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In this paper, extensions to conventional stochastic estimation techniques are presented, 
whereby uncertainties in individual estimates may be deduced. Test applications to time series 
of velocity measurements in a turbulent boundary layer confirm the fidelity of the 
uncertainty estimation procedure and illustrate how the optimal choice of stochastic estimation 
model can be strongly dependent on the event upon which the average is conditioned. 
They also demonstrate how stochastic estimations may be refined to yield more accurate 
descriptions of particular coherent motions, and how they can reveal the existence of 
rare events, different in statistical character to their more frequent counterparts, which might 
otherwise be undetected by conventional stochastic estimation. 

I. INTRODUCTION 

Stochastic estimation has recently been introduced as a 
procedure for approximating turbulent conditional aver- 
ages and has been employed to identify and describe co- 
herent motions of turbulent flow. Its applications have 
ranged from characterizing the conditional eddies of iso- 
tropic turbulence as vortex rings (Adrian’*‘) to describing 
the spatiotemporal evolution of the turbulent velocity field 
during conditionally detected events in flat-plate turbulent 
boundary layers ( Guezennec3 and Choi and Guezennec4). 
Related applications of stochastic estimates include de- 
scriptions of the dominant structures in jet mixing layers 
(Cole et aL5) and characterization of the turbulent mo- 
tions of turbulent pipe flow (Hassan et al. 6, as large eddies 
of azimuthal vorticity. Evaluations of stochastic estimation 
as an alternative experimental method to conditional aver- 
aging of single- and multipoint measurements have been 
undertaken in a range of turbulent flows by Adrian et al.’ 
In addition, the technique has been proposed as an efficient 
means of processing three-dimensional imaged flow fields 
in order to make quantitative inferences about their mo- 
mentary character (Adrian’), and has been implemented 
for the case of two-dimensional fields in fully developed 
channel flow by Nishino and Kasagi.’ 

Stochastic estimation has been used for analysis of 
three-dimensional databases describing instantaneous ve- 
locity and pressure fields in low Reynolds number turbu- 
lent flows, for which numerical simulation of the Navier- 
Stokes equations is possible. When postprocessing such 
databases, the interpretation of vast quantities of spa- 
tiotemporal information is poorly suited to conventional 
tools for turbulent structure identification and techniques 
such as stochastic estimation appear to hold great promise. 
In this application, Adrian and Main” have used linear 
stochastic estimation to identify the flow features that con- 
tribute most strongly to generation of Reynolds stress in 
homogeneous shear flow, while Moin et al. ‘I have charac- 
terized the motions that play the same roles in turbulent 
channel flow. 

The stochastic estimation techniques employed in the 
aforementioned studies are based on the premise that sta- 
tistical descriptions of events of interest (which may be 
infrequent or of high dimension) may be obtained from 
data sets with greater ease and better statistical conver- 
gence if those descriptions are modeled on the behavior of 
all possible events contained within the data set. The mod- 
els that have been employed are linear, quadratic, or cubic 
polynomials, the modeling parameters of which are ob- 
tained by least-squares fitting. This form of stochastic es- 
timation procedure appears to be well suited to character- 
izing rare events in fields, which may be modeled reliably 
by least-squares fits of polynomial conditional-average 
models, when the statistics of those events are closely re- 
lated to those of more frequent events. The purposes of this 
paper are to develop guidelines for ascertaining when sta- 
tistical events conform to these requirements through ap- 
plication of refined forms of stochastic estimation to char- 
acterizing features of boundary-layer turbulence. 

II. THEORETICAL BASIS FOR STOCHASTIC 
ESTIMATION 

As described in detail by Adrian et al.’ and 
Guezennec,3 stochastic estimation is a technique for mak- 
ing an estimation of the conditional average of some quan- 
tity g given the event E. Following the notation of Adrian 
et al’ this conditional average is expressed as (g[ E), de- 
fined as 

klE)= j- f$&&s 
which employs statistical information about all possible 
values of the quantity g. Here, f(E) is the probability den- 
sity function for the event vector E, upon which the occur- 
rence of g is conditioned, and f(g,E) is their joint proba- 
bility density function. The quantity g is usually taken as 
the component of g deviatoric from its temporal or spatial 
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mean. The integral expression in ( 1) is typically modeled 
in the general form of a series of positive powers of E( x, t), 

as 

(gi(x+r,t+T> I E(W) 

+Dijkl(r,T)Ej(x,t)Ek(x,t)EI(X,t) + * * * . (2) 

