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Half-Space Neutron Transport with Linearly Anisotropic Scattering 
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The method de,:eloped by Case is used to solve four time-independent, one-speed problems for 
neutron transport In a homogeneous medium where the scattering function is linear in the cosine of 
the scattering angle. The solutions to the albedo, Milne, Green's function, and constant isotropic 
source proble~ for a ~alf-space are facilitated by the use of half-range bi-orthogonality relations 
between the eIgenfunctIOns of the homogeneous transport equation. Expressions ~re also derived 
for the emerging angular densities and the densities and net currents on the surface of the half-space. 

1. INTRODUCTION 

THE Case approach to solving neutron transport 
problems utilizes an expansion of the neutron 

angular density in terms of the eigenfunctions of the 
homogeneous transport equation. The set of eigen­
functions was first shown to be complete for the 
case of isotropic scattering of one-speed neutrons.1 

Using these results, answers to many problems were 
obtained.1

-
s The completeness theorem for one-speed 

neutrons was extended to the case of anisotropic 
scattering by Mika6 and explicit results for the Milne 
problem with linearly anisotropic scattering were 
found by Shure and Natelson.7 

Recently, orthogonality relations between the 
eigenfunctions were observed8 which simplified the 
solution of one-speed problems with isotropic scat­
tering. An extension to the case of linearly aniso­
tropic scattering was also indicated at that time. It 
is this approach which is followed here. 

An attempt towards further generalization has 
recently been Inade.9 It appears that the eigen­
functions generally obey a set of bi-orthogonality· 
relations of the same form as mentioned in Ref. 8. 
If the scattering function is of order N in the cosine 
of the scattering angle, the eigenfunction lP.(J.L) and 
its "adjoint" cP.(J.L) differ by a term tCI'B(v, J.L), 
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where B is a polynomial of order (N - 1) in both 
variables. A rigorous proof of these two statements 
is still lacking. In any event, the computation of 
B(l', J.L) would in general be very tedious. Only in two 
cases is the situation comparatively simple: in that 
of linearly anisotropic scattering (N = 1) and in 
that of a nonabsorbing medium with N = 2.9 We 
will restrict ourselves to the first case. 

Sections II-IV deal with an absorbing medium. 
After presenting the bi-orthogonality relations (Sec. 
II), we apply them to four standard half-space 
problems (Sec. III): the albedo, Milne, Green's func­
tion, and constant isotropic source problems. A 
special calculation (Sec. IV) leads to simplified 
formulas for the emerging angular densities and 
related quantities. In Sec. V, the first three problems 
are solved for a nonabsorbing medium. 

II. DEFINITIONS AND BI-ORTHOGONALITY 
RELATIONS 

The transport equation to be solved, written in 
the usual notation, 6.7 is 

[J.L :x + 1 J~(X' J.L) 

C 11 
= '2 -1 [1 + bJ.LJ.L']~(X, J.L') dJ.L' + q, (1) 

where ~(x, J.L) is the azimuthal integral of the angular 
density. Here -1 ~ b ~ 1, and we choose C < 1, 
deferring the case C = 1 until Sec. V. For the homo­
geneous equation, separation of variables is achieved 
through the ansatz 

(2) 

where the eigenfunctions lP.CJ.L) are normalized such 
that 

(3) 

1939 
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There are two kinds of eigenfunctions. The con- and of the moments of the latter, 
tinuummodes, belongingtotheinterval-l < v < 1, 1 

are given by7 'Y" = I 'Y(p.)p," dp,. 

<P.(p.) = lev d(vp,) P [(v - p,fl] + }..(v)M.v - p,), 

}..(v) = 1 - ~ P 1~ d(vp,) dp, 
2 -1 V - P, 

(4) 

= d(v2)[1 - ev tanh-1 v] - b(l - c)V, (5) 

d(vp,) = 1 + b(l - c)vp,. (6) 

{The symbol P in Eq. (4) is a reminder that we must 
take the Cauchy principal value of any integral over 
v or p,.] Furthermore, there are two discrete modes, 

In addition, we need the identities7 

X(z)X( -z) = A(z)/(v~ - !)A( co), 

X(vo)X( -vo) = - A' (vo)/2vo A( co ), 

X2(0) = l/v~A( co), 

11 'Y(p,) d(p.2) dp, = X(z), 
o p, - Z 

(16) 

(17) 

(18) 

(19) 

(20) 

tfJ±(p.) = levo d(±vop,)/(vo T p,), (7) P 11 'Y(p,) d(p.2) dp, 
6 ~ 0 v-p, belonging to the two real roots, ±vo.' of~the equation 

A(±vo) = 0, (8) 
where 

A(z) = 1 - ~ 11 d(zp,) dp, 
2 -1 Z - p, (9) 

= d(i)[l - cz tanh-1 (l/z)] - b«( --c)2i. 

