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Vector coherent state methods, which reduce the U(5) D SO(5) D SO(3) subgroup
chain, are used to construct basis states for the five-dimensional harmonic oscilla-
tor. Algorithms are given to calculate matrix elements in this basis. The essential
step is the construction of SO(5) D SO(3) irreps of type [v,0]. The methodology is
similar to that used in two recent papers except that one-dimensional, as opposed to
multidimensional, vector-valued wave functions are used to give conceptually sim-
pler results. Another significant advance is a canonical resolution of the SO(5)
D SO(3) multiplicity problem. © 1995 American Institute of Physics.

I. INTRODUCTION

Two recent papers' (referred to herein as I and II), showed how VCS (Vector-Coherent-State)
theory can be used to construct SO(3)-coupled basis states and calculate matrix elements for the
five- and six-dimensional harmonic oscillators. The central result of these papers was the con-
struction of SO(5) D SO(3) irreps of the types [v,0] and [v,v]. Two subsequent advances make
it possible to simplify the results of these papers and construct the generic representations of
SO(3) of type [v,v,].

The first advance is a different choice of Cartan subalgebra for SO(5). With the new choice,
the VCS irreps of type [v,0] and [v,v] are carried by one-dimensional, as opposed to multi-
dimensional, vector-valued wave functions. As a result, the construction of these SO(5) irreps
becomes of the same degree of complexity as for generic (A, ) irreps of SU(3) D SO(3). In this
paper we focus on the representations of type [v,0] needed in the solution of five-dimensional
harmonic oscillator problems. The generic [v,v,] SO(5) irreps will be treated in a following
paper.

The second advance is a development in K-matrix theory? which simplifies its application and
yields a canonical orthonormal SO(5) D SO(3) basis, relative to which the VCS irreps are unitary.

A large body of literature has been addressed to the U(5) D SO(5) D SO(3) problem (cf., for
example, Refs. 3,4 and many references quoted in I and II). Moreover, computer programs have
been developed to calculate the matrix elements for practical applications.” The problem is of
fundamental interest because of the occurrence of a non-trivial multiplicity. The problem was
resolved in the early literature® by ingenious ad hoc devices, such as the use of “traceless bosons”
and “elementary permissible diagrams.” The present paper (together with papers I and II) brings
a completely new approach to the problem. Among its achievements are the following: (i) Rep-
resentations are constructed by systematic (albeit relatively new) vector coherent state methods.
These methods were used in Ref. 6 to construct SU(3) O SO(3) representations and in Ref. 7 to
construct SU(4) D SO(4) ~ SU(2)X SU(2) representations. (ii) The SO(5) O SO(3) multiplicity
problem is given a canonical resolution. (iii) Exact, as opposed to numerical, results are obtained
for all multiplicity-free cases; a simple computer algorithm gives matrix elements for other cases.
(iv) The approach admits an extension (to be given in a following paper) to the generic SO(5)
irreps of type [vy,v,] to which the previous methods did not apply.
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4712 D. J. Rowe and K. T. Hecht: The five-dimensional harmonic oscillator

Il. BASIS STATES

Our first objective is the construction of orthonormal basis states {|nvaLM)} for the five-
dimensional harmonic oscillator that reduce the subgroup chain

U(5) D SO(5) D SO(3) D S0(2) ,

1
N v a L M M
where the quantum numbers (NvLM) are representation labels, N=2n+v, and « indexes the
multiplicity of SO(3) irreps in the SO(5) irrep [v,0]. To construct such a basis, we use the duality®
between U(5) D SO(S) and U(1) C SU(1,1) to replace the subgroup chain of Eq. (1) by the
equivalent chain

SU(1,1)XSO(5) O U(1)XSO(3) O SO(2)

v a n L M @

The infinitesimal generators of the groups appearing in these chains are defined as follows.
First, raising and lowering operators of the 5-dimensional harmonic oscillator are defined such that

(@t=dl,, d"=(-1)y"d_, (3)
and
[d™,d}]= Smn - @
The operators,
Cnn=d}d", (5)

are then infinitesimal generators of U(S) and span the u(5) Lie algebra. The so(5) Lie algebra is
spanned by three components of angular momentum and seven components of an octupole tensor:

Lk=\/ﬁ(df><d)1k, k=0,t1,

©)
0,=V10(d'xd);,, »=0,£1,%2,+3.
The Lie algebra su(1,1) is spanned by operators
5 1
X+=—‘/:(d*><df)o=—2 (-1)"d}d’,,
2 2 e m“—m
NG 1
Xo= [(d"Xd)o+(dxd")o)= 72 [d}d"+d"d}], ()
5 1
X—=£(d><d)o=—2 (=1)"amd™",
2 24
which obey the commutation relations
[X-.X:]=2X,, [Xo.X:]=%X.. ®
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The U(1)CSU(1,1) subgroup has a single infinitesimal generator given by the SU(1,1) operator
Xo. A U(5) irrep is labeled by the value N of the d-boson number operator

Ny=2, did". 9)

Our construction of a basis starts with a sequence of states {|v);v=0,1,2,...} each of which is
simultaneously a lowest weight state for an SU(1,1) irrep (v) and a highest weight state for an
SO(5) irrep [v,0]. Each state |v) is then extended to a basis

3 (v+3)! . 10
|nv)= \/mX+) v} (10)

X+|nv)=\ﬁn+v+%)(n+1)|n+l,v),

X_|nv)=v(n+v+PHn|n—1,0), (11)

Xolnv)= 5(2n+v+3)|nv).

for an SU(1,1) irrep with

The states {|nv)} are identified with five-dimensional harmonic oscillator states as follows.
Let %' denote the linear combination of d-boson raising operators which is of highest weight
relative to an ordered basis for a Cartan subalgebra for so(5). Then the states

1
|v>=ﬁ(n‘f)v|0>, v=0,1.2,.. (12)

are SO(5) highest weight states.