For any values of temporal and spatial displacements r and 
7, this model of (gi(x+r,t+r) (E(x,t)) has obvious phys- 
ical plausibility as a Taylor series expansion about gj(x,t) 
in E(x,t) space, providing the event vector E(x,t) (or its 
deviation from its mean) may be treated as differential in 
scale. When it is of larger scale, the model is effectively a 
polynomial of positive powers of E(x,t), which may cap- 
ture the physical attributes of particular turbulent condi- 
tional averages with varying degrees of success, depending 
on the displacements r and 7, and depending on the statis- 
tical nature of the flow in question. A motivating factor for 
modeling of this kind is that when the distributions of the 
data and event vectors about their respective means are 

I 

jointly normal, the optimal estimate (in a least-squares 
sense) of the data vector is a linear scaling of the event 
vector.12 Thus the inclusion of nonlinear terms in the sto- 
chastic estimation model may be viewed as recognition that 
real distributions of turbulent data and event vectors are 
not jointly normal, in which case the least-squares proce- 
dure may not be the most appropriate minimization. When 
incorporated in practical estimation procedures, the power 
series is truncated at low orders. For example, in the stud- 
ies of Adrian et a1.,7 all terms beyond the linear one are 
discarded; the implementation of Guezennec3 includes 
terms as high as the quadratic and cubic. 

The coefficients of the stochastic model are deduced by 
a maximum likelihood estimation. Given a probability den- 
sity function for the deviation of data from the conditional 
average model, an estimate is made of the set of coefficients 
for which it is most likely that the data existed. Following 
standard developments of the theory of maximum likeli- 
hood estimation,13 it can be shown that the model coeffi- 
cients may be found by a minimization of the function 

N 

z( 

gi(n)--Aj(r,T) -Bij(r,T)Ej(B>-Cfjk(r,T)Ei(n)Ek(n) -**a p 

)* 
(3) 

?I=1 a(n) 

The minimization is carried out over all members of an 
ensemble of N data gi( n ) , evaluated at x + r, t + 7, for the N 
events E(n), evaluated at x,t. Here, p is the negative log- 
arithm of the probability density function for the deviation 
of data from the conditional average model and o(n) is the 
standard deviation of each gi(n), E(n) measurement pair. 
Typically, o(n) is chosen as uniform over all members of 
gi( n) and E(n), with p assumed to take a Gaussian distri- 
bution for all r and r. This particular set of assumptions 
corresponds to the least-squares minimization procedure, 
in which case Ai(r,r) is zero when gj is the component 
deviatoric from its mean. 

The least-squares minimization procedure corresponds 
to a maximum likelihood estimate of the stochastic model 
parameters if the deviations of data from the estimate are 
independent and follow a normal distribution. Although 
normalcy is often a useful approximation to the distribu- 
tion of turbulent measures about their means, it is rarely an 
accurate model. The condition of joint normalcy between 
turbulent data and event measures can be more difficult to 
satisfy-many turbulent probability density functions ex- 
hibit skewness and the tails of these distributions are often 
very different in form from Gaussian ones.14 This point is 
central to the issue of accuracy in stochastic estimation, 
since it is often in estimation of rare events within the tails 
of distributions that methods that perform more reliably 
than conditional averaging appear to be most useful. An- 
other difficulty that arises in deployment of any maximum 
likelihood estimation is the presumption that individual 
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deviations of data from the optimal fit (the stochastic es- 
timate) to those data are independent. The recognition of 
coherence in turbulent motions over a wide range of scales 
implies that deviations of data from low-order models are 
likely to retain some degree of organization and that such 
deviations are therefore not strictly independent. This 
shortcoming arises because decomposition of fields into 
simply a mean and a turbulent component is not entirely 
satisfactory, and proposals such as decomposition by class 
of phase-space structure (Fargel’) appear to offer the hope 
of retaining dynamically meaningful information in which 
deviations from a class mean are more likely to be inde- 
pendent. However, until better methods are available, the 
issue of independence of individual deviations of data from 
means seems unavoidable in providing simple statistical 
characterizations of turbulent motion. What is also of con- 
cern is how one should make a judicious choice of an ap- 
propriate stochastic model and maximum likelihood pro- 
cedure for the accurate estimation of data that follow non- 
normal distributions. An approach that provides guidance 
in making this choice, and in assessing the degree of con- 
fidence to be placed in an estimate, is presented in this 
paper. 