It will be useful to know the derivative of A(z) 
at z = Vo: 

A'( ) - cd(v~) (1 - c)d(3v~) (10) 
Vo - vo(v~ - 1) vod(v~)' 

We also infer from Eq. (9) that 

A( co) = (1 - c)(l - 1cb). (11) 

The value of X(v) is related to the boundary values of 
A(z) on the cut (-1, 1) by the equation 

A ±(v) == ~!! A(v ± ie) (12) 

-1 < v < 1. 

As was pointed out in Ref. 8, instead of orthog­
onality relations we now have bi-orthogonality rela­
tions for the eigenfunctions 'P.(p,) and 'P±(p,), with 
"adjoints" of the form 

cP.(p,) = tfJ,(p.) + !evB, 

cP±(p,) = tfJ±(p,) ± !evoB. 
(13) 

These relations are proved in much the same way as 
those for isotropic scattering, and at the same time 
the value of the constant B is derived. 

The method involves the use of the functions7 

1 [1 11 A +(p,) dp, ] 
X(z) = 1 _ z exp 271'i 0 In r(p.} p, _ z' (14) 

too) _ cp, X+(p,) _ cp, T(p,) 
'YV'- - 2 A +(p.) - 2 A -(p,) 

(15) 
= !cp,[A( co )(v~ - l)X( - p,)rt, 0 ~ p, ~ 1, 

= -(2/ev)}..(vh(V), 0< v < 1, (21) 

11 'Y(p.) d(p.2) dp, = lim [-zX(z)] = 1, 
o .-+0) 

(22) 

where 

'Y-l + b(l - chI = X(O), 

d(v~) d(;f) = (1 - c)h~A( co), 

(23) 

(24) 

(25) 

These identities help us to show that bi-orthog­
onality in 0 < p, < 1 among the set 'P+(p,), tfJ.(p,), 
o < v < 1, and the adjoints is produced by the weight 
function (vo - p,h(p,). We also find that B must be 
chosen as 

B = b(l - c)(vo - ii)/d(voii). (26) 

Let us note that the quoted weight function is 
closely related to Chandrasekhar's H-function7: 

(vo - p,h(p,) = !cp,[A( co )r1l2H(p.). (27) 

The bi-orthogonality relations, and a set of related 
formulas useful in applications, are listed below 
(where 0 < v < 1 and 0 < v' < 1). In order to save 
space, we use in some of the formulas the symbol 
~ for either v' or vo. Correspondingly, f,C~(p,) denotes 
either a continuum eigenfunction or 'P+(p,). Products 
of two singular eigenfunctions will be understood 
in the same sense as in Ref. 8. 

f tfJ.(p.)cP,,(p.)(vo - p,h(p.) dp, 

= (vo - vh(v)A+(v)A-(v)6(v - v'), (28) 

f tfJ,(p.)cP+(p.)(vo - p,h(p.) dp, = 0, (29) 
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11 1P+(P)iP.(P)(1I0 - p}y(P) dp. = 0, 

[ 1P+(P)iP+(P)(1I0 - p.}y(P) dp. 

= _(!cpo)2Xevo) d(v~), 

11 1P-.(P)iPe(P)(vo - p.}y(P) dp. 

_ (1)2 iPg( -V) 
- 2"CP .A.( (X) )(VO - V}y(v) , 

[ 1P-(P)iPe(P)(vo - p.}y(P) dp. 

= cp~X( -VO)iP+( -~), 

{ IPf(P)iP-.(P)(vO - p.}y(P) dp. 

_ (~)2 lPe( -V) 
- 2 .A.( (X) )(vo - v}y(v) , 

11 1P-.,(P)iP-.(P)(vo - p.}y(P) dp. 

_ ~ _1_ [~ 11'.' (v) _ cp' iP.,(v) ] 
- 2 .A.( (X» 2 (VO - v}y(v) 2 (vo - v'}Y(v') , 

[ 1P-(p.)iP-.(p.)(vo - P}YCp) dp 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

- ~ [~ 11'+ (v) - 2 X(- ) - (.)] - 2 2.A.( (X) )(vo _ v}y(v) Vo Vo IP+\V ,(36) 

11 iPe(P)(vo - p}y(P) dp. 

