in the range of 25 : 1 to 
10: 1. An exception is set 8, where the very small val­
ue of O. 5 eV for the t:.Esa-sl> parameter leads to a ground 
state which is mostly 3 PO(5p2), making the f value small 
for the transition to the mostly singlet state of 585p. 
For the assumed "best" parameter set the ratio of f val­
ues is 11. 2, with the ratio of t:.E's being 4.58 eV/2. 74 
eV = 1. 67. The reported3 absorption spectrum has max­
ima at 3.67, 4.90, and 5.50 eV, with maximum extinc­
tion coefficient Emax values of approximately 460, 2600, 
and 3160, respectively. In addition there is possibly a 
shoulder at roughly 3.1 eV. It is tempting to suggest 
that the features at 3.1 and 3.67 eV are components of 
3Tlu split by the low-symmetry field of a Csv or C4v 

structure, while the features at 4.90 and 5.50 eV, with 
nearly an order of magnitude greater intenSity, are 
components of ITlu• 

Such an assignment is Similar to that mades for the 
TeCI~- and TeBrr complexes, which display absorption 
spectra strongly resembling that for gaseous XeF s. 
Specifically the absorption spectrum of the TeClt com­
plex in its ammonium and tetra-n-butyl ammonium salts 

TABLE II. Excitation energies, a dipole matrix elements, band 
oscillator strengths for 0h symmetry. 

Parameter tAtl 3Tt• tAtl tTt• 

set tJ.E ME f tJ.E ME f 
2.39 - O. 233 0.034 7.64 0.652 0.857 

2 2.76 - 0.199 0.029 5.51 0.750 0.809 
3 2.72 - O. 248 0.044 4.96 0.764 0.753 
4c 2.74 - O. 297 0.064 4.58 0.770 0.712 
5 2.72 - O. 365 0.095 4.26 0.767 0.660 
6 1. 25 - O. 305 0.030 3.12 0.715 0.421 
7 0.44 - O. 372 0.016 2.32 0.487 0.145 
8 0.46 - O. 421 0.021 2.35 0.026 0.0003 

aDenoted by D.E and given in electron volts. 
bDenoted by ME and given in angstroms. 
"The so-called "best" set of Ref. 1. 
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was interpreted in terms of transitions from the 1A1l" 

(a 1;) ground state to mostly spin-triplet levels of a1Au 
at 3.05, 3.17, and 3.81 eV, with Emax values of 700-
3000, and to mostly spin-singlet levels of a1ef1u at 4.08, 
4.27, and 4.42 eV, with Emax values of 8000-20000. Our 
estimate of the ratio of the integrated intenSity of the 
singlet region to that of the triplet region is 3.5: 1, 
based on the reported8 spectrum. The splittings of the 
triplet levels were aSSigned as arising in part from 
spin-orbit coupling and in part from a geometry change 
in going to the excited state, the latter cause also in­
voked to explain the singlet splittings. Several ligand­
to-metal flu orbital charge-transfer bands were reported 
at energies of 4.74 eV and higher. Excitation energies 
in salts containing the TeBr:- complex were found to be 
typically 0.5 eV less than their TeCli- counterparts. In­
terestingly the change in the TeCl:- spectrum in going 
from 18 to 300 oK is largely an increase in the band­
width and asymmetry, with the increased skewness to 
low energies producing a thermal red shift in the mean 
energy without causing a pronounced shift in the position 
of the band maxima. These spectral features resemble 
those observed3 for gaseous XeF 6' 

Dipole transitions to levels of the 585p configuration 
with J * 1 can also occur if the molecular geometry is 
deformed from Oh symmetry. Table III gives the irre­
ducible representations for the various levels in static 
symmetries Oh' C4V, C3v, and CZv' These structures all 
occur in the flu deformation space, as previously de­
scribed. 1•S While the transitions to certain components 
of J = 2 become allowed, that to J = 0 of 585p does not. 
This strongly forbidden transition will, however, be­
come allowed if the symmetry is further reduced to C s 

(that for flu space with on Cartesian component being 
zero) or to C1 (that for general points in flu space). By 
contrast transitions become allowed in C4v, C3v, and CZv 

to at least one low symmetry component of each J level 
of each term of 5pz. 