Ill. ACCURACY ASSESSMENT IN STOCHASTIC 
ESTIMATION 

In the applications of stochastic estimation discussed 
in the Introduction, the stochastic estimate is modeled as a 
smooth function of the event vector. The coefficients of the 
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stochastic estimate are evaluated independently for differ- 
ent displacements in time and space. However, an estimate 
of a conditional average at a given event could be modeled 
just as plausibly as a smooth function over small temporal 
or spatial displacements as it could over displacements in 
event vector space. This two-dimensional smoothness may 
be exploited by comparing estimates for the same time/ 
position and event, based on modeling in event vector 
space and on temporal/spatial modeling. Close agreement 
between estimates obtained from modeling in different di- 
mensions would be consistent with accuracy in both (i) 
models of the variation in time/space of the stochastic es- 
timate at a given event and (ii) models of the dependence 
of the stochastic estimate on the event vector at a given 
time and position. When the displacements in time or po- 
sition are small and readily modeled by simple functions, 
the comparison of estimates for the same time/position and 
event provides a test that is indicative of the adequacy of 
the event vector model at those events used to make the 
comparison. Accurate estimates based on faithful event 
vector models applied at adjacent times or positions would 
be consistent with a smooth variation of the estimate with 
time or space and would lead to small discrepancies in the 
comparison. Conversely, stochastic models that described 
adjacent positions in event vector space with quite differing 
degrees of accuracy would produce erratic variations of 
conditional-average estimates with time/space, revealing 
appreciable discrepancies in a comparison of the kind pro- 
posed. In this way, the smoothness of the estimate with 
both temporal/spatial variation and variation over the 
event vector serves as a guide to the adequacy of stochastic 
modeling. 

A simple method of monitoring the smoothness of the 
stochastic estimate of a conditional average is through 
comparison of (i) the estimate for a displacement of 27 (or 
2r), given the event E, with (ii) the estimate for displace- 
ment r (or r), given the estimate at displacement r (or r) 
conditioned on the event E. These single-step and two-step 
estimates are subsequently referred to as (81 E) t and 
(glE),. The d ff i erence between the two estimates is a con- 
venient indicator of the modeling truncation error for the 
particular displacement chosen; this technique enjoys 
widespread use in controlling step size in numerical com- 
putations. 

For simplicity, we first consider this comparison of 
estimates as a function of temporal resolution. If the trun- 
cation error A is taken as 

and, for displacements r and r, (&I E) is modeled as 

Mx+r,t+T> I E(W)) =Mr,d +Bq(r97)E’(xJ) + * * *) 

then the single time-step conditional average (gl E) 1 is 
simply 

kjb+r,t+27) I E(w)) 

=Aj(r,27) +Bii(r,27)Ei(x,t) + *a. . (4) 

The two-step conditional average (gl E)2 is written as 

Cdx+r,f+27) 1  kkx+r,t+-r) I Wx,t) > ), 

and may be modeled by an expansion of gi(x+r,t+2r) in 
(gj(x+r,t+r) IE(x,t)) space, taking the form 

k(x+r,t+27) I Mx+r,t+T) I Wx,t))) 

=f?(r,T) +Q&T) [Aj(r,T) 

+Bjk(r,7)Ek(X,t)+“‘]+“’ . (5) 

In general, the coefficients P, Q, etc., bear no simple rela- 
tion to the stochastic estimation coefficients A, B, etc., and 
must be determined by a second minimization for which an 
assumption about the distribution of gi( x + r, t + 27) about 
its conditional average estimated at x+r,t+T must be 
made. However, when data and event vectors are the same, 
as in the time-delayed conditional average of (u(x,t 
+ r) I u (x, t) ), the coefficients of each expansion are iden- 
tical at each order. The estimate of the truncation error for 
a displacement in time of 27 may be expressed in the gen- 
eral form 

Ai(2r) =Ai(r,27) +Bii(r,2r)Ei(x,t) + se* -Pi(r,T) 

-Qq(r,~) [Aj(r,T) +J$dr,d&(x,t) 

+~~~~I-~~~ 7 (6) 

or, in the case of identical data and event vectors, 

Ai(2r) =Ai(r,2T) +BJr,2T)Ej(x,t) + a** --A[(r,T) 

-B&T) [Aj(r,T) +Bjk(r,T) 

xl.&(X,t)+“‘]--.-- . (7) 

The corresponding truncation error evaluation as a func- 
tion of spatial resolution is found by formulating the equiv- 
alent single-step (2r) and two-step (r) estimates. With 
appropriate choices of tolerance on A and sufficiently small 
displacements to warrant modeling the spatial/temporal 
variation as a Taylor series expansion, this method may be 
used to monitor the region of trustworthiness of the esti- 
mate. It may also serve as a guide to the incremental dis- 
placements in measurements of g necessary to achieve pre- 
determined levels of trustworthiness. Since the accuracy of 
the estimate will vary with time, position, and, according 
to the event upon which it is conditioned, an accuracy 
check of this kind is a useful accompaniment to stochastic 
estimation procedures for which confidence limits are to be 
ascribed. 