A Cartan subalgebra for so(5) was chosen in I with basis elements {Lgy,0,}. For this choice,
7' is equal to d} . The state |v) is the state [n=0,L=2v,M =2v) and the states |nv) are the states
|n,L=2v,M=2v). Here we choose a Cartan subalgebra which contains no component of the
s0(3) angular momentum. As a consequence, the highest weight state |v) becomes a state of mixed
angular momentum. Moreover, one can show that a complete basis of states {{OvaLM)} for an
SO(S) irrep [v,0] can be generated by projecting out states of good angular momentum from such
a highest weight state. This property is particularly useful in constructing basis states which reduce
the SO(3) C SO(5) subgroup. Among the infinite number of equivalent Cartan subalgebras having
this property, we arbitrarily choose the one spanned by the operators

1
Hy=5(Co1+CigtCpt Cog+ Cp=Cp = Cpy+ Cy i),
(13)
1
H2=§'(C2_1+C1_2+ C_.12+ C—21-C22+ C—2—-2+C11—‘C—1—1)'

Consider, the fundamental irrep of SO(5) spanned by the five (n=0,0 =1,L=2,M =m) states

|012m)=4d’ |0}, m=0,%1,%2. (14)
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Diagonalizing the operators [ H,H,] in this basis, yields the eigenstates and eigenvalues
1

V2

(d}+d7))[0), [N,,N]=[1,0],

1

V2

(d5—dl )0y, [0,1],

djloy, [0,0], (15)

1
—5<d*_z+d{>|0>, [0,~11,

\/__
! 1
E(dlz"“dl)l()), [-1,0],

where N, and N, are, respectively, the eigenvalues of H| and H,. The pair [N,,N,] is the weight
of the corresponding state. Thus, the state |1)= 7|0}, with

1
77*=—E(d§+d*_1) (16)

7z

is the highest weight state of the fundamental irrep and [ 1,0] is the corresponding highest weight.
Similarly, a state |v), defined by Eq. (12), is a highest weight state for an SO(5) irrep [v,0]. We
also note that

X_|v)=0, (17)

which implies that |v) is simultaneously a lowest weight state for su(1,1), as required. Since the
operators of the su(1,1) and so(5) Lie algebras commute, the states {|nv)} are all highest weight
states for equivalent so(5) [v,0] irreps.

The next step is to extend each state |nv) to an orthonormal basis {|nvaLM} for an SO(5)
irrep and complete the construction of an orthonormal basis for the five-dimensional harmonic
oscillator. This is conveniently done in a VCS representation.

ill. VCS WAVE FUNCTIONS

The states [nvaLM), |nv) and |v) can be represented by (one-dimensional) vector-valued
coherent-state wave functions

InvaLM>—’¢nvaLM’ |nv>ﬁXnv’ |U>—'§v’ (18)

defined by the expressions

¢nvaLM(Q)=Inv><nv|R(‘Q')|nvaLM>’ (19)
3 X B (n+v+3) .
Xno(2)=|v){vle®*~|nv)=|v) VW ) (20)
1
£, (x)=(0|e*"v)= \/Fx", 21)
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in which R({)) is an SO(3) rotation, and x and z are complex variables. Now, if in Eq. (20) we
replace the vector |v) by its coherent-state wave function {, and, in Eq. (19), we replace the
vector |nv) by its coherent-state wave function y,, , then the wave function ¢, .z for the state
|nvaLM) is replaced by the wave function ¥, ;4 With

¥ arm(X,2,Q) =(0|e“’|v)(v|eZX—|nv)(nv|R(Q)!nv aLM)
=(0]|e****¥-R(Q)|nvalM). (22)

Thus, any five-dimensional harmonic oscillator state |¥) has coherent state wave function
¥ (x,2,Q0)=(0]|e*"**-R(Q)|¥). (23)

In particular, the orthonormal basis states {|nvaLM)} have coherent state wave functions

{‘Ifnva-LM} with
(n+v+d!
Vrvarm(x,2,Q2)= m”%m(x,ﬂ) @4
v+ !

and
&y (x,Q)=(0|e*"R(Q)|0v aLM). (25)
If we make the expansion
Vo (6:0)= 2, (0le™00 aLK) Do (D), (26)
we obtain
Varn(x, Q) =€) 3 af(al)Fgy(Q), @7)
where
&(x)= L (28)
= oot
and
ay(al)= —I—(OI(d2+d—1)"|0vaLK). (29)

Vol

For each value of v, the n=0 wave functions {¢’; ,/} are an orthonormal basis for an SO(5) irrep
[v,0]. Thus, it remains to determine the {a}x(aL)} coefficients to have a complete orthonormal
basis of wave functions for the five-dimensional harmonic oscillator.

In constructing a basis for an SO(5) irrep [v,0], it is helpful to know what angular momentum
values appear. Williams and Pursey” showed that the range of L values in the irrep [v,0] is given
by

L=2K, 2K—-2, 2K-3, ..., K,
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K=v, v—3, v—6, .., v, (30)
v=0,1, or 2.

One sees from this that L has maximum value L_,,,=2uv. One also sees that L has minimum value
Lyix=0 when v is a multiple of three (v=3k) and L., =2 otherwise (v=3k+1 or 3k+2),
The construction of basis wave functions is facilitated by the following theorems:
Theorem 1: The SO(3)-coupled product of [v;,0] and [v,,0] wave functions

[(//‘;’LIX (ﬁZzLZ]LM belongs to the SO(5) irrep [v,+ v,,0].
Proof: Wave functions of the [ 1,0] irrep are given by

Dym(x,2) =(0]*TR(Q)d]|0) = £ (x)[ ZA () + PP | (Q)]. 31)

The state d}|OvaLM) is a linear combination of states of type {luv—1,8L'M’) and
{0,0+1,BL'M'). However, the matrix elements {0]e*"R(Q)|1,v —1,8L'M") are all zero. Con-
sequently, only the v+1 component of the state d;!Ou aLM) contributes to the matrix element

(0le*"R(Q)d} |0v aLM)
=(0]e*"R(Q)d} R(Q~")e *1e*"R(0)|0v aLM)
=-—1\Ex[.@ 2 )+ (N0l R(Q)[0valM)

= 0, (6, 00) Y00 (3, 0. (32)

Thus the product ¥, 4";,, is the VCS wave function for the (v+1) component of the state
d}|0veLM). Similarly, if Z%,,,(d") is the creation operator for the state [OvaLM), ie.,

[OvaLM)=25,,(d")0), (33)

only the v, + v, component of the state ZZ[L; Ml(d“)|0v 2BL,M,) contributes to the matrix element

(01" R(Q)Z7; \y (dN002BLM) =45 oy (1)U (2,00). (34)

U1 U

We conclude that the product ¢,,L1M1 ,s»'szM2

SO(3)-coupled product [z//‘;leX z/;:;sz} 1 18 a linear combination of [v; +v,,0] basis wave func-

tions of angular momentum LM of the form }Zycyglfl;};{”z.