Selection rules for vibronically induced transitions 
from the spin-orbit All" ground level are readily ob­
tained and show that the allowed final levels for such a 
process are All"' El"' T 1g, and TZl" for a flu mode; A z£', 

E g, T lI, and TZl" for a fzu mode; A zu, E u, T 1u, and Tzu 

TABLE III. Symmetry of energy levels in various symmetries. 

Configuration Term J level °h C4v 
a C3v 

a C2v 
b 

5s2 'S 0 A" A, A, A, 
5s5p 3pO 0 A,. A2 A2 A2 

1 T,. A,+E A,+E A, +B, +B2 
2 E. A2+B2 E A2+B2 

T 2• B,+E A2+E A, +A2+B, 
'po 1 T,. A,+E A,+E A,+B,+B2 

5p2 3p 0 A" A, A, A, 
1 T" A2+E A2+E A 2+Bt +B2 

2 E, A,+B, E A,+B, 

T21 B2+E A,+E A,+A2+B2 
'D 2 E, A,+B, E A,+B, 

T21 B2+E A,+E A,+A2+B2 
's 0 A" A, A, AI 

&Dipole transitions from A t are allowed to A 1 and E. 
I>Dipole transitions from At are allowed to A" B" and B 2• 

for a tZK mode; and T 1u and T 2u for an e K mode. The A 1u 

symmetry (Table III) of the J = 0 level of 3 T1u does not 
appear in the preceding, again confirming the strongly 
forbidden character of the absorption transition to this 
level, which is the first excited level in our computed 
energy spectrum. Octahedral molecules AB6 are "vi­
brationally deficient" in that they do not possess modes 
of t1K symmetry necessary to induce electric dipole tran­
sitions from A 1g states to A 1u states. 

III. POTENTIAL ENERGY SURFACES AND 
VIBRATIONAL WAVEFUNCTIONS 

The shapes of the electronic absorption bands are de­
termined for allowed transition by the vibrational over­
lap integrals in (4). We now estimate their value in the 
three-dimensional flu bending space. Energy matrix 
elements are available9

-
1z for one-, two-, and three-dimen­

sional quartic oscillators in terms of the corresponding 
harmonic oscillator wavefunctions as basis functions, 
and these have been used in studies13 of quartic and 
mixed quadratic-quartic molecular vibrations. How­
ever for the three-dimensional case of interest here, a 
different matrix needs to be diagonalized for each value 
of the vibrational angular momentum quantum number l 
that is associated with a thermally populated level- of the 
ground electronic state. Thus it is desirable to reduce 
the problem to an effective one-dimensional oscillator 
problem without an explicit dependence on the quantum 
number l. We have previously noted that the excited 
state potential energy curves in t1u bending space are 
roughly quadratic, so that for these states we choose 

V(Q) =ikQz =ik(Q~+Q;+ Q~) (8) 

where Qx, Qy, and QK are the Cartesian components of 
the flu bending mode, and where the force constant k is 
chosen to match the curvature at the origin of the com­
puted curves. Wavefunctions for the problem defined by 
(8) may be written exactly in spherical polar or Carte­
sian coordinates. For the latter choice, the functions 
are a product of one-dimensional harmonic oscillator 
functions in the variable Qx, Qy, and QK' 

There are several representations of the ground state 
potential energy curves which preserve various features 
of the calculated curves but which lend themselves to 
simple computer solutions. One such case is that given 
by 

V(Q) = - aQz + b(Q!+ Q;+ Q!) 

= V(Qx) + V(Qy) + V(Q .. ) 

where 

and 

(9a) 

(9b) 

(10) 

(11) 

This potential, as pointed outS by Bartell and Gavin, 
implies a very high barrier to pseudo rotation in flu 

space. SpeCifically there is a minimum energy struc­
ture with C3v symmetry at an energy of - 3az / 4b and a 
radial displacement of (3a/2b)l/2, a minimum energy 
structure with CZv symmetry at an energy of - aZ/2b and 
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FIG. 1. Graphs of the mixed quadratic-quartic potential ener­
gy function given in Eqs. (9) and (10) for three directions in the 
three-dimensional tlu bending space. The directions are (100) 
for C4v symmetry, (110) for Czv symmetry, and [111) for C3v 
symmetry. 

a radial displacement of (a/b)1/2, and a minimum energy 
structure withC4v symmetry at an energy of _a2/4b and 
a radial displacement of (a/2b)1/2. Thus the stabiliza 
tion of a Csv structure is 3 times that for a C4v structure. 
Vertical energies at the radius of the Csv minimum, 
r = (3a/2b)1/2, are even greater, namely - 3a2/Sb for C2v 
and + 3a2/4b for C4V (Fig. 1). 

