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Monte Carlo methods which have been widely used for studying high field electron and hole 
transport, so far have not been applied to the complex problem of Ohmic hole transport. We present 
a versatile generalization of the Monte Carlo approach for Ohmic hole mobility studies and apply 
it to pure silicon and germanium. In particular, we examine the role of the optical phonon 
deformation potential da in controlling the temperature dependence of the mobility. 

1. INTRODUCTION 

Transport phenomena have now been theoretically stud- 
ied in silicon and germanium, for four decades. Generally, 
conduction-band and valence-band phenomena have re- 
ceived different treatments. Although the conduction-band 
edges of both materials consist of multiple valleys, these are 
separated from one another in’k-space. Thus, there has been 
no particular difficulty in understanding electron transport 
phenomena, as an extension of single valley transport. Theo- 
retical treatment of electron transport has been straightfor- 
ward and is developed to a high degree of precision. Hole 
transport, however, is fundamentally complex, due to a mul- 
tiple degeneracy in the valence band at k=O, which is only 
partially lifted by spin-orbit coupling. The intrinsic interband 
coupling and anisotropies have made theoretical treatment 
nonstraightforward. This has compelled most theoretical 
treatments to make such approximations that their results are 
of questionable precision. 

Precise modeling of hole transport requires taking into 
account the p-like symmetry of the valence-band states. This 
symmetry is expressed in the three band k-p Hamiltonian, 
presented in the next section, which is appropriate for states 
near the top of the valence band in a semiconductor whose 
band gap is somewhat larger that the spin-orbit splitting. 
Transport theories are, in significant part, based on the mod- 
els of the scattering processes involved. In pure covalent 
semiconductors, such as silicon and germanium, the primary 
scattering models are those for deformation potential acous- 
tic phonon scattering and deformation potential optical pho- 
non scattering, as stated above. Fundamental to these, is a 
deformation potential theory for the valence band, which ac- 
counts for the p-like symmetry of the valence band. Pikus 
and Bir’,’ have developed such a theory, which involves four 
independent deformation potentials: u, related to hydrostatic 
compression, b, related to uniaxial strain along the [loo] 
axis, d, related to uniaxial strain along the [ill] axis, and da, 
related to deformations associated with optical phonons. 
Pikus and BirzT3 and Tiersten415 have developed a model of 
hole-acoustic phonon scattering based on this deformation 
potential theory. Pikus and Bir,“13 Lawaetz,b and 
Szmulowicz7 have developed successive refinements to a 
model of hole-optical phonon scattering, again reflecting the 
p-like symmetry of the valence-band states. 

Aside from the formal precision of a transport theory 
based on scattering models with the correct symmetry, the 
advantage of using the above models in transport calcula- 
tions is that the deformation potentials associated with 
acoustic phonon scattering, a, b, and d, can be determined 
from methods apart from a transport calculation fitting. In 
other words, the parameters for acoustic phonon scattering 
need not be treated as phenomenological fitting parameters 
in a transport study, but can be input as known parameters in 
the same way that the lattice constant and the mass density 
are. Even’ the deformation potential de associated with opti- 
cal phonon scattering could, in principle, be independently 
determined.8 However, practically, de is treated as a phenom- 
enological parameter, which is, adjusted to fit the transport 
calculations to known measurements, but, it is only this one, 
single parameter that is treated as adjustable, thus increasing 
the precision of the theory. 

In the last decade, Madarasz and Szmulowicz have ad- 
vanced and used these scattering models in very careful cal- 
culations of hole transport in silicon and in germanium.7’g-‘4 
Their method involves solving the Boltzmann transport 
equation by performing a harmonic expansion on the distri- 
bution function and solving for the first four. odd-ordered 
moments, thus going significantly beyond the relaxation time 
approximation. The method allows determination of very 
low field transport properties, such as conduction mobility 
and Hall mobility. Their method is definitive in this area. 