Theorem 2: The expansion coefficients {a%(2v)} for the multiplicity-free states of
L=L=2v satisfy the recursion relation

is a wave function of the [v, +v,,0] irrep and the

al(2v)=a% 4(2v—-2)(2v - 2,K—2,2,2|2v,K)
+a%3 (2v~-2)(2v—2,K+1,2,— 1|2v,K). (35)

Proof: The harmonic oscillator states |0v,L=2v,M =2v) satisfy the relationship

|Ov,.L=2v,M=2v)= d}|ov,L=2v-2,M=20—2). (36)

1
\/v+1

The theorem then follows directly from Theorem 1 and the identity
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TABLE 1. Expansion coefficients {a}(2v)} for the multiplicity-free wave functions {43, ,} of L=Lmax=2v for v=1,..,8. The K
quantum number is expressed in terms of x by K=2v—3«. The k(v,2v) coefficients are defined in Equation (82).

v\ 0 2 3 4 5 6 7 8 k(v.2v)

V2

1 1

—
W

»N
i
3w

m&llp

wn

»
=
3=

Nt 500
\/T_GE \/W 8 16174
2199 12597 965
40 120 48 32 1272053
VBI719 /676039 VBI719 V33649 1062347

7 16 \/ 35 \/ 7 \/14336 1 \/ 2048 1 [54565792
5867 3 Voesmr & V37ias 937365 3 V 16445 3 V5311735

g 3
gl&
W

I
wn
w

»

I 6”"’&”“ % i N
|~ I © RIES)
w

_
R e
e

-~

w

n
~
[=]
o0
el

<
—_
W -
oo
|| 513
N
ki
g
—
H
»ol‘l v}
wn
-

o«
—
w

TEE

g . 4 [1 1 \/ 128 4480 7 \/ 2048 448 [ 32768 128 1 [140292947
155 3 V899 5 V35061 806403 3 V1964315 5 [T17sss0 V4032015 15 [{iga7 5 Y 5107219
L 2 7 L+2
MZm (LMy, 2m|L+2M)[ Dy XD bu]= (LK, 2 L+2K,+ KD ey BT
1

Table I gives the {ax(2v)} coefficients for the L=2v wave functions {¢ 3, ,} for
v=1,..,8 obtained by means of this recursion relation.

In determining the {a%(aL)} coefficients for other L values, it is useful to first construct an
arbitrary linearly independent set. Transformation to the coefficients of an orthonormal set of wave
functions can then be made subsequently such that the corresponding SO(5) irreps are unitary.
Thus, we construct a set of (n=0) basis wave functions

Pan=§'3 bilal) Dk, (38)
that are orthonormal relative to the convenient (but arbitrary) inner product
(‘PZLMI‘P;LIM')z 5vv' ‘SLL'JMM’; blljf*(aL)va(ﬂL) (39)

We shall refer to this inner product as the rotor inner product.

Theorem 3: Basis states of lowest L (L=_L;) of an SO(5) irrep [v =3k + r,0] have wave
functions given by

opk= &%, (40)
1
@%lﬁl“‘fskﬂﬁ[@%M“"@z—w]’ (41)
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TABLE II. Expansion coefficients {b%( L)} multiplied by a factor .4, given in the last column, for v =3k basjs wave
functions {@%; p}

L\K 9 6 3 0 -3 -6 -9 A7
0 1 1
3 2 -5 -1 Jio
4 2y5 V7 -5 V32
6 V385 347 2415 47 24155
6, 30v5 -82 11 4 {1155 -611 315 V102145
7 8 V11 - 104 - 273 V26 211 J1151
8 8 V13 V280 V33 -Jy10 213 V1267
9, 4 \Ja641 Vo1 ~-37 —2J1155 -92 —-4\o1 4 /5641
9, 21748 —28209 V51 35354641 —866 V12155 2524641 16451 —45128 /110498074144
10 2 /10659 31 V1T 2211 44195 811 —16411 V65171
3k+2 3k+2 1 2 2
O =€ E[Z-@w“@ Zoml (42)

Proof: Eq. (40) follows directly from Eq. (25) and the fact that (v|R(Q)|0vL=0, M=0) is
independent of (). Egs. (41) and (42) follow from the first by successive application of Theorem
1.

Wave functions for states of other L values can be constructed by application of Theorem 1,
using the wave functions of Theorems 2 and 3 as building blocks. Basis wave functions, expressed
in terms of {b%(aL)} coefficients which satisfy the orthogonality relation

; bY* (aL)by(BL)=8,p (43)

are given in Tables II-IV for all (n=0) states of L=<9. The bi“" coefficients for these wave
functions are tabulated separately for the »=0, 1, and 2, categories. It can be seen that the

TABLE III. Expansion coefficients {#%(aL)} multiplied by a factor .4, given in the last column, for v =3k +1 basis
wave functions {¢?%; ,,}.

LMK 8 5 2 ~1 -4 -7 v

2 1 1 N7}

4 8 -8 V7 V79

5 — V40 V3 V21 2 Ves

6 211 V15 3 -8 V73

7 32 —8+22 233 -1 NN 4 \166
8 V5005 2 V143 6 V10 8V7 8 V11 V7089
8, 11224 —5840 V35  -2162002 542715  —161 /455 7089 2 V421292181
9 834 ~2+5 -513 - /286 V56 8 V2927
10, 16 \663 22 /130 145 193 -26J13 442 V270616
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TABLE IV. Expansion coefficients {b%(aL)} multiplied by a factor .#", given in the last column, for v =3k +2 basis wave
functions {¢%; y}-

LK 10 7 4 1 -2 -5 -8 N

2 2 -1 Js

4 V7 V2 2 Vi3

5 8 —-2\21 V3 Vio Vi61

6 82 V24 - 15 Vit VI78

7 291 -1 —33 -8 -4 502

8, 25005 2311 217 10V10  —4143 V32214
8, 30491  —3832\5 264385 —24822 2065 —177491 112893963
9 64 -8J14  —-2+286 513 -5 234 6602
10, V2567 V1105 24130 430 8 10 813 V16174
b3**Y coefficients are independent of k. This is useful because it means that a complete set of

s0(5) basis wave functions for a finite range of L values, and any v, is a relatively small set. The
possibility of constructing a k-independent basis in this way follows from the fact that the b%
coefficients for the L, (building block) wave functions are independent of k.