The use of such a potential energy then reduces the 
problem to the solution of a one-dimensional Schrlldinger 
equation 

where Il is the reduced mass. Identical equations hold 
in Qy and Q", so that 

(13) 

and 

(14) 

Another simple case is that given by 

(15) 

in which 1 is the angular momentum quantum number and 
Qo is a fixed radius. Atomic units with n= 1 are used. 
This potential, which contains no pseudorotational bar­
rier since the quartic term is isotropic, is rendered 
tractable by the assumption that the moment of pseudo­
rotational inertia j.J.Q2 is approximately j.J.Q~, where the 
fixed radiusQo is usually that for the energy minimum. 
Thus this potential implies a rigid pseudo rotor for which 
the SchrOdinger equation may be written (in atomic 
units) as 

(16) 

where p(Q) = QR(Q), in which R(Q) is the usual radial 
function in the variable Q, and E rot and Evtb are, respec­
tively, the "rotational" and "vibrational" components of 
the energy. We must exercise caution in comparing 
(16), in which the range of Q = (Q~+ Q~+ Q~)1/2 is from 0 
to 00, to the standard one-dimensional form 

(17) 

in which the range of x is from - 00 to 00. If V(x) is of 
even parity, the solutions l/J(x) have either even or odd 
parity. The odd parity l/J(x) necessarily have zero 
amplitude at the origin (x = 0). Such odd solutions and 
only such odd solutions of (17) are admissible as the 
solutions p(Q) for (16), as p(Q) = QR(Q) must vanish as 
Q - 0 because of the requirement that the usual radial 
function R(Q) remain finite. Thus (16) may be solved12 

by solving (17), in which V(x) is taken as - ax2 + bx\ for 
its odd solutions only. This leads to 

lJI(Q, e, ¢) = [p(Q)/Q] YZm(e, ¢) (IS) 

and 

(19) 

where the Y Zm factor is the standard normalized spher­
ical harmonic in the angular variables of t1u bending 
space. 

A convenient computation procedure for obtaining so­
lutions of the one-dimensional Schrlldinger equations ap­
pearing in (17), which may stand for the types in (12) or 
(16), is to expand the solutions in a basis of harmonic 
oscillator eigenstates. This procedure14

,15 has been 
frequently used before, for example in studies of hydro­
gen bonding, 16 or ring deformations in bromocyclobutane 
and related compounds,17 and of intensity distributions 
for vibronically induced electronic transitions. 18 This 
method is particularly practical when the potential en­
ergy function can be expressed as a short power series 
in the displacement variable. Details of the transfor­
mation of (17) to a dimensionless form are given in sev­
eral referencesl

4-18 and are not repeated here. If l/Jj(x) 
and l/!ix) represent wavefunctions for the ith level of the 
first potential energy function (electronic ground state 
curve) and the jth level of the second potential energy 
function (electronic excited state curve), respectively, 
then 

Vrnax 

l/!;(x) = L Cvi¢v(x) (20a) 
1>=0 

and 

vrnax 

l/!J(x) = L CvJ¢v(x) (20b) 
v=o 

where v is the usual. harmonic oscillator (HO) quantum 
number, ¢v an HO eigenstate serving as a baSis func­
tion, and the chosen number m of HO baSis functions is 
vmax + 1. The desired vibrational overlap integrals for 
use in (4) are then readily obtained by 
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vmax 

(1jJil1jJj)'" L CivC jv , (21) 
",,0 

where use has been made of the fact that the same 9r­
thonormal basis set is used for describing levels of both 
the ground and excited state curves. The value of m has 
typically been taken at 50, implying vmax '" 49, although 
some calculations were made with m '" 30. 