Szmulowicz was able to fit measured mobilities in pure sili- 
con and germanium over a broad temperature range, using 
only a single, fit value of da in each material.7 

More recently, Hinckley and Singh15,‘6 have developed 
an alternative, Monte Carlo hole transport calculation 
method, based on the same scattering models as refined and 
used by Madarasz and Szmulowicz. This method is appli- 
cable to studies of zero-field carrier dynamics and high-field 
transport, although not applicable to low-field transport and 
magnetotransport. The high-field capability of the Monte 
Carlo method complements the low-field capability of Ma- 
darasz and Szmulowicz’ method. An overlap exists in the 
area of Ohmic conduction. The Madarasz and Szmulowicz 
method can directly yield the conduction mobility, whereas 
the HinckIey and Singh Monte Carlo method can give the 
zero-field diffusion coefficient, which is then related to the 
conduction mobility through the Einstein relation. 
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Using the three-band k.p band structure and the Pikus 
and Bir deformation potential theory, the Madarasz and 
Szmulowicz, and the Hinckley and Singh hole transport 
methods have advanced the precision of transport calcula- 
tions to the point where the accuracy of the results is prima- 
rily limited by the variation in published material parameters 
and measured mobilities. Various values may be found in the 
literature for the band structure parameters, the elastic stiff- 
ness constants, and the valence-band deformation potentials 
a, b, and d, as well as for the room-temperature mobility and 
the temperature coefficients of the mobility for both silicon 
and germanium. 

The purpose of this work is to extend the Monte Carlo 
method so that it can be applied to calculations of Ohmic 
hole mobility and to determine the best values of the optical 
phonon deformation potential ds in both silicon and germa- 
nium over a range of published material parameters, and to 
examine how the best do varies with a variation in the other 
parameters. The best do is determined to be that which gives 
a calculated room-temperature mobility agreeing with a pub- 
lished measured value. Given a single fitting parameter d, 
and a single datum to fit to, ~(300 K), an agreement is gen- 
erally achievable, no matter which material parameters are 
used. Therefore, we have also examined the temperature de- 
pendence of the calculated mobility, using the best values of 
de, for each material parameter set, in both semiconductors. 
This is done to determine which material parameter set, 
along with the best da for that set, could be used to most 
accurately model transport in each material. 

The content of the rest of this paper is as follows. The 
next section describes the modeling used, both the band 
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structure and scattering models and the Monte Carlo imple- 
mentation which accounts for the complexities of the valence 
band. Section III briefly discusses the various material pa- 
rameter values and mobilities found in the published litera- 
ture for silicon and germanium. These are the relevant pa- 
rameters for input to the transport calculation, then the 
calculation procedure for determining the transport proper- 
ties is described. Section IV gives the results of the calcula- 
tions. Section V contains a discussion of the results and pre- 
sents the conclusions. 

II. MODEL 

The models of the band structure and scattering rates as 
well as the Monte Carlo implementation used in this work 
are described in substantial detail in separate 
publications.‘5-‘7 The presentation given here will cover 
only briefly the main aspects of the models and methods 
used. 

A. Band structure 

The valence band structure is calculated using a three 
band k-p method, with spin-orbit coupling. The eigenstates 
are formed from the six-dimensional basis: 
~~~),~~~),~z~),~~~),~~~),~z~). The band structure is ob- 
tained by calculating the eigenvalues of H,+ H,, . The k-p 
Hamiltonian matrix is:18 

where 11~ is the free electron mass. The dimensionless terms 
L, M, and N are related to the Luttinger y parameters:r9 

The spin-orbit interaction is included by adding H,$, to 
HkP. In the above basis, H,, is:” 

I 0 i -i 0 0 0 0 0 0 0 -i 1 1 xf yj- 

H”“=30 A00 
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where A0 is the zone center (k=O) spin-orbit splitting. 
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B. Scattering processes 

%o mechanisms of lattice scattering are used in this 
work: deformation potential acoustic phonon scattering and 
deformation potential (nonpolar) optical phonon scattering. 
Each scattering mechanism may drive both inter- and intra- 
band transitions between and within the three valence bands. 
This results in three intraband and six interband modes of 
scattering for each mechanism. 