As an example of the implementation of this proce- 
dure, we consider the single-point time-delayed conditional 
average of the turbulent component of streamwise velocity 
u, deduced from a time series of 32 768 measurements in a 
flat-plate turbulent boundary layer (y/S = 0.4, Re, 
= 3 100). Conditional averages of the time-delayed condi- 
tional average of u’(t) computed from this data set are 
shown in Fig. 1 for a range of different events, plotted 
against time expressed in viscous units. These averages of 
u’ (t+ r) were conditioned on u’ (t) lying within a window 
of *O. lu’/a around the specified level of u’, where (T de- 
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FIG. 1. Timedelayed conditional averages of u’(t); 0, conditional aver- FIG. 2. Comparison of the error estimate A with the deviation of the 
age for u’/a=0.5f 0, conditional average for u’/& -0.5; 0, condi- stochastic estimate from the conditional average; 0, linear, z//u= 1.0, A, 
tional average for z//a== 1.0; A, conditional average for z//a= - 1.0; 0, linear, u’/a=1.5, 0, quadratic, u’/u=1.5, V, linear, u’/u= - 1.0, 0, 
conditional average for u’/a=2.0; V, conditional average for linear, z//u= - 1.5, 0, quadratic, z//u= - 1.5, W, cubic, ~‘/a= - 1.5, 
u’/u= -2.0. The abscissa represents the time delay in viscous units. X, quadratic, I//U= -2.0. 

notes the standard deviation of U’ from its mean. The cor- 
responding stochastic estimate (u (x,t + 7) I 12 (x,t) ) is mod- 
eled from (2) as 

=A(~,T) +B(O,T)u(x,t) +C(0,T)u2(x,t) 

+mhdu3(x,t) +“’ , 

and for the case of the linear estimate, the truncation error 
estimate A(27) is given by 

A(27) =A(0,27) -A(O,T) -A(O,T)B(O,T) + [B(0,27) 

-B2(0,T>]U(X,f). (8) 
Extension of this error estimate for truncation at higher 
orders is straightforward. If the deviation of data from the 
conditional average model is assumed to follow a Gaussian 
distribution, the minimization procedure requires A to be 
zero, further simplifying evaluation of A(2r) as 

A(27) = [B(0,27) -B2(0,~)]u(x,t). (9) 
The estimate of the truncation error in the stochastic 

model may be compared with the difference between the 
measured conditional average and the stochastic estimate 
of (u(x,t+T) lu(x,t)), in order to gauge the adequacy of 
the estimated truncation error as an indicator of accuracy. 
This comparison is made for the case of least-squares sto- 
chastic estimation for linear, quadratic, and cubic repre- 
sentations of (u(x,t+T) I u(x,t)), and is shown in Fig. 2. 
In this figure, [bb,t+~) I 4xt)),,,d. av.- (u(x,t 
+Q-) 1 u(x,t) )stoch. J/A is plotted against time in viscous 
units for estimates and averages conditioned on 
u’(t) = f a, Z?Z 1.5a, and f 20. They are plotted for those 

r 
3 

z 0 

-. 5 

stochastic estimates for which the estimated truncation er- 
ror exceeded 4% of a-smaller errors approached the or- 
der of the uncertainty in the conditional average and ratios 
of those errors were not considered meaningful. Beyond 
time delays of 50 viscous time units (around two integral 
scales), few reliable error estimates were available from 
this data set because the conditional average approached 
zero. While these data do not collapse to a constant value, 
owing to the approximate nature of the stochastic model 
and to uncertainty in the conditional averages, very few of 
these data fall beyond a narrow range from 0.5 to 0.9. The 
implication of these results is that the estimate of the trun- 
cation error can be a reliable indicator of the discrepancy 
between the stochastic estimate and the conditional aver- 
age when it is sufficiently greater than an uncertainty 
threshold, representative of the trustworthiness of the data. 
It therefore may be used as a guide to the optimal model or 
fit for refined applications of stochastic estimation, and as 
a guide to the trustworthiness of individual estimates. This 
finding is significant since existing techniques of stochastic 
estimation provide no direct indication of their accuracy- 
their adequacy has typically been demonstrated by show- 
ing agreement between estimates and conditional averages 
for specific events ( Guezennec3 and Adrian et al. 7). 