IV. BAND SHAPES FOR ELECTRONIC EXCITATION 

As described in our study18 of band shapes for vibra­
tionally induced electronic transitions, the energy dis­
tribution function F(E, T) in which the energy E is the 
distribution variable and the absolute temperature T is 
a parameter, may be characterized by spectral semi­
invariates Ak(T) defined19 for our discontinuous distribu­
tion as follows: 

Al (T) ==E '" Liij(T) ~Eii 
it j 

and for k *" 1, 

Ak(T) == (E - E)k = L iij(T)(~ jj -lW 
I'} 

(22a) 

(22b) 

In (22) iii is the product of the square of the overlap 
integral in (21) and the Boltzmann factor for the vibra­
tional level i of the initial electronic state, while ~ij 
== E j - E i, the energy difference between the levels. The 
horizontal bars denote mean values. 

One advantage of the use of spectral moments is that 
a conversion is readily made from the moments of a dis­
tribution in a Single variable to those for a distribution, 
such as that for the three-dimensional tlu bending mode, 
which is written as a convolution of a product of Single 
variable distributions; 

F'(E, T) ",(F(E:r;, T)F(E y, T)F(E,., T) (23) 

where the prime distinguishes the result from that for a 
single variable and where 

(24) 

The angle brackets in (23) denote a convolution; that is, 
a summation over all E:r;, E y , and E" yielding a given 
value of E. 

It is easily shown that for any number of variables that 

(25) 

A; = .L: (AS)i 

A~= L (A4)j+6 L(A2)i(A2)i , 
i i>j 

where i denotes the ith variable and the parameter T has 
been omitted for brevity. Expressions for higher mo­
ments are easily obtained and contain, like A4 above, 
lower moments in the individual variables. It is not as­
sumed in (25) that the sets of single variable moments 
[(Ak)j] are identical for each variable. For the tlu bend, 

they are identical so that 

A[ = 31\.1 

A; = 31\.2 

A; = 3As 

A~ = 3A4 + 18A~ 

(26) 

It should be recalled19 that the mean is given by A1, the 
variance or the mean square deviation from the mean by 
A2 (for a Gaussian distribution the half-width at half­
height ~1/2 is (2In2)1/2 A~/2), the skewness S by As/ 
A~ /2, and the kurtosis K by (A4/ A~) - 3. Primed mo­
ments should be used if these measures are desired for 
the combined distribution, leading to the relationships 
S' =S/31

/ 2 and K' =K/3. 

In our earlier calculations1 of the potential energy sur­
face in the t1u bending space, we found by using the so­
called "best" set of electronic parameters a miminum 
energy structure of Csv symmetry characterized by fluo­
rine displacements of 8.9° along circular arcs with an 
assumed fixed Xe-F distance of 1. 89 A and by an energy 
stabilization of approximately 1860 cm-1 relative to an 
octahedral structure. The energy of a structure with 
C4v symmetry was calculated to be only 160 cm-1 greater 
than that for the Csv structure, although this pseudo ro­
tational barrier was calculated to be much greater, 
namely 2015 cm-1, when coupling with the t21 bending 
mode was included. The latter led to a Csv symmetry 
structure 3710 cm-1 more stable than an Oh symmetry 
structure and characterized by fluorine displacement 
of 13.6° and 5.6° in the flu and f21 bending spaces, re­
spectively. We first consider the structure in pure flu 

space in connection with the potential energy function in 
(9) and (10). If Vo is the well depth in ergs correspond­
ing to 1860 cm-1 and Xo the displacement of a fluorine 
atom in centimeters corresponding to 8.9°, then the po­
tential energy coefficients for (9) or (10) are 

a=2VoIx~=8.55x104erg cm-2 

(27) 
b = Vo/X6 = 4.96 X 1021 erg cm-4 

in which a and b are chosen to fit the position and depth 
of the well. The potential defined by these coefficients 
can be used in the approximation defined by (15) and (16). 
To use (27) in V(x) in (10), the coefficient b of the quar­
tic term should first be multiplied by 3 to express cor­
rectly the C4v form of (10). As pointed out this implies 
a C4v well depth only one-third as great as the Csv depth 
of 1860 cm-1. Alternatively the direct use of a and b in 
(27) as a C4v potential (10) implies a Csv well depth of 
3 x 1860 = 5580 cm- l • While such large differences be­
tween the Csvand C4V minimal energies are not consis­
tent with the results from our electronic model in pure 
t1u bending space, they are much like our results in the 
mixed f 1u-t21 space so that we have used the coefficients 
a and b as well as the pair a and 3b to define crude mod­
el potentials (10) for a C4v structure. 