Scattering rates for transitions from band it (i.e., HH, 
LH, or SH) to band n’ (i.e., HH, LH, or SH) by mechanism 
m (i.e., acoustic phonon or optical phonon), are calculated 
using Fermi’s second Golden Rule 

v, 27r 
Wm;n,n44 = m yy- I d3k’lKn;,,,,4N)12 

XS(E,+AE,-El,,,), (4) 

where M is the scattering matrix element, V, is the crystal 
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volume, and the density of final states is given by the delta ergy surfaces, the integration is done numerically. We have 
function. Conservation of energy reduces this integral from found a ten-point Newton-Cotes algorithm to work satisfac- 
three to two dimensions, with the integration being carried torily for the integration of each dimension separately. 
out over the constant energy surface E = E:,, . Because of The squared modulus of the scattering matrix element 
the complex warped nature of the valence band constant en- for acoustic phonon scattering isz9 

1 
1 

where k,T 
P 
VC 
s/ 
4, I 

e&d 

Di’i 
Iyp 

is Boltzmann’s constant times temperature, 
is the mass density, 
is the crystal volume, 
is the phonon speed in mode i, 
is the crth direction cosine of the phonon 
wave vector, 
is the /3th component of the phonon polar- 
ization vector in mode /: for a phonon 
with wave vector q, 
is the j ’ , j element of the a,/3 deformation 
potential operator, 

(jl@,Z(k)) is the projection of the initial wave 
function onto lx)(j=l), (y)(j=2) or 
lz)(jv3). 

The sum over /’ is a sum over the three phonon polariza- 
tions. A factor of 2 is included, to account for both emission 
and absorption at once. The operators D, are given as 3X3 
matrices in the x,y,z basis: 

0 0 5x 

D,= 0 0 0 Y, (6) 
n 
500% 

J 
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and D,, = D,, , Dyz= D, , D,= D,, . The valence-band de- 
formation potentials 1, m, and n are related to- the more fa- 
miliar a, b, and d by 

6=a+2b, m=a-b, n=V3d. i7) 
The usual approach to hole-acoustic phonon scattering”‘,‘* is 
formally equivalent to setting n=O and replacing / and m 
with an averaged effective acoustic phonon scattering defor- 
mation potential, E, , and replacing s/ with an averaged 
sound speed. The present model does not make this approxi- 

mation and retains the full nondiagonal form of the deforma- 
tion potential operators D +. The phonon polarization vec- 
tors which are used are those published in Refs. 9 and 22. 
The longitudinal and transverse phonon speeds are obtained 
from spherically averaged elastic stiffness tensor elements, 
as published in Ref. 9. 

This model treats the scattering as elastic and uses equi- 
partition of phonon modes, both of which are valid approxi- 
mations at room temperature. However, since this work in- 
volves lower temperature calculations as well, these two 
approximations should be quantitatively verified. At a given 
temperature, the average energy of acoustic phonons in- 
volved in scattering is (e,)=h(w)=Ru,~(q), where u, is the 
average sound speed and (q) is the average phonon wave 
vector magnitude. Conservation of momentum during scat- 
tering requires that q lies between 0 and 2k, where k is the 
magnitude of the hole wave vector. On the average, (q) 
=(k), where (k) . th IS e average hole wave vector at the given 
temperature. This may be related to the average hole energy, 
through the approximate relation 

fi2(k)2 
(E)= ~9 

in which the warping of the hole energy surfaces has been 
accounted for in the value of m *. Thus the average energy of 
acoustic phonons involved in scattering holes is 

(e,)=u,$iP(@=OSO J g meV (Si) 

=0.22 (9) 

Anticipating the results of the calculations to be presented 
later, the average hole energies are (E) =16.5 meV and 43.7 
meV in Si at T=150 K and 300 K, respectively, and (E) 
=lO.O meV and 41.5 meV in Ge at T==lOO K and 300 K, 
respectively. The temperature values presented here are the 
limits of the temperature ranges, in each material, over which 
the mobility data are fit (see Sec. IV). The ratio of average 
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hole energy to average acoustic phonon energy is 
(E)/(e,)=8.2 and 13 in Si at T=150 K and 300 K, respec- 

and 7.4 in Si at T=150 and 300 K, respectively, and 12 and 

tively, and (E)l(e,J =14 and 29 in Ge at T=lOO K and 300 
17 in Ge at T= 100 and 360 K, respectively. .Comparing 

I(, respectively. In the worst case of Si at T=150 K, elastic 
N+(N+ 1) with 2k,T/(e,), a difference of no more than 
0.2% is found, over the same temperature ranges as above. 