= leW - c)/.A.( (X)}yo d(voiJ), (37) 

11 fP-.(P)(vo - p}y(P) dp 

Cp 1 [cp 1 l-C] 
= '2 .A.( (X» '2 (vo - v}y(v) - "Yo d(vov) , (38) 

11 iPe(P)(vo - p}y(P) dp. 
o p. 

= !c[.A.( (X) )r1l2 (1 + B~), (39) 

11 fP-.(P)(vo - p.}y(P) dp. 
o p 

C{I-BV CV 1 } 
= 2 [.A.( (X) )]112 - '2 .A.( (X) )(vo - v}y(v) • (40) 

Through the use of these relations, we can express 
the results for typical half-space problems in terms 
of the functions X or "Y and the moments of. the 
latter. The numerical evaluation of these functions, 
for any given c and b, may be performed by iteration 
of the nonlinear integral equation of Shure and 
Natelson.7 

m. SOLUTIONS TO STANDARD HALF-SPACE 
PROBLEMS 

We wish to determine the angular density for the 
(a) albedo, (b) Milne, (c) Green's function, and (d) 
constant isotropic source problems, all for the half­
space x ~ 0 and c < 1. These problems are defined 
by the following source and boundary conditions: 

{

O' (a),(b) 

q = o(x - xo)o(P - /lo), (c) (41) 

1, (d) 

[ 
{
bounded, (a), (c), (d) 

!/t(x, p)]., ...... ~ 
cp_(p)e"'!··, (b) 

(42) 

!/teO, p) = {o(P - Po), p > 0, (a) 

0, p. > 0. (b)-(d) 
(43) 

The desired solution is expanded in terms of the 
eigensolutions (4) and (7). If q ¢ 0, one further term 
has to be added, namely the solution of the cor­
responding infinite-medium problem. Thus we see 
that the conditions (41) and (42) are met by the 
expansion 

!/t(x, p) = t(x, p) + a+IP+(p)e-:C!·· 

(44) 

where 

0, (a) 

t(x, p) = 
IP-(p)e"'" , (b) 

(45) 
G .. (xo 1 Po ~ X, P.), (c) 

1/(1 - c). Cd) 
The function G .. (xo, P.o ~ x, p.) is the solution 

to the infinite-medium Green's function problem for 
linearly anisotropic scattering6

: 

G .. (xo, Po ~ X, p.) 

= 21P",(P0)1P",(p)e- I.,-.,.lh. /cp~A'(vo) d(v~) 

+ 11 1P.,,(Po)IP.,.(p.)e-I.,-.,oll. d 
o v.A.+(v)r(v) v, (46) 

The boundary conditions (43), applied to (44), 
lead to an equation of the form (for p. > 0) 

a+IP+(p) + { A(v)cp.(P) dv = !/t(P), (47) 

from which the expansion coefficients a+ and A (v) 
must be determined. Here !/t(p) is a known function, 
namely 
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8(p. - po), 

1/I(p.) == 1/1(0, p) - teO, p) 1/I(p) = -IP-(p.) , 

(a) 

(b) 

-G",{xo, Po -I> 0, p), (c) 

-1/{1 - c). (d) 

(48) 

Use of the half-range bi-orthogonality relations of Sec. II immediately gives the following results: 

a+ = R/[ _(lCVO)2X(VO) d(v~)], (49) 

(vo - Poh(p.o)<p+(p.o), (a) 

- ev~X( -vo)$+( -vo) , (b) 

[ 2 ( ) -".1., _ IP- po.e 

R= 
- X( -vo)IP+( -vo) A' (vo) d(v~) 

cv IP+ -v IP-v' lAo e , 11 ( J -(') ( ) -".;v' ] 
+ 0 "2 A( co )(vo - v'h(v') v' A + (v')A-(v') dv , (c) 

_ evo 1 
(d) 

2 A( co ho d(vov) , 

A(v) = S/[(vo - vh(v) A + (I') A-(v)] , 

(vo - Poh(lAo)cP.(po) , (a) 

- cvovX( -vo)cP+C -v), (b) 

S= 

[ _ 21P-(po)e-"'!" 
- vX( -vok+( -v) voA' (vo) d(v~) 