Consider, for example, the two L=6 states that occur in a generic v =23k irrep. For v =3,
there is only one L=6 state. Thus, we set

by (a=1,6)=bx(6), k=1,

(44)
b (a=2,6)=b%(2,6), k=2.
For L=12, there is a triplet of states and we set
b3 (1,12)=b%(12), k=2,
b3¥(2,12)=b%(2,12), k=3, (45)

b3¥(3,12)=b2(3,12), k=4,

and so on.
It may also be noted from Eq. (29) that the aj(«aL) coefficients, and hence the b%(aL)
coefficients, vanish unless K lies in the range

—v=K=2v. (46)

As a consequence of this and the way the b3(aL) coefficients are defined, one finds, for example,
that bi"(l,6) is zero when K= —6 for any k. Similarly, b;{k(l,lZ) is zero when K=-—9 and
- 12 and bi"(2,12) is zero when K= —12, for any k. As we shall show in section VII, wave
functions with this property are characterized by a pseudo quantum number equal to the effective
number of zero-coupled triplets.*

In the following sections, a systematic construction of basis wave functions will be given that
is well suited to computer calculations. The construction uses elements of the SO(5) Lie algebra to
step states up in angular momentum from L, or down from L, .
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IV. VCS REPRESENTATIONS OF SO(5) D SO(3)

The action of any operator X in the so(5) Lie algebra on the VCS wave functions {¢%, ,,} of
Eq. (25) is defined by the equation

[T(X) 5,01 (x, Q) =(0]e*"R(Q)X|0valM). 47
Thus, the angular momentum operators act in the standard way:

T(Lo)Yarm=Moru»

(48)
T(L) Yo =VELFM)LEM+1) 0 -
The action of the octupole operators is determined by first expanding
R(Q)O,,|0vaLM)=MEK 0,100aLK) D3 (D) D §\y(Q). (49)
We then have
[T(0)¥orml(x.Q)= #EK (01e770 |00 aLK) P (D) D £y (D), (50)
and

[T(O)X ¢l (x, Q)= >, (0]e*70,|0valK)(LK, 3p|L’'K)ZE, (Q). (51)
ukK'’

The matrix elements
(0|€*70 ,|0v aLK)=(0|(0 ,+x[ 7,01+ % x*[ n.[ 7,011+ ..)e*"|0v LK) (52)
can be expressed in terms of similar matrix elements of the angular momentum operators as

follows. From Eq. (6), one infers that

{0]e*"Ly|0v alK)= \/_(0|(2d2 “Ne*7|0v LK),
(0le*"L . |0v LK) = %(0!2&11 +d~%)e*"0valK), (53)
(0]e*"L_|0valK)= ‘/_(o|\/—d° e*"0v aLK).

We also have

d
U(OIe’”’IOvaLK)=xE(OIe‘"’IOvaLK)— \/_(0|(d2+d Ne*"|0v alK). (54)

Expressing the O, matrix elements in a similar way, one finds that
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1
(0]e*700|0v aLK)=(0|e"’§(5v —Ly)|0vaLK),
V3
(0}e*70,|0v aLK)=(0|e*"| — - L+ |Ov aLK),

1
(0|e*”0 _,|0v aLK)=(0|e‘”’( - —-—L_) |Ov LK),

V3

(0|e“’02|OvaLK)=(0|e"’( \/-Z:L_)|OvaLK), (55)

(0|e*70_,|0vaLK)=0,
5
(0|e“’03]0vaLK>=(0}ex’7\/T—(—20 +Lg)|0veaLK),
. V>
{0|e*"0 _;|0vaLK)=(0|e ’7—3~(U+L0)|0vaLK).

Thus, for example,

(0]e*70y|0v aLK)= -;—(50 —K)&(x)ak(aL),

1
(0}e*70,|0valK)=— E\B(L——K)(L+K+ 1)&(x)a%, (eL). (56)
We then have
[TO)X o =8 (x) 2 ML Dal(al) D, 7)
K'K

where the M1 matrix elements are the simple linear combinations of SO(3) Clebsch—Gordan
coefficients

oy 1
MED = 3(v—K)IK, 30|L'K)

——;—\/3(L+K)(L—K+l)(LK—1, 31|L'K)

- \/%(L—K)(L+K+l)(LK+1, 3-1|L'K),

(L'Ly _— ‘/g

My 3x=— ’E‘(ZU—K)(LK, 33|L'K+3)

(58)

5
+ \/g(L-K)(L+K+1)(LK+1, 32|L'K+3),
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, 5
ME D= -3—\[—(0 +K)(LK, 3—3|L'K-3).

These results show that it is only a matter of matrix multiplication to compute the coefficients
!
SeM g‘, 1? )aﬁ( aL) for the wave function [I'(O) X ;114 from the coefficients ay(aL) for the

wave function ¢, . Similarly, one can compute the coefficients X zM %,'KL)b‘,’(( aL) for the wave
function [I'(0)X ¢, 1174 from the coefficients by(aL) for the wave function ¢2; . Thus, one
can start from the coefficients by(L ;) for the L, wave functions, given by Theorem 3, or the
L nax wave functions, given by Theorem 2, and generate a complete basis {¢Y; ./}, such as given
in Tables II-IV. This construction is generally simpler to implement on a computer than the
building up procedure of the previous section.