acoustic phonon scattering appears to be a fair approxima- 
tion. The average occupation number of acoustic phonons 
involved in hole scattering is N= l/[exp((e,)/kBT) - 1]=5.9 

Thus, equipartition is also a valid approximation. 
The squared modulus of the scattering matrix element 

for optical phonon scattering is:? 

I 

IMJp;n,,t 1 (k,k’)]‘=d; 3fi(no: ’ “) i 1 2 
paooOVc 

($ 
II ’ 

(kt)ljt)Aj'j(jl$ (k))12 
/ n > 

/=I j,j'=l 
im 

where d,, is the optical phonon deformation- potential, 
n0 is the optical phonon mean occupation number; 

no+ f- $=no : phonon absorption, 
no + it- f= no + 1: phonon emission, 

P is the mass density, 
a0 is the lattice constant, 
WO is the zone center optical phonon frequency. 
VC is the crystal volume, 
A$i is the j’,j element of the permutation operator 

corresponding to the /th optical phonon mode. 

Again, the sum over / is a sum over the three phonon po- 
larizations. The operators A, are determined by the symme- 
try of the lattice,7 and are given as 3X3 matrices in the x,y,z 
basis: 

0 1 ox 
A,= [ 1 0 

0 0 
0 1 Y. 
02 

(11) 

In addition to being a function of energy, each scattering 
rate is anisotropic and its value will depend upon the orien- 
tation of the initial trajectory, k, with respect to the crystal- 
lographic axes. 

C. Monte Carlo implementation 

The Monte Carlo method used in this work is an irnple- 
mentation of the fundamental algorithm most commonly 
used in classical transport simulations. The transport of a 
particle is simulated as a great number of repetitions of the 
basic cycle of free flight under any imposed fields, then scat- 
tering by one of several mechanisms, followed by a determi- 
nation of the new post-scattering state, then return for an- 
other free flight, beginning the next cycle. 

The special features of this Monte Carlo method are as- 
sociated with the handling of the various anisotropies of the 
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band structure and scattering mechanisms. These fall into 
three areas: particle energy, scattering rates, and determina- 
tion of the post-scattering trajectory. 

During the operation of the Monte Carlo, energies are 
obtained by solving for the eigenvalues of H,, + Hk,, [Eqs. 
(2) and (3)]. This gives accurate values of the energy, which 
is very important for determining correct particle motion dur- 
ing free flight. 

-Like energies, scattering rates are anisotropic, exhibiting 
cubic symmetry with respect to variations in the initial tra- 
jectory. Calculation of the scattering rates involves a two- 
dimensional numerical integration that is too time consum- 
ing, however, to be done practically during the Monte Carlo 
operation. The scattering rates, therefore, must be calculated 
beforehand and input in tabulated form to the Monte Carlo. 
The tabulation consists of values obtained over a mesh in 
energy, for an assortment of initial trajectories. The assort- 
ment of initial trajectories may be considered to constitute an 
additional two-dimensional mesh, resulting in an overall 3D 
mesh on which the scattering rates are calculated. 

The design of the mesh is one of the critical aspects of 
the Monte Carlo implementation and therefore merits a full 
description. An energy mesh with variable spacing is used, 
which is constructed in the following way. 

(1) A mesh point is taken at 0 eV. 
(2) An upper limit of energy is chosen, typically 0.5 eV, 

where another mesh point is taken. These two points estab- 
lish the ends of the mesh. 

(3) Next, a mesh point is taken at the energy of scatter- 
ing threshold. Each specific choice of initial band, final band, 
and scattering mechanism will have its own threshold. For 
example, within the heavy hole band, (elastic) acoustic pho- 
non scattering will have a threshold of 0 eV, whereas, scat- 
tering from the heavy hole band to the splitoff band by op- 
tical phonon emission will have a threshold which is the sum 
of the spin-orbit splitting and the energy of an optical phonon 
(0.0440 eV+0.0628 eV=0.1068 eV in the case of silicon). 

(4) Two points are taken on either side of the threshold. 
