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On interface dynamics
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An intuitive study is presented for unstable interfacial waves. The maximum wavelength obtained
for the most rapid unstable growth is shown to have a universal part which also characterizes the
isotropic scales of buoyancy-driven turbulence. 2600 American Institute of Physics.
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In the contemporary literature Rayleigh—Taylor instabil- C=2, k%> w2 (4)
ity continues to attract steady attention. The latest studies are
directed toward nonlinear effects, chaos, and turbulénte. We are interested in the unstable growth of waves in these
An important conclusion emerging from these studies is thatMiting cases. o _ _
gravity g and wavelength\ are the governing basic scales Now, let the semi-infinite regiom<0 be occupied by
from initial perturbations to turbulent mixing. The formation the 9as r;md the regiar>0 by the viscous fluid, and assume
of smaller and smaller length scales is believed to be th@“=—0" for an unstable interface. The following intuitive
result of repeated generations of Kelvin—Helmholtz&rguments clarify the effective driving force in the case of

instability* which eventually leads to turbulence. The objec-Puoyant flows. From a momentum balance,

tive of this study is to support some of these conclusions, pV~Ft (5)
first by intuitive arguments based on linear instability theory,
and second by the microscales of turbulehce. wherep~(p1+ p,) is the effective densityy a characteris-

Consider a viscous fluid of viscosity and densityp, tic velocity, and
occupying the semi-infinite region<0 and acted on by an F~g(pi—p,)—k2S
effective driving buoyant force per unit mads, Let the 9(p1=p2
semi-infinite regiorz>0 be occupied by a gas with density is the effective buoyant force per unit volunm@peing the
p2 and negligible viscosity. Assume the interface to be dissurface tension. The sign of the surface tension term reflects
turbed by a plane wave of small amplitudg(t)exp(kx), k its stabilizing effect. On dimensional grounds,
being the wave number. .

In terms of the well-known expression for a damped t~o%, V~alk
simple harmonic oscillator, the surface wave is expected tQnq Eq.(5) gives

SatiSfy 1/2 1/2
- kS b
A, A, L =(—) , (®)
F-f—f(v,k)ﬁ-f-w A=0, (1) k k\pitps p1tp2 k
whereb now includes surface tension,
where
1 b aA k?S

(v k)~ T~ k2, BT
v andt being the kinematic viscosity and time, respectively,@1dA=(p1—p2)/(p1+p) is the Atwood number.
and For the case of short waves, E) becomes

1 d?A, dA,

w(b,k)~Y~(bk)(1’2). F+2V|<2W— a?A=0,
Then, with an unknown coefficiel®, Eq. (1) can be written  which, with an amplitude growth(t) =A,(0)e", leads to
as n2+ 2vk?n—bk=0. )

d2A, LAA _ _ _

A +Cvk TS +w A =0. (2 Then,dn/dk=0 gives the wavelength of the interface which

corresponds to the most rapid growth of the short waves for

For small dampingj(long-wave limif), A max=47(1”0)Y3, wherexk= 2. Similar steps for the case

Cod kl<w? 3 of long waves lead to\,,=4m(417/b)*® and demonstrate

v @ the fact that the wavelength of the most rapid growth of any

and, for large dampirfg(short-wave limij, interface wave is
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p2\ 13 (v?/b)Y3 independent of isotropic flow conditions. Only the
)\max:C(F> ) (8 numerical constan, related to this scale varies depending
on the flow structure. This constant for the short waves is
where\ ., for both waves turns out to have a universal part,known to be 4r, for the long waves to be#(4), and, for
(v’Ib)*3, and a structural par€, which is a numerical con-  the Kolmogorov scale, is usually assurfiealbe on the order
stant depending on the size of the wave. We now demonof one. Accordingly, for the same buoyant force, the wave-
strate this fact by other intuitive arguments based on th@ength of the Kolmogorov waves is expected to be an order
microscales of turbulence which characterize the limit of thQ)f magnitude smaller than the Wave|ength of the Ray|e|gh_
cascade of smaller waves. Taylor waves.
Let the instantaneous interface velocity of a buoyancy— Note that the contemporary experimenta| and computa-
driven turbulent flow be decomposed into temporal meangional studies so far have been mostly devoted to l4pge-
and fluctuationsyJ;+u;, U; being the mean velocity oscil- duction scales of turbulence which are a measure of the
lations perturbed by the turbulent root-mean-square fluctuastructural evolution of interface dynamits>®**Here, we
tions,u; . Then, the balance of the mean kinetic energy of thepbtain the well-known mixing scale by an inertial estimate
homogeneous rms velocity fluctuations is for turbulent intensity. From Eqa1), w~ (8h)*3, in terms
Bee~P (@ Of b=Blw, we havew~ (bh)*2, which, in view of w
’ ~h/t, becomesh~bt?, or, explicitly,

where 5=wh is the effective energy production by buoyant 5

forces,w being the rms of turbulent velocity fluctuatiofmr h=a
turbulent intensity, e=2wvs;;s;; is the dissipation of turbu- p1tp2
lent kinetic energys;; being the rate of fluctuating strain, \yherek is a measure of curvature and scales with the Taylor
and P=—u;u;S; is the inertial production of turbulent ki- scale. From Eq(10), 52~ vh/w, in terms ofw~h/t, we get

gA— t2,

netic energy S;; being the rate of mean strain. 5%~ vt, which in view ofk~ 61 givesk?~ (vt) "1. Accord-
On dimensional grounds, E() gives ingly,
w? owe S/vt
Bt (10) h=a|gA— t2, (16)
o h g p1tp2
whered denotes a dissipation length scale &ralproduction In the absence of surface tension, Etg) reduces to

length scale for homogeneous turbulence.

The velocity obtained from Eq10) in terms of 3, h=agAf. (17)
112 This scale is known to characterize the highly disordered
W~ 5(—) ~(Bh), (11  mixing zone which follows the nonlinear growth of
v interface®~1* The experimental studies appear to support
leads ford to this relation for the behavior of light fluitbubble$. Also the
30 16 ratio of spike penetration to bubble penetration is known to
5~h1’3( V_) _ (12) be a weak function of density ratib, /h;=1(p,/p,), which
B may equivalently be written as,/h,;=f(A). Furthermore,

For the isotropic turbulence, repeating the foregoing del’2/h1=1 for the Boussinesq limitd; /p,~1) suggests
velopments in terms of one scale alone, that is, replaéing h,

andh with 7 in Eq. (12), we obtain a Kolmogorov scale, h—1=1+f(A)-
3\ 14
77~<V_) _ (13) However, for a better understanding of spike and bubble
B penetrations, more experiments involving systematic para-

metric variations with improved diagnostics are needed. The

Now, in terms of the isotropic velocitw~ v/ 7, obtained i i
recent study by Dimonte and Schneitierther supports this
n

from Eq.(10) by replacings andh with 7, the energy input

becomes eed.
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