The fidelity of the estimated truncation error as a guide 
to the uncertainty in a stochastic estimate is a consequence 
of the short (differential) time step between data and the 
reasonableness of assuming a Gaussian distribution of data 
about polynomial models for conditional-average estimates 
in this particular data set. Time steps that can follow the 
greatest curvature of conditional averages are necessary for 
concurrent error estimates and so should be of the order of 
the Taylor microscale of the flow. The reasonableness of 
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FIG. 3. Least-squares linear stochastic estimates of the time-delayed con- FIG. 4. Least-squares quadratic stochastic estimates of the time-delayed 
ditional average of u’(t); 0, estimates of 10% relative uncertainty; 0, conditional average of u’(t); 0, estimates of 10% relative uncertainty; q , 
estimates of 20% relative uncertainty. The estimates are for the events estimates of 20% relative uncertainty. The estimates are for the events 
~‘/c=fl, *1.5, *2, A2.5, and =t3. u’/a=+l, L1.5, *2, k2.5, and +3. 

employing a Gaussian model is consistent with results for 
data sets from a number of other turbulent flows. Thus one 
might expect estimates of the truncation error to serve 
equally well as indicators of the uncertainty in stochastic 
estimates in many other turbulent flows. They may also be 
employed as a guide to refined applications of stochastic 
techniques in turbulent flow. Several applications are pre- 
sented in the following sections concerning refinement of 
the stochastic model, its order, its fit, and the choice of 
data space to improve eduction of coherent motions. They 
are, for the test case of a time series of streamwise velocity, 
measured in a flat-plate turbulent boundary layer, for 
which the fidelity of the truncation error estimate was 
demonstrated. 

els contain additional information concerning higher-order 
moments, such that the extra degrees of freedom permitted 
in the event vector model might be expected to produce 
better fits, on average. From inspection of Fig. 4, it is ev- 
ident that the inclusion of a quadratic term results in sig- 
nificant improvements in the accuracy of the estimate of 
events for which u’ > a, but at the expense of reduced ac- 
curacy in estimates for u’ < --(T. The addition of a cubic 
term (Fig. 5) causes little change in the accuracy of esti- 

3 

A. Selection of the order of the stochastic estimate 
1.5 . - 

If the estimate of the truncation error is expressed as a 
fraction of the stochastic estimate for a given event, it rep- 
resents the relative uncertainty of that estimate, thereby 
allowing systematic comparisons of uncertainties in esti- 
mates made from different event vector models, so that the 
most favorable model may be selected for a particular es- 
timate. To illustrate this capability, we plot the least- 
squares stochastic estimate of the time-delayed conditional 
average of U’ (t) using linear, quadratic, and cubic models 
for the event vector. These estimates are plotted in Figs. 
3-5, respectively, together with contours joining points of 
10% and 20% relative uncertainties in the estimates. The 
stochastic estimates are plotted for U’ = f a, f 1.5~7, f 2a, 
&2&r, and *3a. Since estimates made with the linear 
model are in direct proportion to the magnitude of the 
event, and the estimated error contours are vertical lines; 
the same relative error would be expected for both frequent 
and rare conditional events. The quadratic and cubic mod- 
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FIG. 5. Least-squares cubic stochastic estimates of the time-delayed con- 
ditional average of u’(t); 0, estimates of 10% relative uncertainty; 0, 
estimates of 20% relative uncertainty. The estimates are for the events 
u’/u=fl, kl.5, k2, +2.5, and A3. 
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FIG. 6. Comparisons of measured and modeled probability density func- FIG. 7. Quadratic stochastic estimates of the time-delayed conditional 
tions for stationary turbulent boundary-layer velocity data; 0, measure- average of u’(t) in which model coefficients are deduced by minimizing 
ments sorted into bins; -, distribution modeled in the analytical form the sum of the absolute deviation of data from the model; 0, estimates of 
of Barndo&Nielsen;” - - -, Gaussian distribution;---, double exponen- 10% relative uncertainty; Cl, estimates of 20% relative uncertainty. The 
tial distribution. estimates are for the events z//o= k 1, =t 1.5, +2, h2.5, and *3. 

mates for u’ > CT, though there is improvement for U’ < --CT 
relative to quadratic estimates of these events. For this data 
set, quadratic or cubic estimates are preferable for the es- 
timation of events that correspond to large positive u’, 
while a linear estimate yields the best performance of these 
models for events for which u’ is significantly below its 
mean value. A similar dependence on model order has been 
noted by Guezennec.3 