The calculation of vibrational energies, wavefunctions, 
and overlap integrals is actually carried out for a di­
mensionless Schr6dinger equation which we have set up 
using a reference circular frequency of {3 = 4.77 X 101S 
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FIG. 2. Graphs of the excited state quadratic potential energy 
function (a) and the ground state mixed quadratic-quartic func­
tion (b), the latter as given in Eq. (28). Several energy eigen­
values are shown for each curve together with parity labels. 
Levels labeled both g and u are essentially doubly degenerate~ 

rad sec-1 and an assumed1,20 reduced mass of 53 amu. 
The value of {3 was selected so that the excited state, as­
sumed to be harmonic in t1u space, is described by v(~) 
= ~2, a dimensionless oscillator whose eigenfunctions 
are also the basis set for expansion for the ground state 
vibrational wavefunctions. For the latter state we have 
from (27) without multiplying b by 3, 

vW = - O. 854 ~2 + 0, 0124 ~\ (28) 

where ~ is the dimensionless variable related to cen­
timeters by multiplying ~ by (I'l/ JJ.{3)1/2 = 5.01 X 10-10 cm, 
and v(~) is a dimensionless potential related to cm-1 by 
multiplying VW by {3/4'ITc = 126.5 cm-t, which is a factor 
corresponding to the zero point energy for the excited 
state harmOnic oscillation. The excited state frequency 
is thus set by our choice of {3 at 253 cm-t, a value sim­
ilar to those for other hexafluorides. 21 The implied 
ground state frequency obtained by using the curva-
ture of (28) evaluated at its minimum of ~ = 5. 87 is 253 
cm-1 times (2x 0.854)112 or 331 cm-1• This follows from 

the fact that the curvature of - a~2 + b~4 at the position 
of the minimum, 1; = (a/2W 12, is 4a, while that of ~2 is 
2 at all~. The actual spacings calculated for the an­
harmonic oscillator in (28) used directly as a C4v poten­
tial (10) are 319, 306, 291, 273, 249, 200 cm-t, etc., 
starting from the lowest level. The calculated zero 
pOint energy in a single coordinate is 163 cm-1

, more 
than half the first spacing and thus providing a measure 
of the anharmonicity. Ignored in the above list of spac­
ings are the very small computed inversion splittings 
(less than 1 cm-1), so the lower levels are essential dou­
bly degenerate. 

The levels of the one-dimensional oscillator are shown 
in Fig. 2, together with those for the reference harmon­
ic oscillator, the latter selected to match the chosen 
parabolic potential energy curve for the excited electron· 
ic state. 

Band shape results for electronic absorption using 50 
HO basis functions for the expansion of the eigenstates 
of (28) used in the one-dimensional Schrodinger equa­
tion (12) are given in Table IV as a function of tempera­
ture. The key features associated with increasing T 
are: 

(a) a pronounced red shift described by a decrease in 
A;; 

(b) a pronounced broadening associated with an in­
crease in A;', but tabulated as the half-width at half­
height for a Gaussian distribution; 

(c) a change in the sign of the band asymmetry from 
positive (skewed to high AE) to negative (skewed to low 
AE) as given by the skewness S'; 

(d) an increase in the intenSity inthe "wings," as 
given by the kurtosis K', for temperatures up to about 
450 OK, followed by a decrease in K'. 

All moments are the primed moments in (26), appropri­
ate to a three-dimensional vibrational space. The above 

TABLE IV. Band shapes using all statesa of V= - o. 854~2 
+ o. 0124~4. 

T(OK) t:.Eb (em-I) t:.El/{ (em-I) dS' OK' 

0 0 1879 0.030 -0.035 
50 0 1879 0.030 - 0.035 

100 -11 1900 0.017 - 0.030 
150 -57 1977 -0.030 -0.009 
200 -129 2101 - O. 096 0.024 
250 -224 2253 - 0.163 0.068 
300 -334 2418 - O. 227 0.116 
350 -459 2591 -0.283 0.158 
400 -596 2768 -0.329 0.186 
450 -740 2947 - O. 364 0.195 
500 -888 3123 -0.387 0.188 
550 -1044 3293 - O. 401 0.167 
600 -1200 3452 - O. 406 0.137 

aWell depths and 1860 cm-l for C4v structure and 5580 cm-l 

for C3v structure. Excited state has V=~2. 
bt:"E = A~ (T) - A~ (0). 
ct:"EI/2 = (2ln2)1/2(Apl/2. 

