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An intuitive study is presented for unstable interfacial waves. The maximum wavelength obtained
for the most rapid unstable growth is shown to have a universal part which also characterizes the
isotropic scales of buoyancy-driven turbulence. ©2000 American Institute of Physics.
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In the contemporary literature Rayleigh–Taylor instab
ity continues to attract steady attention. The latest studies
directed toward nonlinear effects, chaos, and turbulence1–3

An important conclusion emerging from these studies is t
gravity g and wavelengthl are the governing basic scale
from initial perturbations to turbulent mixing. The formatio
of smaller and smaller length scales is believed to be
result of repeated generations of Kelvin–Helmho
instability,4 which eventually leads to turbulence. The obje
tive of this study is to support some of these conclusio
first by intuitive arguments based on linear instability theo
and second by the microscales of turbulence.5

Consider a viscous fluid of viscositym and densityr1

occupying the semi-infinite regionz,0 and acted on by an
effective driving buoyant force per unit mass,b. Let the
semi-infinite regionz.0 be occupied by a gas with densi
r2 and negligible viscosity. Assume the interface to be d
turbed by a plane wave of small amplitudeAk(t)exp(ikx), k
being the wave number.

In terms of the well-known expression for a damp
simple harmonic oscillator, the surface wave is expected
satisfy

d2Ak

dt2
1 f ~n,k!

dAk

dt
1v2Ak50, ~1!

where

f ~n,k!;
1

t
;nk2,

n and t being the kinematic viscosity and time, respective
and

v~b,k!;
1

t
;~bk!~1/2!.

Then, with an unknown coefficientC, Eq. ~1! can be written
as

d2Ak

dt2
1Cnk2

dAk

dt
1v2Ak50. ~2!

For small damping6 ~long-wave limit!,

C54, nk2!v2 ~3!

and, for large damping7 ~short-wave limit!,
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C52, nk2@v2. ~4!

We are interested in the unstable growth of waves in th
limiting cases.

Now, let the semi-infinite regionz,0 be occupied by
the gas and the regionz.0 by the viscous fluid, and assum
v252s2 for an unstable interface. The following intuitiv
arguments clarify the effective driving force in the case
buoyant flows. From a momentum balance,

rV;Ft, ~5!

wherer;(r11r2) is the effective density,V a characteris-
tic velocity, and

F;g~r12r2!2k2S

is the effective buoyant force per unit volume,S being the
surface tension. The sign of the surface tension term refl
its stabilizing effect. On dimensional grounds,

t;s21, V;s/k,

and Eq.~5! gives

s

k
;Fg

k S r12r2

r11r2
D2

kS

r11r2
G1/2

5S b

kD 1/2

, ~6!

whereb now includes surface tension,

b5gA2
k2S

r11r2
,

andA5(r12r2)/(r11r2) is the Atwood number.
For the case of short waves, Eq.~2! becomes

d2Ak

dt2
12nk2

dAk

dt
2s2Ak50,

which, with an amplitude growth,Ak(t)5Ak(0)ent, leads to

n212nk2n2bk50. ~7!

Then,dn/dk50 gives the wavelength of the interface whic
corresponds to the most rapid growth of the short waves
lmax54p(n2/b)1/3, wherelk52p. Similar steps for the case
of long waves lead tolmax54p(4n2/b)1/3 and demonstrate
the fact that the wavelength of the most rapid growth of a
interface wave is
4 © 2000 American Institute of Physics
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lmax5CS n2

b D 1/3

, ~8!

wherelmax for both waves turns out to have a universal pa
(n2/b)1/3, and a structural part,C, which is a numerical con-
stant depending on the size of the wave. We now dem
strate this fact by other intuitive arguments based on
microscales of turbulence which characterize the limit of
cascade of smaller waves.

Let the instantaneous interface velocity of a buoyan
driven turbulent flow be decomposed into temporal me
and fluctuations,Ui1ui , Ui being the mean velocity oscil
lations perturbed by the turbulent root-mean-square fluc
tions,ui . Then, the balance of the mean kinetic energy of
homogeneous rms velocity fluctuations is

B;e;P, ~9!

whereB5wb is the effective energy production by buoya
forces,w being the rms of turbulent velocity fluctuations~or
turbulent intensity!, e52nsi j si j is the dissipation of turbu-
lent kinetic energy,si j being the rate of fluctuating strain
and P52uiujSi j is the inertial production of turbulent ki
netic energy,Si j being the rate of mean strain.

On dimensional grounds, Eq.~9! gives

B;
nw2

d2 ;
w3

h
, ~10!

whered denotes a dissipation length scale andh a production
length scale for homogeneous turbulence.

The velocity obtained from Eq.~10! in terms ofB,

w;dS B
n D 1/2

;~Bh!1/3, ~11!

leads ford to

d;h1/3S n3

B D 1/6

. ~12!

For the isotropic turbulence, repeating the foregoing
velopments in terms of one scale alone, that is, replacind
andh with h in Eq. ~12!, we obtain a Kolmogorov scale,

h;S n3

B D 1/4

. ~13!

Now, in terms of the isotropic velocityw;n/h, obtained
from Eq. ~10! by replacingd andh with h, the energy input
becomes

B5bw;bS n

h D . ~14!

ExpressingB of Eq. ~13! in terms of Eq.~14! yields

h;S n2

b D 1/3

, ~15!

which is identical in form to Eq.~8!.
The foregoing dimensional arguments involving line

instability theory and the microscales of turbulence sh
that the viscous~dissipative! aspects of interface dynamic
lead to a scale,C(n2/b)1/3, which has a universal par
,

n-
e
e

-
s

a-
e

-

r

(n2/b)1/3, independent of isotropic flow conditions. Only th
numerical constant,C, related to this scale varies dependin
on the flow structure. This constant for the short waves
known to be 4p, for the long waves to be 41/3(4p), and, for
the Kolmogorov scale, is usually assumed8 to be on the order
of one. Accordingly, for the same buoyant force, the wav
length of the Kolmogorov waves is expected to be an or
of magnitude smaller than the wavelength of the Rayleig
Taylor waves.

Note that the contemporary experimental and compu
tional studies so far have been mostly devoted to large~pro-
duction! scales of turbulence which are a measure of
structural evolution of interface dynamics.1–3,9–13Here, we
obtain the well-known mixing scale by an inertial estima
for turbulent intensity. From Eq.~11!, w;(Bh)1/3, in terms
of b5B/w, we have w;(bh)1/2, which, in view of w
;h/t, becomesh;bt2, or, explicitly,

h5aFgA2
k2S

r11r2
G t2,

wherek is a measure of curvature and scales with the Tay
scale. From Eq.~10!, d2;nh/w, in terms ofw;h/t, we get
d2;nt, which in view ofk;d21 givesk2;(nt)21. Accord-
ingly,

h5aFgA2
S/nt

r11r2
G t2. ~16!

In the absence of surface tension, Eq.~16! reduces to

h5agAt2. ~17!

This scale is known to characterize the highly disorde
mixing zone which follows the nonlinear growth o
interface.3,9–13 The experimental studies appear to supp
this relation for the behavior of light fluid~bubbles!. Also the
ratio of spike penetration to bubble penetration is known
be a weak function of density ratio,h2 /h15 f (r1 /r2), which
may equivalently be written ash2 /h15 f (A). Furthermore,
h2 /h151 for the Boussinesq limit (r1 /r2;1) suggests

h2

h1
511 f ~A!.

However, for a better understanding of spike and bub
penetrations, more experiments involving systematic pa
metric variations with improved diagnostics are needed. T
recent study by Dimonte and Schneider9 further supports this
need.
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