+ ev IP. -v . IP-p' lAo ed' [( J -(') ( ) -".1.' ] 
o 2 A( co )(vo - v'h(I") v' A + (v')A (v') I' , (c) 

ev 1 
- :2 A( co ho d(vov) 

(d) 

j(x) {l IAt(x, p) dp. 
The above expansion coefficients for the Milne prob­
lem were obtained in a different way by Shure and 
Natelson.7 

+ (1 e{ a+voe-"Iv. + 11 A(I')ve-Z
{> dv l 

(50) 

(51) 

(52) 

The solutions of the four problems are now com­
plete since the angular density is known from (44), 
(45), and (49) through (52). The neutron densities 
and net currents, defined by 

p(x) = {l 1/I(x, p) dp, 
(53) 

With the above results, one is able to obtain an 
expression for the Milne problem extrapolation dis­
tance, tOl that is the distance from the surface of 
the half-space at which the asymptotic density van­
ishes. We see that 

j(x) = [11 1A1/I(x, p) dp, 

are easily obtained by integration of (44) and use of 
(3); 

p(x) = {l I(x, p) dlA 

vanishes at x = -to, with 

to = lvo In (_a:;:l). 

Equations (49) and (50)(b) and the identity 

<p+C -vo) = fc d(v~) d( -vov)/d(v~), 

lead to 

(54) to = tVa In [-X(vo) d(vov)/X( -vo) d( -vov»). 

(55) 

(56) 

(57) 

(58) 
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IV. SURFACE QUANTITIES 

For the emerging angular distribution from the half-space, we need to evaluate the expansion (44) for 
p. < O. Its value for p. > 0 is given by Eq. (43). The switching from positive to negative p. is performed by a 
trick; we multiply both sides of Eq. (47) by cp_~, (p.) (vo - p.h(p.)dp. and integrate. Equation (34) immediately 
helps us to the general result (for p. > 0): 

1/;(0, - p.) = f(O, - p.) + (:J2 A( co )(vo - p.}yCll-) f 1/;CIl-')cp-~CIl-')(vo - p.'}YCll-') dp.'. (59) 

For our four problems, the integral here, as well as the integrals yielding the surface densities and net cur­
rents, are all contained in the formulas of Sec. II. We thus arrive at the following results9

: 

c
2 ~ A( ex> )(vo - p.ohCll-o)(vo - p.hCll-)cp-p.(p.), 
P.o cp. 

(a) 

4vo A( OJ )X( -vo)(vo - p.}YCll-)cp+CIl-), 
cp. 

(b) 

>/1(0, -p.) = ( ) ( ){ 2 2 2A( 00 )X( -va) ( r ( ) -x./ •• 
Vo - p. 'Y P. - - AI ( ) d( 2) fP+ -P.o fP+ P. e cVo cp. Vo Vo 

(60) 

+ [ fPv( - p.o)CPv(p.yx.lv d} 
o p.(vo - v}y(v)A+(v)A (v) v , 

(c) 

~ (vo - p.}y(p.). (d) 
cp. 'Yo d(voii) 

2 
(a) - [A( ex> )]!(vo - p.oh(p.o)(1 - Bp.o), 

CP.a 

2vo[A( co )]tX( -vo)(1 + Bvo), (b) 

2 ( ) -x.h. 

p(O) = 2[A( 00 )]lX( -vo)(1 + Bvo) fP+ A-; t) e
d

( 2) 
cVo va Vo 

(61) 

+ Ac[A(co)r! [fPv(-p.o)(l +pv)e-
xo

/
v 

dv, 
2 0 (vo - v}yev)A (v)A (v) 

(c) 

~ ['Yo[A( co ~]i devoii) - 1]. 
(d) 

2(1 - c)(vo - p.o}YCll-o)jc'Yo d(voii), (a) 

- 2v~(1 - c)X( -vo)ho d(voii), (b) 

j(O) = - c 2X fP+ -P.o e 1 { 2 ( ) -xolvo 
- 'Yo d(voii) ( -va) cA' (vo) d(v~) (62) 

+ ~ fPv -P.o e d [ () -Xolv } 
o 2 A( 00 )(vo - v}y(v) A + (v) A (v) v , 

(c) 

- 2(vo - ii)jcd(voii). (d) 

Equation (60)(b) was obtained earlier by Shure 
and Natelson.7 Equation (60)(a) agrees with the 
result of Chandrasekhar10 after the notation is con­
verted.7 

The result (60)(a) for the albedo problem shows 
also that 1/;(0, - p.)j P.o is a symmetric function of 
p. and P.o, in agreement with the reciprocity theorem.lo 

Moreover, a more general form of this theoremll 

leads to the conclusion that >/1(0, - p.) for the 
Green's function problem differs from the value of 
1/;(xa, - p.) j P.o for the albedo problem only in the 
interchangement of the variables p. and p.o. This is 
verified by Eq. (60)(c) and the albedo problem 
results. 