It is sometimes useful to have explicit expressions for the I'(0,) operators. Such expressions
are easily obtained in terms of left angular momentum operators {L;}, defined by the equation

[ Lt ar](x, Q) =(0|€* L, R(Q)|0v aLM)
=§ (0]e*"L,|0valK)Z £, (Q). , (59)

Left angular momentum operators transform rotational wave functions according to the equations

Lo §<M=K-@ %(M’
(60)

LoD 4y=VLER)(LFK+1)D 521y

Thus, they are the so-called intrinsic angular momentum operators of the rotor model. Using these
operators, we obtain

V3 1 ., -

1 o _
F(OV)=_'@SV(5U_L0)_ -@?VL+__ —1,,L—
3 2 3

5 .- 5 5 o
+ \/;@gVL_""‘ T@gy(zv_[;o)”l' T.@E@,,(U"'Lo), (61)

where 0 =xd/dx.

V. SO(5) MATRIX ELEMENTS

An SO(5) irrep with highest weight [v,0] is known to be unitary relative to an appropriate
inner product when v is a positive integer (i.e., when the highest weight is dominant integral). It
is also known that all irreps of type [v,0] with integer values of v occur in the space of the
five-dimensional harmonic oscillator and are unitary relative to the inner product of the harmonic
oscillator Hilbert space. It follows that, if {{OvaLM)} is an orthonormal set of n=0 harmonic
oscillator states, the matrix elements of the so(5) octupole operators satisfy the hermiticity rela-
tionships

(0vBL'||0)[0vaLy=(~1)L"L(0vaL]|O||0v AL’ )* (62)
characteristic of a unitary representation. Conversely, a set of states which satisfy these relation-

ships for some positive integer value of v and give the standard matrix elements of the angular
momentum operators (cf. Eq. (48)), is an orthonormal basis for an SO(5) irrep [v,0].
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By definition, the VCS wave functions, {%; ,}, corresponding to an orthonormal set of n=0

ited from the harmonic oscillator; i.e.,

(l/II;LM| w;L'M’>=<OU aLMlOUBL,M’>= 5aﬂ5LL’8MM" (63)

Similarly, matrix elements in the VCS representation are identical (by definition) to their harmonic
oscillator counterparts. It follows that the VCS wave function [T'(O) X ¢, 1,4+ can be expanded,
using the Wigner-Eckart theorem,

(OvBL’'||0|l0vaL)

F 0 X v = v tagt . 64
[( ) l/IaL]LM %'/’ﬂLM m ( )

Equivalently, in terms of the aj(aL) coefficients,

1 '
MED o= —— % (BL").#LED, - (65
; K'K K( ) m% K(ﬁ ) Ba ( )
where

AL D =(0vBL’||0][0vaL). (66)

To derive the (OvBL’||0]|0v L) matrix elements from this expression, we need the {ak(aL)}
coefficients. We know the coefficients {a%(L=2v)} for the states of L=L ,,,=2v. The remain-
ing coefficients must lead to matrix elements that satisfy the unitarity conditions of Eq. (62) and,
hence, correspond to an orthonormal basis, {c// 1um}> of VCS wave functions. Such coefficients are
conveniently derived by K-matrix methods.'° %)

As shown in sections III and IV, it is easy to construct an arbitrary basis of VCS wave
functions. The wave functions {¢%; ,,} given in Tables II-IV, for example, are orthonormal rela-
tive to a convenient provisional inner product, the so-called rotor inner product. We then seek a
map

Paru Vo =FWOL) O =2, PprwpalvL) (67)
to an orthornormal VCS basis with coefficients
a‘,’{(aL)=% bY(BL).F palVL). (68)
Now, if matrix elements in the { %, } basis are defined, in parallel with Eq. (65), by the expansion
> MEPb(al)= {_—2 b%.(BLYOLD), (69)
then, with b%(aL) coefficients satisfying Eq. (39), they are given by

oL V=\aL"+1 E b*(BLYME Pbi(aL). (70)
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TABLE V. Ofg"; L) matrix elements for v =6.

=

LAL, 0 3 4 6, 6, 7 8 9 10 12
0 0 7216 0 0 0 0 0 0 0 0
3 -3742 -3240 -3171 1585 1810 O 0 0 0 0
4 0 33.26 3784 2737 1738  23.84 0 0 0 0
6, 0  -1628 2551 2899 2.003 -17.15 2978 3627 0 0
6, 0 -1175 -9619 298 -3208 -3371  -2608 7040 0 0
7 0 0 -13.24 9.152 3099 -0.7391 -37.36 248 285 0
8 0 0 0 1309 -18.14 2699 10.11 1463 4793 0
9 0 0 0 -1694  -4511 1995  -1629 3212 -3207  49.15
10 0 0 0 0 0 -8290 2408 1447 2655 4116
12 0 0 0 0 0 0 0  -1L10 2060 3817

For example, the v=6 imrep contains the range of angular momentum values
L={0,3,4,6,,6,,7,8,9,10,12}. With the corresponding b%(aL) coefficients of Table II, Eq. (70)
gives the O matrix elements listed in Table V.

Comparison of eqgs. (65) and (69), shows that the desired (Ov BL’||O||0v aL) matrix elements
are given by

ML D=9~ (LHYOoL' D H(L), (71)

where it is understood that Z(L)=%@wL).

Thus, it remains to determine the (L) matrices. This is especiaily simple when the initial
basis states are already orthogonal (relative to the inner product inherited from the harmonic
oscillator). For in such a situation, one has only to renormalize the basis states to obtain an
orthonormal set and this is accomplished with diagonal % (L) matrices.

Orthogonal states arise automatically for representations that are multiplicity free; basis states
are then classified by complete sets of quantum numbers and are orthogonal to one another. On the
other hand, when there are multiplicities, orthogonal states can be generated from the eigenvectors
of the ML) matrices.? For, if the vector a”(aL) is an eigenvector of M*D), then

(OvelLl||O]|0veaL)

(LL) _ v
; MEPat(al)=a%.(aL) S 72)
and, by Eq. (65),
MG = 5,4(0vaL||0||0vaL). (73)

Thus, the hermiticity relationships of Eq. (62) are automatically satisfied within the subspace of
states of angular momentum L.