'!S' = As! (Af) 3/2 • 
OK' =Ai!(A2)2. 

J. Chern. Phys., Vol. 61, No. 10, 15 November 1974 



4116 S. Y. Wang and L. L. Lohr, Jr.: Xenon hexafluoride. III 

>- 0.08 I::: 
(fJ 

z 
W 
f-

2 
V (GROUND STATE) = - 0.854 ~ + 

0.0124 ~4 

Vi (EXCITED STATE) = ~ 2 

Z 11{l/2 = 126.5 em-I 

W 
~ 
r 0.04 « 
...J 
w 
a: 

.... -- .... 

o 0 

ENERGY (fl{l/2) 

changes with temperature result from changes in the 
Boltzmann populations for vibrational levels of the 
ground electronic state. The use of the relationshills 
given in (26) eliminate the need for explicit considera­
tion of the partition function in a three-dimensional 
space, it being sufficient to consider only a single di­
mension. The computed band shapes for a single t1u co­
ordinate are shown in Fig. 3 at temperatures of 300, 
450, and 600 oK. The only method we have for convert­
ing such a figure to one appropriate to a three-dimen­
sional space is the method of moments, but this does 
not yield an attractive figure unless many moments are 
used. The thermal shift I:1..E in the mean energy in the 
three-dimensional space is greater by a factor of 3 than 
that shown in Fig. 3, the increase in tilll/2 greater by a 
factor of 31 / 2, S smaller by a factor of 31 / 2, and K 
smaller by a factor of 3. 

The results given in Table V were obtained by solv­
ing (16) instead of (12), thus corresponding to an unhin­
dered rather than a strongly hindered pseudo rotor . The 
same potential (28) is used as before, so that there is 
still a very large radial barrier, leading to negligible 
vibrational amplitude near the origin. Thus using only 
odd-parity solutions of the one-dimensional Schrl:ldinger 

TABLE V. Band shapes using odd statesa of V= - O. 854~2 
+0. 0124~4. 

T(OK) t:.E (em-I) t:J.E1I2 (em-I) S' K' 

0 0 1085 0.052 - 0.105 

50 0 1085 0.052 - 0.109 
100 -4 1096 0.028 - O. 090 
150 -19 1141 - O. 052 - O. 027 
200 -43 1212 - 0.166 0.072 
250 -75 1301 - O. 281 0.195 

300 -Ill 1394 - O. 386 0.318 
350 -152 1494 - O. 478 0.417 
400 -196 1594 - 0.549 0.477 
450 -242 1693 - O. 603 0.486 
500 -290 1789 - O. 639 0.456 
550 -338 1882 - O. 660 0.396 
600 -386 1971 - O. 669 0.312 

aWell depths are 1860 em-I for both C4v and C3v structures. Ex­
cited state has V= ~2. 

T = 1.65 t1,p/2 
[300 OK] 

[450
0
K] 

l6000Kj 

FIG. 3. Computed band shapes 
using the indicated potential 
energy functions and assuming 
that the vibrational degree of 
freedom is nondegenerate. The 
moments of these intensity dis­
tributions are the unprimed 
moments of Eq. (22). No elec­
tronic energy trace is included, 
so that energy scale is simply 
the vibrational component of 
the excitation energy, with 
zero corresponding to the ver­
tical transition from the origin 
(not the minimum) of V to the 
origin and the minimum of V'. 
Smooth curves were drawn 
through computed pOints. 

equation (17) has a negligible effect on the one-dimen­
sional moments. The states used are those labeled HU" 

in Fig. 2. The vibrational overlap integrals do include 
angular variables, but these simply introduct Kronecker 
delta factors in the land m quantum numbers. The re­
sults in Table V differ from those in Table IV largely be­
cause the factors of 3 in (26) are now deleted. Thus till 
in Table V is smaller by a factor of 3, I:1..El/2 smaller by 
a factor of 31/2, S larger by a factor of 31/ 2, and K larg­
er by a factor of 3. 'l'he stabilization energy for the C4v 

structure is again 1860 cm-1
, but unlike the potential 

used in obtaining the results in Table IV, the stabiliza­
tion energy of the C3v structure is also 1860 cm-1, not 
5580 cm-1• 