Typically, a very small distance of 0.0001 eV is chosen. 

(5) Then, a finely pitched mesh is taken, starting from 
the threshold, and continuing for a specified number of steps. 
Typical values are a pitch of 0.001 eV and 20 steps. 
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(6) Finally, a more coarsely pitched mesh is taken, start- 
ing at the high energy end of the grid and working down in 
energy until the finely pitched mesh is reached. A typical 
pitch of this mesh is 0.02 eV. 

It will be seen that the scattering rate for each specific 
choice of initial band, final band, and scattering mechanism 
will require establishing a mesh tailored to the unique thresh- 
old involved. The mesh used can vary from one scattering 
rate to another. A variable mesh, carefully specified in this 
way, allows a simple linear interpolation to be used, while 
accurately representing the scattering rate near threshold, 
where it is apt to be most rapidly varying. Since the thresh- 
old depends only on energy, and is independent,of the initial 
trajectory, the same energy mesh is used for each of the 
assorted initial trajectories for which the tabulation is per- 
formed. 

The Brillouin zone, having cubic symmetry, may be rep- 
resented by an irreducible zone, l/48 of the full Brillouin 
zone in size, and bounded by rays in the directions [OOl], 
[111], and [loll. If the scattering rates, considered as a func- 
tion of initial trajectory at a fixed energy, are known for all 
directions within the irreducible zone, then they may be 
found for any trajectory by the use of cubic symmetry op- 
erations. This principle is used to reduce the number of as- 
sorted trajectories required in the tabulation, it being suffi- 
cient to consider trajectories in the irreducible zone, only. 
For deformation potential acoustic and optical phonon scat- 
tering, the scattering rate anisotropy is low enough that the 
trajectories used in the rate tabulation may be restricted to 
the [OOl], [ill], and [loll directions, which form the corners 
of the irreducible zone. Rates for other trajectories within the 
irreducible zone are obtained by using a bilinear interpola- 
tion on the tabulated rates at the three corners. 

After the scattering mechanism and final band have been 
determined, the Monte Carlo must determine the final trajec- 
tory, to complete the simulation of a scattering event. This is 
the third area in which the present Monte Carlo method must 
deal with an aspect of the anisotropy associated with the 
valence band. The final trajectory is chosen probabilistically 
from a two-dimensional distribution in the two angles which 
determine the final trajectory. This distribution is propor- 
tional to the differential scattering rate associated with the 
initial state. The differential scattering rate, dW/dQ’, is the 
integrand of the two-dimensional integral which is evaluated 
to give the scattering rate 

w= J -g dR’, (12) 

where, as stated before, the integration is over the constant 
final energy surface. These distributions are calculated as 
needed, during the operation of the Monte Carlo. 

The Monte Carlo method developed for this work can be 
used either to simulate a single particle’s motion or to simu- 
late a large number or ensemble of particles. The objectives 
and data collected differ in the two cases. To-calculate the 
velocity-field characteristics, single particle simulations are 
done. During the simulation, the total distance and time trav- 
eled are recorded. After completion of the simulation, the 
ratio yields the drift velocity. To calculate diffusion, the en- 

semble mode of simulation is used. In this case, the average 
distance and the average of the square of the distance are 
recorded as functions of time, the average being over the 
large number of particles. After completion of the simulation, 
the diffusion coefficient is calculated as:23 

D= ;; ((x”>-(x)*). (13) 

The derivative must be taken away from the initial part of 
(x2> - (x>2, which is nonlinear. Of interest in the present 
work is the Ohmic mobility, which is related to the diffusion 
coefficient D by the Einstein relation 

qD 
I*= k,T’ (14) 

In pure materials, which are only considered in this work, the 
chemical potential tends to the middle of the band gap as 
temperature decreases, and therefore the Einstein relation, as 
given in Eq. (14), remains valid over the temperature range 
studied here. The appropriate derivation may be found in 
Ref. 24. 

111. PROCEDURE 

For both silicon and germanium, somewhat of a range of 
material parameters may be found in the published literature. 
In as much as these are input to a transport calculation, a 
corresponding range in calculated results may be expected. 