We therefore start by diagonalizing the matrix 0“2 for each L for which there is a multi-
plicity; i.e., we find the similarity transformations

O D) = G\ (LYOD) FH (L) (74)

such that the matrices .#“Y are diagonal. We then seek the additional normalization factors
{k(aL)}, for which

ML=k (L") AL Dk (aL). (75)

One sees that the unitarity condition, Eq. (62), is satisfied if we set
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TABLE V1. ., matrix elements for v=6.
L'\ L 0 3 4 6, 6, 7 8 9 10 12
0 0 7.216 0 0 0 0 0 0 0 0
3 -37.42 -3.240 -31.71 16.71 17.57 0 0 0 0 0
4 1] 33.26 3.784 2649 ~18.26 23.84 0 0 0 0
6, 0 -16.66 25.18 29.09 0 -18.24 2891 36.49 0 0
6, 0 -1095 -10.85 0 -32,17 -32.83 —-27.50 5.263 0 0
7 0 0 -13.24 10.65 30.67 -0.7391 -37.36 24.80 22.85 0
8 0 0 0 1220 -18.56 26.99 10.11 14.63 4793 0
9 0 0 0 -17.14 -3955 1995 -16.29 32.12 -32.07 49.15
10 0 4] ] 0 0 -8.290 2408 14.47 26.55 41.16
12 0 0 0 0 0 0 0 ~11.10 20.60 38.17

k(aL) |? //6“"“ )*
’k(BL’) =0 =y 76)
[+ 4

We then have an orthonormal basis of VCS wave functions {7, ,,}, given by Eq. (67) with

where it is noted that %(L)=1 for a multiplicity-free value of L.
For example, for the v =6 imrep, for which the L=6 states have multiplicity two, one sees

from Table V that

066} = (

28.99
2.986

2.003
-32.08/°

amn

(78)

The #(6) matrix which brings .Z9=_%"1(6)09 %(6) to diagonal form is the matrix

- 0.
%’(6)=(

9988

0.04875

—0.03273
0.9996

(79)

For all other mult1p11c1ty -free L values, (L # 6)=1. Making the transformation of Eq. (74), we
obtain the .# matrix given in Table VI, for v=6. The |k(aL)/k(BL’ )|2 ratios can now be read

from Table V1. For example,

k(3) 2_37.42_5 185
k(0)| 7216 T
(80)
K6y)|®_25.18 =0.9505.
k(4)| 2649
TABLE VIL. Z (L)% (L)/1k(0)|* for the v=6 irrep.
L ] 3 4 6, 6, 7 8 9 10 12
FH(L)FHN(L) 516029 0.14603
—Eor L SI8519 543791 | 00 2 aoes) 301844 218012 242761 109506 0.548055
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TABLE VIIL |k(vL)/k(vLy,|? for v=3k irreps.

L [k(v L) k(v Lo
3 70v
9(v+3)
4 320(2v+1)
3(w+3)2v+5)
7 57550(v—3)(2v+1)
243(v+3)(v +6)(2v +5)
8 215390 (v —-3)(2v—1)(2v+1)
729(v +3)(v +6)(20+5)(2v +7)
11 1188916w(v—6)(v—3)2v~1)(2v+1)

19683(v +3)(v+6)(v+9)Y2u+5)(2v+7)

From these results we obtain the ratios of the matrices

(BT (L)apg < 4 k(yL)
L) T (L)~ 2 oD 70)

2
| L) 31)

given in Table VII for all L values in the v =6 irrep.

Eq. (76) gives analytical expressions for the ratio |k(vL)/k(vLp)|? for all multiplicity-free
values of L. These L values are determined by inspection of Eq. (30). The ratios
|k(UL)/ k(v L yp|? for all of them are given in Tables VIII-X. Expressions can also be derived for
the matrices #(vL). % (vL)/ [k(vme)|2 for other L values. However, when the multiplicity
exceeds two, the analytical expressions are complicated and, since the algorithm for generating the
 matrices is simple, it is better to evaluate them numerically as needed. One will, in any case,
need to have the results stored in a computer for any practical application.

Reduced matrix elements (OvBL’||O||0vaL) for the unitary [v,0] so(5) irreps with v°
= 1, ..., 5, are given in Tables XI and, for v =6, in Table XII.

VI. OTHER MATRIX ELEMENTS

First observe that Eq. (76) gives only the ratios of norm factors of wave functions belonging
to a common SO(5) irrep. This is sufficient for the purpose of calculating matrix elements of so(5)
operators as is clear from Eq. (75). However, absolute norms are required to determine matrix
elements between states belonging to different SO(5) irreps of operators outside of the so(5) Lie

TABLE IX. |k(vL)/k(v L% for v=3k+1 irreps.

L k(v LY k(v L go?
4 79(w—1)
20Qu+5)
5 374(w—1)
135@+5)
6 949(v—1)(2u—1)
270(v +5)(20+5)
7 664(v—4)(v—1)
81(v+5)2v+5)
9 55613(v—4)(wv—1)(2v—1)
7290(v+5)(v+8)(2u+5)
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TABLE X. |k(vL)/k(vLyol* for v=3k+2 irreps.

L [k LY/ k(v Ly,
4 26(2v+1)
25(v+4)
5 1771(v—2)
675(v+4)
6 2314(v—2)Qu+1)
675(w+4)(2v+7)
7 1004(v—2)(2v+1)
405w +4)(v+7)
9 125438(v—5)(v—2)(2v+1)

18225(w+4)(v+7)(2v+17)

algebra. These are readily obtained from Theorem 2 which gives the a}(aL) coefficients for the
properly normalized VCS wave functions {7 _,, } corresponding to the multiplicity-free (n
=0) harmonic oscillator states {|{0v,L=2v,M)}. It can be seen (cf. Table I) that the coefficient
a}(vL) always has value 1 when L=2v and K=L. Thus, one has only to set

|k(v,L=20)|2=; la%(v,2v)|? (82)

to give ay(v,L) coefficients with this property. Values of k(v,2v) are listed in Table I.

Matrix elements of any operator, defined in terms of the harmonic oscillator d-boson opera-
tors, can now be evaluated by means of Theorems 4 and 5 which follow. Theorem 4 gives an
explicit expression for the elementary d-boson matrix elements (Ov+ 1,8L'{|d"||0veL) and
Theorem 5 expresses all other d-boson matrix elements in terms of them.