Table VI presents results using a potential similar to 
(28), but obtained by multiplying the quartic coefficient 
by 3, so that now the C4v stabilization energy is 1860/3 
= 620 cm-1

, while that for C3v structure is 1860 cm-1• 

The trends in I:1..E and I:1..El/2 are similar to those in Ta­
bles IV and V, while S is becoming less negative, rather 
than more negative, at the higher temperatures, and K 
is decreasing rather than increasing. The shallow C4V 

well supports only four states, two even and two odd, 
below the radial barrier at ~ = 0, so that states in which 

TABLE VI. Band shapes using all statesaof V=-0.854~2 
+ O. 0372~4. 

T(OK) t:J.E (em-I) t:J.E I/ 2 (em-I) S' K' 

0 0 1090 0.087 - 0.072 
50 -4 1088 0.093 - O. 078 

100 -19 1112 0.054 - O. 055 
150 -95 1188 - O. 052 -0.010 
200 -205 1290 - 0.137 - O. 014 
250 -323 1391 - 0.176 - 0.060 
300 -433 1479 - 0.184 - 0.118 
350 - 531 1552 - 0.177 - 0.170 
400 -615 1614 - 0.164 - O. 213 
450 -683 1665 - 0.148 - O. 248 
500 -744 1708 - 0.133 - O. 276 
550 -797 1744 - 0.119 - O. 299 
600 -839 1775 - 0.107 - O. 317 

aWell depths are 620 em-I for C4v structure and 1860 em-I for 
C3v structure. Excited state has V= ~2. 
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TABLE VII. Band shapes using all statesa of V = - O. 722~ 2 

+ O. 00444~4. 

T(OK) t:.E (cm-!) t:.E1/2 (cm-!) S' K' 

0 0 2536 - 0.143 - 0.063 

50 -167 2514 - 0.145 - O. 060 

100 -201 2524 - 0.152 - O. 052 

150 -285 2591 - 0.194 - 0.010 

200 -440 2719 - O. 260 0.056 

250 -649 2886 - O. 329 0.124 

300 -888 3073 -0.389 0.184 

350 -1150 3269 - O. 438 0.236 

400 -1424 3470 - O. 479 0.284 

450 -1708 3672 - O. 514 0.328 

500 -1997 3876 - O. 544 0.369 

550 -2293 4081 - 0.569 0.407 

600 -2597 4286 - 0.592 0.441 

aWell depths are 3710 cm-! for C4v structure and 11130 cm-! 
for C3v structure. Excited state has V=~2. 

the radial motion carries over the 0h origin become pop­
ulated. 

The results in Table VII differ from the others in that 
they are based on a fitting of the potential energy curve 
in the mixed tlu-tU bending space. The stabiliZation en­
ergy of 3710 cm~l for the C3v structure at a fluorine dis­
placement of 13.6° along the flu coordinate leads to co­
efficients 

a=7.32x104erg cm-2 
(29) 

b=1.82x1021 erg cm-4 

analogous to (27). Conversion to dimensionless coeffi­
cients was made uSing the same value of {3 as before, but 
with /J. slightly larger, namely 53.8 amu. We obtain a 
potential 

VW = - O. 722~2 + O. 00444~4 (30) 

in which ~ is related to x by multiplying ~ by 4: 98 x 10-10 

cm. If the quartic coefficient is multiplied by 3 yielding 
0.01332, the resulting potential (10) implies stabiliza­
tion energies of 3710/3 = 1237 and 3710 cm- l for C4v and 
C3v structures, respectively. Such a potential is close 
to that used in obtaining the Table IV results, so no cal­
culations were performed. Direct use of (30) as (10) im­
plies stabilization energies of 3710 and 3710x 3 = 11130 
cm- l for C4v and C3v structures, respectively. Although 
this is an extreme case, the corresponding band shape 
parameters are given in Table VII and are much like 
those in Table IV except that the parameters show a 
greater sensitivity to temperature. 