The most significant variations in material parameters are to 
be found in (a) band structure parameters: yt ,y2,ya,A0, (b) 
elastic stiffness constants: c,, , cr2, cd4, and (c) deformation 
potentials: a,b,d. Many values for the deformation potential 
a, corresponding to hydrostatic compression, may be found 
tabulated in Ref. 25. A range of values found for the other 
parameters are given in Refs. 526-29 (band structure pa- 
rameters), Refs. 5,30,3 1 (elastic stiffness constants) and 
Refs. 5,25,31-36 (deformation potentials b and d). 

Both the room-temperature value of hole mobility in sili- 
con and germanium, and the temperature coefficients have 
been reported over a range. The coefficients are M and a; as 
in 

,u(T)=MT-~ (15) 
with T in degrees Kelvin. A range of values of M and cy are 
given in Refs. 37-40. 

The first part of this work consisted of making a com- 
parison of the Monte Carlo results with those of Szmulow- 
icz. To do this, the same material parameters for silicon and 
germanium were used as reported in Ref. 7, which will be 
identified as parameter set A (described below) with an op- 
tical phonon deformation potential value of do=29.3 eV for 
silicon and d,=40.0 eV for germanium. Room-temperature 
conduction mobility and the temperature dependence of the 
mobility were obtained from the Monte Carlo calculated dif- 
fusion coefficients for both materials at zero electric field and 
compared with the mobility values reported by Szmulowicz. 
These mobilities are zero-field mobilities and therefore are 
independent of any particular field orientation. 

4196 J. Appl. Phys., Vol. 76, No. 7, 1 October 1994 J. M. Hinckley and J. Singh 



TABLE I. Silicon material parameter sets used in this work. AI1 parameters are for room temperature, unless 
otherwise noted. 

Parameter 

Lattice constant A 
(77 K) 

li’-L parameter 

Spin-orbit splitting (eV) 
Stiffness coeff. (10” dyn/cms) 

(77 IO 

(77 K) 

(77 K) 
Density (g/cm3) 
Optical phonon energy (eV) 
Deformation pot. (eV) 

‘Numbers in parentheses are references. 

Symb. Set Aa Set Ba Set C 

a0 5.43086 (41) 5.43095 (42) same as B 
5.42701 (43) same as B 

Yl 4.27 (2728) 4.22 (26) same as B 
Yz 0315 (27,28) 0.39 (26) same as B 
Y3 1.46 (27,28) 1.44 (26) same as B 
41 0.044 (44) same as A same as B 
Cl1 16.56 (31) 16.577 (30) same as B 

. . . 16.722 (30) same as B 
Cl2 6.39 (31) 6.399 (30) same as B 

. . . 6.497 (30) same as B 
c44 7.95 (31) 7.962 (30) same as B 

. . . 8,036 (30) same as B 
P 2.328 (41) 2.331 (30) same as B 
fi WL! 0.063 (41) 0.0628 (45) same as B 

f 
2.1 (25) same as A same as B 
-2.2 (25) same as A -1.5 (31) 

d -5.3 cm same as A -3.4 (31) 

The uncertainty in the obtained diffusion coefficient is 
obtained from the 90% confidence interval about the mean of 
the three values D,, Dyy , and D,, using the t distribution 
with two degrees of freedom. The uncertainty in the mobility 
is directly proportional to this, through the Einstein relation. 

The second part of this work consisted of making a de- 
termination of the best values of d, for each semiconductor, 
considering a range of material parameters for each. For each 
semiconductor, three sets of material parameters were con- 
sidered: 

(1) Those used by Szmulowicz7 (except for do, which 
was to be determined). This is to be referred to as parameter 
set A. 

(2) A set which differs from the above primarily in the 
band structure and elastic stiffness. constants; deformation 

potentials a, b, and d are kept the same as in set A. This is to 
be referred to as parameter set B. 

(3) A set that differs from set B only in the values of 
deformation potentials b and d. This is to be referred to as 
parameter set C. 
The specific values of all parameters in sets A, B, and C are 
given in Table.1 (silicon) and Table II (germanium). 

The determination of the best d,, for each parameter set, 
in each semiconductor, is carried out in the following way. 