Theorem 4: Elementary reduced matrix elements of the d-boson operators are given by

(0v+1,8L'||d"|oveL)=VRL + D)(v+1) X Ny D)
K'K

X[(LK, 22|L'K")+(LK, 2,—1|L'K")], (83)
where
Ng‘*‘,;"“L)(u):&E H hw+1, L)% (BL)bY(YL) H yalL). (84)
Y

Proof: In the proof of Theorem I, it was observed that the v+ 1 component of the state
d!|0vaLM) has VCS wave function given by the product 4,4, . It follows that

Ov+1,8L'||d"||Oval)
1X v rpqpr v+l1 l< N
[ X lrm % borm PL+1

(85)
Combining the product wave functions on the left, using the identity £'&°=v+1£& %!, gives

\/v+1; a%(aLl)[(LK, 22JL'K")+(LK, 2,—1|L'K")]
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L,..,5.

TABLE XI. .#'0=(0uL’}|0||0vL) matrix elements for the multiplicity-free irreps with v

L\L

L\ L

L'\L

310

V78

15
2

-7

-3410

11

2730
22

35

15
2

91

30
1

1

27

78

11

L'\L

6 f105
N

330

8\
77

130
7

390

10

L'\L

0

15
13

18

85
11

_3 /110 6
13

—23

10
77

3 {330 P
7

615
91

1

66 \/ > 2
91

5610
7

165
182

110
13

9\/3- 3
2

0

) [1254
7

55
T2

8
7

15

13
77

5610
N7 2

85
11

5414

s [462
19

51
91

85
91

47
2

66 5 1\/§
Vor  ~15V3

) /1615 ”
91

15
13

—-18

e~

51
133

61
z

51
91

55
2

1254
7

0

17

10

71
9

1
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TABLE XII. . ;ZL)-"-‘ {0vBL’[|0]|0v aL) matrix elements for v=6.

L\ L, 0 3 4 6, 6, 7 8 9 10 12

[ [ 16.4317 0 0 0 0 0 0 o] 0

3 -16.4317 -3.24037 -32.4773 16.6851  13.8685 0 0 0 0 0

4 0 324773 3.78394 258288 -14.0782 17.7647 0 0 0 0

6, 0 ~16.6851 25.8288 29.0921 0 -13.9397 18.778 25.0041 0 0

6, 0 -~13.8685 -14.0782 0 -32.1737 -31.7351 -22.5917 4.56238 0 0

7 0 0 -17.7647 13.9397  31.7351 -0.739066 -31.7543 22.2417 13.7627 0

8 0 0 0 18.778  -22.5917 31.7543 10.1143 15438 339711 0O

9 0 0 0 -25.0041 -4.56238 22.2417  -15.438 32,1182 -21.5388 23.355
10 0 0 0 0 0 -13.7627 33.9711  21.5388 26.5482 29.1175
12 0 0 0 0 0 0 0 —23.355 29.1175 38.1670

(Ov+1,8L"||d"||OvaL)

— u+l
=ax (BL) =y

(86)

Expressing a%(aL) in terms of b%(«L) and using the orthogonality relationship of Eq. (43), the
theorem follows.

Theorem 5: General reduced matrix elements of the d-boson operators are given by the
equations:

(n'v'BL'||d||nvaL)=(- 1) (nvalL||d'||n'v’ BL')*, 87)

[n+v+3
(nv+1,8L'||d||nveL)= T;{OU+1,BL’|IdTHOUaL), (88)
vT 3

, nt+1
(n+1uv—1BL'||d ||nval)=(— 1)L /—————3(OvaL||dTH0v— 1,BL')*, (89)

vt 3

with the understanding that (n'v’'BL’||d"||nvaLl) is zero unless (n'=n, v'=v+1) or
(n'=n+1, v'=v~-1).

Proof: Eq. (87) follows from standard angular momentum coupling theory. The other equa-
tions follow from the intermediate result

+ n+v+ 3 EY
[T@)XY pporlorm = _‘“—“[‘Ponxq’nuaL]L'u'
, [n+1a (OvelL||d'||Ov—1,BL")*
+(—1)E L ¥ P
(-1) 13 E ST n+lLo—1,8L"M

(90)

To derive this intermediate result, consider the equation
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[T(dDY pyarn](x,2,Q)=(0|* 7" *-R(Q)d}nv aL M)
=(0|e*"R(Q)(d}+zd,)e**~|nvaLM). (91)
‘We have

(n+v+ 3!

(0]e*"R(Q)de™ - |nv aLM)= \ | —————2"(0|e*"R(Q)d |Ov aL M) (92)
nl(v+ !

and
(n+v+ 1)!
(0]e*"R(Q)zd e ~|nv aLM)= \ | —————2"*1(0|e*"R(Q)d,|0v aLM)

n!(v+ !

n(n+v+ 3!
N s i (e R@)d [ 1val M)

B /(n+u+ H
" Voat+

2" H0]e*"R(Q)d,|0v aLM)

n
+ ——2z"(0|e*"R(Q)d}|0valM)|. (93)
v+ 3
It follows that
[P (@) a2, ) = A o Dlntott  emr@atiovatn)
X,Z, = 2 e ve
v et n!(v+3! [ v+3 ¥
+2z"*1{0|e*"R(Q)d,|Ov el M) |. (94)
Expanding
d JOvalM)= 2, |0v—1,BL'M'Y(—1)*(0valLM|d® |0v—1,BL'M')*, (95)
BL'M'
and using egs. (24) and (32), we obtain
; +v+3 . [n+1
F(dv)‘lfnvaLM='H—E\POIZV\anaLM'i_(_ 1) ot 3
2 2
(96)

X E <0UaLM|dT—V|OU—1’ﬁL’M'>*‘Pn+l,v—l,BL’M”
BL'M’

from which Eq. (90) follows. Eq. (89) of the theorem follows directly from Eq. (90). To derive Eq
(88), expand
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(n+v+3)!

- 1
[(YouX¥pparlim = 2 (X M
nl(v+3)!