Throughout this section it has been assumed that the 
electronic transition moment (3) is independent of the 
nuclear displacement coordinates. This assumption 
does not hold for the large amplitudes of vibrational mo­
tion associated with thermally populated excited levels, 
particularly as the mixing of xenon 5s and 5p orbitals 
is directly related l to the displacement in flu space. 
However as the 5s to 5P excitation is dipole allowed for 
0h symmetry, the variation of (3) with displacements in 
flu space is hopefully not as important as the vibrational 
overlap integrals in determining the band shapes. To 
the extent that the assumption of a constant electronic 

moment (3) holds, the results of this section are appli­
cable to the transitions to the mostly spin-singlet and to 
the mostly spin-triplet excited states (see Sec. II). 
Thus identical band shapes are predicted for the two 
transitions, the intensities differing because of different 
electronic factors (6). The basiC reason that the mean 
excitation energy shifts to the lower values with increas­
ing temperature is that the direction of the anharmon­
icity in the mixed quadratic-quartic potentials (10) is 
such that the thermally averaged root-mean-square dis­
placement in flU space decreases, so that the molecule 
is on the average closer to the origin of the curves in 
Fig. lor 2, resulting in a diminished excitation energy. 

It should be noted that a complete treatment of the 
electronic band shapes would include the effects associ­
ated with changes in geometry and/or force constants for 
the remaining 12 modes of molecular vibration. While 
these changes are hopefully small for some of these 
modes, there is no basis for assuming that changes as­
sociated with the totally symmetric all mode can be ig­
nored. The resulting contribution to the spectral mo­
ments and their thermal variation can be directly incor­
porated in (25). We cannot use the crystal-field model 
as presently formulated to generate potential energy 
curves in alg or other bond stretching spaces, as it does 
not include a repulSion between Xe6• and F l

- ions at short 
separations. However, our extended Hiickel semi-em­
pirical molecular orbital calculations22 for XeF 6, sim­
ilar to those reported23 ,24 for XeF 2 and XeF 4, suggest 
that the equilibrium bond length may be roughly 0.05 'A 
shorter in the al,flu excited orbital configuration than in 
the al; ground state configuration. Both the all and the 
flu orbital are antibonding, with the fraction of 5s char­
acter in the all orbital being roughly 28% at the calcu­
lated ground state bond length of 2. 2 'A, and increasing 
with decreasing bond length, while the fraction of 5p 
character in the tlu orbital is roughly 75% at the same 
separation, but decreasing with decreasing bond length. 
Recent ab initio calculations25 with a large Gaussian ba­
sis set yield 22% 5s and 62% 5p in the highest occupied 
all and lowest occupied flu orbitals, respectively, at the 
observed bond length of 1. 89 'A. The photoelectron spec­
tral bandwidth26 is about 0.3 eV at half-height, indicat­
ing an appreciable change in bond length accompanying 
the removal of an electron from the alg orbital. How­
ever we have not as yet attempted to estimate the con­
tributions from the all stretching mode to the spectral 
moments. 

V. SUMMARY 

It has been the object of this series of papers l ,2 to use 
a crystal-field model to provide a semiquantitative basis 
for the model of the electronic structure of xenon hexa­
fluoride proposed by Gillespie6 and developed by Bartell 
and Gavin,5 namely the stereochemical importance of the 
electron lone pair as manifested in the pseudo-Jahn­
Teller deformations. The potential energy functions cal­
culated from the crystal-field model are crude, but are 
hopefully representations of essential structural and 
spectral features. Our calculated intenSity of distribu­
tions and their variations with temperature resemble 
those observed3 by Claassen, Goodman, and Kim, lend-
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ing support to the interpretation of the properties of xe­
non hexafluoride in terms of the pseudo-Jahn-Teller 
model, although the electronic isomers model of Good­
man4 cannot be excluded. 

Note added in proof: A recent multiple-scattering 
XU! studr7 of the electronic structure of XeFe reported 
an orbital energy difference of 3.42 eV between the un­
occupied tht orbital and the highest occupied atg orbital 
of an assumed 0h symmetry molecule. This value is 
close to our assumed "best choice" of 3.5 eV for the 
t.E5s _5/> parameter. X-ray photoelectron spectral data2B 

have also been recently reported for Xe, XeF 2, XeF 4, 

XeFa, and XeOF4 • One conclusion is that the charge on 
the fluorine is about - O. 24e in all of the molecules. 
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