First, room-temperature mobilities are calculated for several 
values of do’ spanning a range of about 10 eV. A linear least- 
squares fit is made to the ,u versus do data. A value of do is 
interpolated from this fit, which corresponds to a mobility 
equal to that reported in the literature for the given semicon- 
ductor. For silicon, the value of the mobility, taken from Ref. 

TABLE II. Germanium material parameter sets used in this work. Ah parameters are for room temperature, 
unless otherwise noted. 

Parameter Symb. Set A” Set En Set C 

Lattice constant A 
i77 K) 

k’-L parameter 

Spin-orbit splitting (eV) 
Stiffness coeff. (IO” dyn/cma) 

(77 K) 

(77 K) 

(77 K) 
Density (g/cm3) 
Optical phonon energy (eV) 
Deformation pot. (eV) 

‘Numbers in parentheses are references. 

an 

x 
Y2 

Y3 
Ao 
Cl1 

Cl2 

c44 

ii We 

it 
d 

5.65748 (41) 
. . . 
13.27 (5) 
4.315 (5) 
5.606 (5) 
0.30 (5) 
13.064 (5) 
. . . 
4.885 (5) 
. . . 
6.857 (5) 
. . . 
5.3267 (41) 
o.q37 (41) 
2.0 (5) 
-2.1 (5) 
-7.0 (5) 

5.65791 (46) 
5.64800 (47) 
13.35 ‘(26) 
4.25 (26) 
5.69 (26) 
0.282 (29) 
12.853 (48) 
13.112 (48) 
4.826 .(48) 
4.923 (48) 
6.680 (48) 
6.816 (48) 
5.323 (48) 
0.0373 (49) 
same as A 
same as A 
same as A 

same as B 
same as B 
same as B 
same as B 
same as B 
same as B 
same as B 
same as B 
same as B 
same as B 
same as B 
same as B 
same as B 
same as B 
2.0 (31) 
-2.2 (31) 
-4.4 (31) 
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TABLE III. Best values of optical phonon deformation potential d, deter- 
mined by Monte Carlo, for each parameter set in silicon and germanium. 
For these parameters, the room-temperature mobility is calculated to be 480 
cm’n s (Si) and 2060 cm?V s (Ge). 

4 W 

Material Set A Set B Set C 

Si 29.120.7 32.920.4 39.650.5 
Ge 38.421.2 35.520.4 42.820.5 

tainty and determining the resulting range in a and M. Fur- 
350 ther examination of the different parameter sets is made by 

25 30 35 40 45. 50 carrying out simulations of high field transport at room tem- 

do (ev> 
perature. Here, the velocity-field data are obtained, using the 
different parameter sets. 

HG. 1. Dependence of calculated silicon room-temperature ohmic mobility 
on optical phonon deformation potential, d,, for each material parameter set 
A, B, and C. Straight lines are linear least-squares tits. 

38, is 480 cm2iV s. For germanium, the value of the mobility, 
taken from Ref. 40, is 2060 cm’/V s. This gives the best d, 
for the given parameter set. Next, the relative merits of the 
different parameter sets are examined by calculating the tem- 
perature dependence of the mobility. For each parameter set, 
using the associated best do value, the mobility is calculated 
at several values of temperature. The temperature is chosen 
over a range in which both acoustic and optical phonon scat- 
tering occur. This is 150-300 K for silicon and 100-300 K 
for germanium. A linear least-squares fit is made to the log /L 
versus log T data over this range, allowing extraction of the 
temperature coefficients ?I and LY, which are defined by the 
relation p=MT-“. Comparing the value of cy with values 
given in the literature, gives an indication of which param- 
eter set is most appropriate, along with the associated best 
value of d,,. Uncertainties in II~ and cy are obtained by allow- 
ing each value of mobility to vary within its range of uncer- 

2.4 

7f2.2 

< 
hk 2.0 

3 
‘;I .8 

1 .6 
30 35 40 45 50 

d, w 

IV. RESULTS 

First, comparison was made with the results of 
Szmulowicz.7 Using material parameter sets A, and optical 
phonon deformation potential values of d,=29.3 eV for sili- 
con and d,,=40.0 eV for germanium, the Monte Carlo caicu- 
lations give the following room-temperature mobilities: 
I-Lsi=(472+12) cm’/v s and ,~o,-(1957233) cm2/V S. Over 
the temperature range of 150-300 K, the calculated silicon 
mobility can be fit to ,u=M(T/Kelvin)-a, with M=5.76 