The explanation for these findings lies in the measured 
probability distribution function of the data shown in Fig. 
6 together with a Gaussian distribution for the same stan- 
dard deviation. For the case of a least-squares fit, the great- 
est contribution to a model linear in U’ is at the maximum 
of U’e-w/a)2 which is found at U’/CT= f l/ $. The peak 
contribution ;o the quadratic term in U’ (the maximum of 
~‘~e--(“‘~)~) is at z//o= * 1. From the distribution of Fig. 
6, the contribution at u’/u= 1 is significantly larger than 
that at u’/o= - 1. The contribution to the cubic term (at 
u’/o = m) is also greater than that at - J3/2. Owing 
to this weighting effect, there is considerable improvement 
in the stochastic estimate for positive u’ events through the 
addition of terms beyond the linear one. Because of the 
appreciable skewness in the probability distribution func- 
tion, the imbalance between contributions at positive and 
negative levels of u’ causes a slight degradation in esti- 
mates of negative u’ events, despite the additional degrees 
of freedom allowed by higher-order stochastic event vector 
models. This effect becomes more important to the accu- 
rate estimation of coherent motions as skewness increases 
closer to the wall. Thus, merely increasing’ the order of a 
polynomial model of the event vector will not necessarily 
increase the accuracy of a least-squares stochastic 
estimate---estimates of different order should be used selec- 

tively according to the event and estimated error in order 
to optimize accuracy. 

B. Choice of distribution for the maximum likelihood 
estimation 

When the deviations of data from models are described 
more accurately by non-Gaussian distributions, the model 
coefficients may be deduced by employing iterative multi- 
dimensional minimization schemes such as Powell’s 
method to solve (3). The stochastic estimate of the time- 
delayed conditional average of u’ is shown in Fig. 7 when 
the stochastic model coefficients are deduced by minimiz- 
ing the sum of the absolute deviations of data from the 
stochastic model. This particular fit may be considered ro- 
bust, in the sense that it is far less sensitive than least- 
squares fits to data which deviate substantially from the 
stochastic model. As such, it is well suited to building 
stochastic models of coherent motions from noisy experi- 
mental data in which outlying values may be deemed less 
trustworthy than those close to the estimate. This fit is 
optimal when the data follow a double exponential distri- 
bution about the model, though it is clear from Fig. 6 that 
this model distribution bears little resemblance to the mea- 
sured distribution of the data about its mean. The plots of 
contours of relative uncertainties of 10% and 20% are 
shown for an event vector model comprising constant 
(nonzero), linear and quadratic coefficients [as in (2)]. It 
indicates improved performance in estimation accuracy 
over the least-squares estimates for these data, especially 
for events corresponding to negative values of u’, though at 
an increased computational expense. In general, any distri- 
bution of data about a model may be assumed that pro- 
vides a reasonable description of the joint distribution of 
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data and event vectors, such as the generalized analytical 
model proposed by Barndorff-Nielsen14 and shown in Fig. 
6. In practice, the advantages over simpler models appear 
to be small, and expectations of making stochastic estima- 
tion with lo%-20% relative accuracy over displacements 
of the order of an integral scale appear to be realistic (con- 
sistent with several of the studies referenced earlier). At 
displacements of this scale, spatiotemporal and event- 
vector expansions therefore provide comparable models of 
the average condition of turbulent coherent motions. 

C. Generalization of the event vector expansion as a 
Laurent series 

The approach taken by previous workers in this field3,’ 
to account for departures from joint normalcy between real 
data and event vectors has been to extend the model 
through the addition of higher-order polynomial terms in 
E(x,t), consistent with the form of a Taylor series expan- 
sion about gi(X,r) in E(x,t) space. However, this approach 
loses some of its appeal when the stochastic model coeffi- 
cients are deduced by carrying out minimizations over all 
measured events, regardless of whether or not their devia- 
tions from their mean are differential in scale. A more 
general approach, which retains much of the same simplic- 
ity, is to compensate for deviations from joint normalcy by 
expanding the linear model through the addition of poly- 
nomial terms, both positive and negative in power. The 
resultant model is then a Laurent series in E(x,t) which, 
when truncated at low positive and negative orders, leads 
to modeling of (gi(x+r,t+r) 1 E(x,t)) as 

(gAx+r,t+d I E(w)) 

&#Yd = . . . 
+-q(w) ---+Ai(r,r) +Bu(r,r)Ej(x,t) 