10 S. Chandrasekhar, Radiative Transfer (Dover Publica­
tions, Inc., New York, 1960). 11 K. M. Case, Rev. Mod. Phys. 29, 651 (1957). 
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V. THE NONABSORBING MEDIUM 

This case is treated separately because for c = 1 
the two zeros z = :±-Po of A(z) merge at infinity. 
When c ~ 1, we observe that 

Po ~ [(1 - c)(3 - b)r1l2 
, 

'Yo ~ 1, 

'Y-1 ~ v3. 

(63) 

The orthogonality relations of Sec. II must be 
divided by Po before taking the limit c ~ 1. With the 
addition of some auxiliary formulas, the set of needed 
relations becomes 

{ 'P.{;.t)'P.,{;.t)-y{;.t) dp. 

= 'Y(p)A +(v)r(p)o(p - pI), 

f 'P-,{;.t)'P.,(p.)-y{;.t) dp. = !i'P.,(-p)h(p), 

{ 'P-.{;.t)'P-.,{;.th{;.t) dp. 

= !p''P,(p'{'Y~') - 'Y(p)] , 

f 'P.{;.t)-y{;.t)p. dp. = -!p, 

(64) 

(65) 

(66) 

(67) 

(68) 

For the (a) albedo, (b) Milne, and (c) Green's 
function problems, f(x, p.) will be taken as follows: 

fO, 

f(x, p.) = ~ if;2(X, p.), 

(a) 

(b) 

lG!,(xo, P.o ~ x, p.). (c) 

(75) 

By the choice of (75)(b), the solution of the Milne 
problem has been renormalized to unit net current. 
The Green's function for the infinite medium is 
chosen such that its value is finite at x ~ + (Xl, 

namely 

G!,(xo, P.o ~ x, p.) = i( if;2(XO' - p.o) + .,. , x > Xo, 

if;2(X, p.) + ... , x < Xo, 

(76) 

where the dots indicate the same integral as in Eq. 
(46). 

The final results for the three problems then 
follow through application of the above formulas 
and are given in the following list: 

at = 
3ii, 

(a) 

(b) 

1
2'Y{;.tO), 

3 i
t, () -"0/.' 

3- p 'P-.' 1-'0 ed' () 
p - 2 0 'Y(v')A +(p')A -(pI) P, c 

'Y{;.to)'P.{;.to)h(p)A + (p)r(p) , (a) 

- 3p/4'Y(p)A+(p)A-(v) 

(77) 

{ 'P-.(p.)-y{;.t)p. dp. = !p - !p3h(p), 

{ 'P.{;.th{;.t) dp. = 0, 

{ 'P-.{;.t)-y{;.t) dp. = !/h(p), 

(b) (78) 

(69) A(p) = 3 { 
- 4'Y(p)A+(p)A-(p) v 

(70) 

i1 d 
'P.{;.t)-y{;.t) ~ = !v3, 

o p. 
(71) 

(72) 

Nothing here depends upon the anisotropy pa­
rameter b. All the functions involved and all the 
formulas are the same as for isotropic scattering. 

Since the two discrete modes used before have 
now become identical, we choose a new basis which 
includes the following two solutions of the homo­
geneous transport equation: 

if;l(X, p.) =!, if;2(X, p.) = U(1 - ib)x - p.]. (73) 

The expansion (44) is replaced by 

(a) 

(b) (80) 

(81) 

if;(x, p.) = lex, p.) 

+ tal + { A(p)'P.{;.t)e-ZI' dp. 

Again the results (most of them known) are the 
same as for isotropic scattering. The only term de­

(74) pendent upon b is the f(x, 1-') in the cases (b) and (c). 
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This agrees with the general observation7 that y;(x, JL) 
and the corresponding solution for b = 0 differ only 
by a term !bjx if the medium is nonabsorbing. 

The asymptotic part of the density for the Milne 
problem is 

Pa.(x) == (3 - b)x + 3ii, (82) 

so 

(83) 

This result is well-known: (1 - lb)-l is the transport 
mean free path and ii = 0.710446. 
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