X108 cm’/V s and cu=2.46ItO.O9. Over the temperature 
range of 100-300 K, the calculated germanium mobility can 
be fit with M=3.41X108 cm’/V s and a=2.11%0.04. In the 
work of Szmulowicz, using the same material parameters, 
the silicon and germanium room-temperature mobilities are 
505 cm2/V s and 2060 cm”iV s, respectively. Szmulowicz 
presents the temperature exponents LY as varying with tem- 
perature, but having average values of 2.4 (silicon) and 2.3 
(germanium). The agreement between the two methods is 
fairly close for the room-temperature mobilities in both ma- 
terials and the temperature exponent in silicon. The tempera- 

IO5 

T IO" 

-?. c-4 
ii ‘-g IO3 

IO2 
50 100 500 

T 09 
FIG. 2. Dependence of calculated germanium room-temperature ohmic mo- FIG. 3. Dependence of calculated silicon ohmic mobility on temperature, 
bility on optical phonon deformation potential do for each material param- for each material parameter set A, B, and C. Straight lines are linear least- 
eter set A, B, and C. Straight lines are linear least-squares fits. squares fits to log p vs log T. 
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T 44 
FIG. 4. Dependence of calculated germanium ohmic mobility on tempera- 
ture, for each material parameter set A, B, and C. Straight Iines are linear 
least-squares fits to log p vs log T. 

ture exponent for germanium has a greater discrepancy, 
which amounts td 0.1 when considering the upper limit of 
(u=2.11+0.04 from the Monte Carlo calculation and the 
lower limit of (u=2.3+0.05 from Szmulowicz’ work. 

Results of the calculation of the room-temperature mo- 
bilities as functions of the optical phonon deformation poten- 
tial d, for each of the three material parameter sets in both 
silicon and germanium are shown in Figs. 1 and 2. From 
linear least-squares fits on these results, the best values of do 
are determined as given in Table III. 

Results of the calculation of the mobilities as functions 
of temperature, using the determined best values of do for 
each parameter set, are shown in Figs. 3 and 4. Linear Ieast- 
squares fits are applied to log p versus log T to obtain the 
temperature coefficients M and (Y. These are presented in 
Table IV. 

Finally, the results of the high-field transport calculations 
for each parameter set, in both materials, were obtained us- 
ing an electric field oriented in the [loo] direction. in previ- 
ous work,16 good agreement has been found between the 
calculations with parameter set C and experimental data. In 
the present work, no significant dependence of the v-E char- 
acteristics on the variation in material parameters was found. 

TABLE IV Temperature coefficients of the mobility determined from linear 
least-squares fits log p=log M  - (Y log T. 

Material cl l”g(cm’ws) M  (cm*/v s) 

Si, set A 
set B 
set C 

Ge, set A 
set B 
set C 

2.43 t-o.07 8.7020.16 4.98X lo8 
2.5220.05 8.9120.12 8.22X 10s 
2.90t0.10 9.8620.24 7.25x 10” 

2.05 to.04 8.40+0.10 2.51 x 10s 
2.08rO.03 8.46kO.07 2.89X10* 
2.44kO.08 9.34kO.19 2.20x 109 

V. DISCUSSION 

In this paper we have shown that the Monte Carlo 
method can be used to study the problem of Ohmic transport 
of holes in Si and Ge, with full consideration given to the 
band structure complexity. With the inclusion of appropriate 
scattering mechanisms, the method presented here can be 
extended to the study of Ohmic and high-field hole transport 
in other semiconductors. 

We have also seen that small variations in the optical 
phonon deformation potential, d,-,, have a quantitative effect 
on the temperature dependence of Ohmic hole mobility. 
However, there is sufficient uncertainty at present in the 
valence-band structure parameters, the valence-band acoustic 
deformation potentials, and the measured hole mobilities that 
one can only obtain do within a certain degree of uncertainty. 
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