+C,,(r,7)Ei(x,t>Ek(x,t) + *. . . (10) 
Since the inclusion of higher-order polynomial terms 

has the effect of lending extra weight to the contributions 
of rarer events to the stochastic model coefficients, the in- 
clusion of terms of negative order biases the stochastic 
model coefficients toward better representation of more fre- 
quent events. Thus one may tailor the choice of terms in 
the stochastic model to reflect the kinds of events one 
wishes to model most accurately. As an example, stochas- 
tic estimates and conditional averages of (u(x,t 
+r) 1 u( x,t)) are shown in Fig. 8 when conditioned on the 
events Z//U= f 0.1. For such small displacements in event 
space, the estimated truncation error is of the order of the 
residual uncertainty in the test data, necessitating direct 
comparisons with the conditional average for determina- 
tion of the accuracy in the stochastic estimate. Least- 
squares stochastic estimates are plotted for event vector 
models, which incorporate (i) a constant coefficient 
(zero), a linear, and a quadratic term; and (ii) a term of 
order - 1, a constant (nonzero) coefficient, a linear, and a 
quadratic term. Although the truncated Laurent series rep- 
resentation admits a singularity for the case of individual 
data and events that are identical in value to their mean, 
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FIG. 8. Comparisons of time-delayed conditional averages and their sto- 
chastic estimates for the events z//a= *O.l; X, least-squares linear sto- 
chastic model; -, least-squares quadratic stochastic model; 0, least- 
squares estimate for a Laurent series stochastic model; 0, conditional 
average at u’/o=O.l; A, conditional average at ~‘/a= -0.1. 

none were present in the test data set. The stochastic model 
coefficients could therefore be evaluated by standard least- 
squares minimization. The close agreement between the 
Laurent series model and the conditional average attests to 
the expedience of including a term of order - 1 in the 
stochastic model for this estimate. The disparity between 
the estimates of the Laurent series model and the linear 
and quadratic models may be attributed to the weighting of 
coefficients in the latter models to favor more accurate 
estimates of less frequent events and the realization that 
conditional averages of different turbulent events can de- 
pend strongly on the event under interrogation. As a con- 
sequence of this weighting, the Laurent series model yields 
very poor estimates for events distant from their mean. 
While the ability to make accurate estimates for frequent 
events may not be particularly important for data sets in 
which conditional averages of those events may be deduced 
from many ensembles with correspondingly low levels of 
uncertainty, it may be of great utility in building stochastic 
models to describe coherent motions conditioned on events 
of multiple dimension, some of which are close to their 
means. 

D. Use of error estimates for interrogation of rare 
events 

A further variation on standard stochastic estimation 
procedures is to condition the estimate on a restricted re- 
gion of data space. This application is well suited to ex- 
ploring whether different regions of data sets contain mo- 
tions that are characterized by quite different statistics, and 
so might be poorly represented by a single stochastic 
model. For the restricted data set gi (x,t) [a subset of 
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gi(x,t), with the corresponding event vector E’(x,t)], (2) 
may be recast in orthogonal polynomial form as 

ki(x+r,t+T) IE’W)) 

=Ai(r,T) +Bij(r,~) [E,C (x,t> -c&T) I+ Cijk(r,e) 

X [E,! (x,t> -&(r,T) 1 [&Xx,t) --Yk(r,7) I+ * * * , 
(11) 

where (ri( r,r), fl;(r,r), and yi(r,r) are the parameters that 
render the coefficients A, B, and CUk independent of the 
choice of event vector space and so represent physical char- 
acteristics of the data. The truncation error estimate Ai 
may be deduced for this estimation model in the manner 
outlined in Sec. III. In a typical application, one would 
assess hi in the stochastic estimate for an extreme event, 
based on all available data. This error would be compared 
with A[ in the stochastic estimate for the same event, only 
based on a reduced data set, which excluded the most ex- 
treme motions. If hi < Af, it would imply that the addi- 
tional data were modeled as faithfully as the remainder of 
the data set and lent increased smoothness to the estimate, 
with a commensurate lowering of the error estimate. Con- 
versely, if A, > Aj, one would infer that the removal of 
extreme data characterized by statistics that differed from 
the remainder of the set improved the smoothness of the 
estimate. 

This application of stochastic estimation was tested on 
the turbulent boundary-layer time series for estimation of 
the time-delayed conditional average at z//o= k2.5. The 
stochastic estimate and the relative error were computed as 
functions of time delay, first for the entire data set, and 
second, for those data for which -2.5 < u’/o. < 2.5. For the 
case of estimates of (~(x,t+r) ] u(x,t)) at u’/a=2.5, the 
estimate and error deduced with each data set were indis- 
tinguishable, whereas at Z//U= -2.5 there was apprecia- 
ble reduction in the relative error when the most extreme 
data were removed from the set (Fig. 9). The improve- 
ment in the estimate at u’/D= -2.5 when extreme nega- 
tive U’ data are removed indicates that these motions are 
not closely related to the more frequent events, to which 
the stochastic estimation model is weighted by virtue of 
numbers. An examination of the computed conditional av- 
erages (Fig. 10) confirms this result and reveals that events 
of large negative U’ initially exhibit a significantly more 
rapid relaxation toward a long-time mean condition than 
other motions, which follow a more universal trend, well 
suited to a smooth stochastic model. The behavior of 
small-displacement conditional averages is also distinctly 
different from more extreme events, as was noted in the 
previous section. 

The physical interpretation that can be given to such a 
result from a one-dimensional data set is limited, though 
the rapid relaxation of strongly negative u’ events at y/S 
=0.4 may be related to the more energetic ejection mo- 
tions, consistent with their near-wall characterization in 
that form by Nakagawa and Nezu16 and by Corino and 
Brodkey.t7 This explanation is also consistent with the 
findings of Bullock et al. ‘* that the lowest-frequency events 
of the u’ signal are highly correlated over large distances 
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FIG. 9. Quadratic stochastic estimates and error estimates of the time- 
delayed conditional average of u’(t) for the event z//u=-2.5; -, 
least-squares stochastic estimate; X, stochastic estimate conditioned on 
the restricted data set -2.5 < u’/u< 2.5; 0, error estimate A for the 
stochastic estimate; 0, error estimate A for the conditioned estimate; A, 
conditional average within a window of *O. la. 

normal to the wall. An explanation of this kind would 
account for the distinctly di.lYerent dynamics revealed by 
the time-delayed conditional average of such events for 
durations of rf of 15 following their detection, after which 
they appear to revert to a more universal relaxation time 
scale. Qualitatively similar observations of greater dispari- 
ties in relaxation time scales have been reported by Adrian 
and Lekakis” in turbulent pipe flow at Re= 50 000. 
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FIG. 10. Time-delayed conditional averages of u’(t) for different u’ 
events; 0, ~+=3; A, 7+=6; 0, r+=9; V, ~+=12; 0, r+=15; 0, 
~+=18; W, 7+=21. 
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This use of an error estimate as a guide to the smooth- 
ness of stochastic estimation models appears to be well 
suited to stochastic estimation of conditional averages from 
large multidimensional data sets, for the purposes of educ- 
ing coherent motions. Once restricted regions of data space 
have been selected, the various estimates and errors may be 
computed in a single pass of the data and stored for sub- 
sequent interrogation. They may then be examined to see if 
the smoothed estimates of extreme events are well repre- 
sented in terms of models weighted toward less extreme 
events, or if extreme events are distinct in character and 
should be examined by more selective means. 

IV. CONCLUDING REMARKS 

Stochastic estimation is a flexible tool that may be 
adapted in many ways for interrogating conditional turbu- 
lent motions. The principal contributions of this paper to 
its usage in fluid mechanics research lie in the extension of 
the technique to assess uncertainty in stochastic estimates 
and in its employment as a means of refining the estimation 
and interpretation of turbulent boundary-layer motions. In 
particular, it is used to isolate the relaxation of very occa- 
sional low-speed motions in the outer boundary layer, the 
statistical character of which would pass undetected by 
conventional stochastic estimation procedures. While em- 
phasis has been placed on the stochastic estimate of the 
time-delayed conditional average, the extensions described 
in this paper may also be applied to quasidynamic recon- 
struction of coherent motions from databases, in which 
time sequences of measured event vectors associated with 
some characteristic feature of the flow are used to de- 
scribed the most likely evolution of the surrounding flow 
field.5 Concurrent uncertainty estimates may then be used 
to assess the fidelity of the reconstructed field in describing 
some coherent structure. 

The principal requirement that databases must satisfy 
to benefit from these extensions is that data vectors must be 
recorded at intervals in space or time that are sufficiently 
small (i.e., comparable in order to the Taylor microscale of 
length or time) to allow stochastic modeling, both in that 
dimension and in event vector space. This requirement 
should present no difficulties for well-resolved computa- 
tional databases or experimentally measured time series, 
though it may prove more exacting for experimental mea- 
sures of spatial dependence. The extensions outlined in this 
paper may then be used to provide accompanying estimates 
of accuracy in conventional applications, which employ 
one stochastic model for estimates of all possible events. If 

one is interested in making refined stochastic estimates of 
selected events, one may tailor the stochastic estimate to 
provide the best representation of those events using accu- 
racy estimates to guide the choice of model. These refine- 
ments over existing stochastic estimation procedures allow 
stochastic estimation to be used as a more trustworthy tool 
for statistical interrogation of conditional events in turbu- 
lence databases. 
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