(ntv+3) (Ov+1,8L"}|d"||Ov L)

R SRR~
S E OvriBLM V2L +1

v+ 3 (Ov+1,8L'||d"||OveL)

B n+v+ 3 2 Wne 11 V2L'+1

97)

VIl. ALTERNATIVE ORTHONORMAL BASES
A. The inner product

In constructing UIR’s (unitary irreducible representations) of a group G, the VCS method
starts with a convenient basis {¢;} for a space which contains a module for the desired UIR as an
invariant subspace. The basis {¢;} is conveniently chosen to be orthonormal relative to a natural
but, in principle, arbitrary inner product. A transformation is then found such that the non-zero
states {);= 2 ;¢; % ;} are a basis for an irreducible subspace relative to which the VCS represen-
tation is unitary; i.e., the non-zero states in the set {4} are an orthonormal basis.

Note, however, that while an orthonormal basis defines an inner product, the converse is only
true to within arbitrary unitary transformations. However, if ¢;— 2 ;4;U;; is a unitary transforma-
tion of the non-zero states in the set {#;}, one sees that the corresponding transformation of the
F matrix, in which %—%U, leaves the matrix #.%" invariant. Thus, as observed
previously,'®? the matrix

S=w%" (98)

is uniquely defined by the inner product and, conversely, the inner product is uniquely defined
by S.

In this paper, we have given a construction of % corresponding to a particular orthonormal
basis. The above argument shows that the corresponding S matrix is independent of the choice and
that it uniquely defines the inner product relative to which the VCS representation is unitary.
Moreover, any basis {¢] =3 ;¢; %7}, defined by a %’ matrix for which %" #"'=5, is an
orthonormal basis.

B. Canonical bases

It is useful if basis states can be uniquely defined, to within phase factors, independent of
computational algorithms. Results obtained by different authors can then be compared. Such bases
are said to be canonical. Basis states for the five-dimensional harmonic oscillator would be
uniquely defined, by the representation labels of the subgroup chains (1) and (2), were it not for
the missing label « needed to distinguish the multiplicity of SO(3) irreps that occur in an SO(5)
irrep. We now give two canonical resolutions of the SO(5) O SO(3) multiplicity problem; the first
is used (as far as we know for the first time) in this paper, the second has been used previously.*
Both methods are easily realised within the framework of the VCS representation.

The orthonormal SO(5) D SO(3) basis states given in this paper have an additional quantum
number similar to that introduced by Racah!! to resolve the SU(3) D SO(3) multiplicity. We have
shown how to construct states which satisfy the equation

(OuBL{|0||0vaL)= 8,4(0vaL||O||0vaL), 99)

cf. Eq. (73). Such states are eigenstates of the SO(3)-invariant Hermitian operator
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X=(LXOXLXL)y+(LXLXOXL),.
To see this, observe that the eigenstates of X satisfy the equation
(OveaLl||X||OvBL")= 811 805C{Ov aL|[O||0vBL), (100)

where C is a constant whose value depends only on L. Thus, states which satisfy Eq. (99) can be
labelled by the value of (OvaL||O}|0vaL). More important is the fact that a basis of states
labelled by a complete set of distinct quantum numbers is unique to within phase factors and
therefore canonical.

An alternative resolution of the SO(5) D SO(3) multiplicity problem is given by considering
zero-coupled triplets. Unfortunately, it is generally not possible to define basis states which have
a precise number of zero-coupled triplets. The number cannot be defined, for example, as the
eigenvalue of any Hermitian operator. Thus, it is not possible to have the number of zero-coupled
triplets as a quantum number in the usual sense. However, it is possible to give an operational
definition of an effective number of triplets in a state, thereby defining a pseudo quantum number
¢. It turns out that this is sufficient for the construction of an orthonormal basis. Let T denote the
angular-momentum-zero-coupled product of d-boson lowering operators

To=(dXdXd), (101)
and let
Ti=(d"xdtxd"), (102)

be its Hermitian adjoint. If Ty|v,t,L)=0, for some state |v,z,L) of an SO(5) irrep [v,0] and
angular momentum L, we say that the state |v,#,L) contains no zero-coupled triplets and assign ¢
the value =0. We also say that the state (T})"|v,z=0, L) “contains” n triplets and for such a
state assign ¢ the value t=n. In this way, the multiplet of states of a given angular momentum L
in an SO(S) irrep [v,0] contains a unique state of t=r2, generated by adding a zero-coupled
triplet to the t272=r2, —1 state of the same L of the irrep [v —3,0]. States of t<g; . can be
generated in a similar recursive way. For example, if |v—3, 5, —2, L) is a state of

1=1-3—1, the state

0,85~ 1, LYy=aT}lv—3, 1%, —2, LY+ V1-a?|v,t%,,.L), (103)

with a chosen such that |v,s%,,—1, L) is orthogonal to |v,t%, ,L) is assigned the value
=12 1

The construction of a basis labelled by the pseudo quantum number ¢ is particularly natural
and easy to implement within the framework of VCS theory. First observe that the basis states of
section III are constructed in this way, albeit relative to the so-called rotor inner product of Eq.
(39). Thus, within a multiplet of states of angular momentum L, the desired states are of the form

‘P?,L: ‘Pll),L'%‘ll,
V21=01 1 F 12t 031 FH (104)
P31= QLT i3t 03, Tyt 05 Ky, etc,
where ¢, is the wave function for the state with t=1,,, ¥, is the wave function for the state
with r=14,,,—1, etc. One sees that states classified by zero-coupled triplets correspond, in VCS

theory, to a solution of the equation S=.%.%" with % lower triangular. In other words, they are
obtained by a Gramm-Schmidt orthogonalization of the basis wave functions of section III
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Vill. CONCLUDING REMARKS

In papers I and II, the wave functions for a VCS representation of SO(5) were multidimen-
sional vector-valued functions of the form

¢:;LM<Q>=§ al(aL)E4D k() (105)

where {£}} are basis vectors for an SU(2) irrep of spin v/2. In the present paper, the wave
functions are one-dimensional of the form

Varn (6 Q) =€) 2 ax(al)P ky(Q). (106)

Thus, in both cases the wave functions are defined by a set of {ax(aL)} coefficients and can be
put into one-to-one correspondence with one another. Thus, for all practical purposes, the two
formulations are equivalent. However, the formulation of this paper, which uses scalar-valued
wave functions, is conceptually simpler. Consequently, the physical content of the theory becomes
more transparent and extending the theory to generic SO(5) representations is easier.

One can see that the multidimensional-vector character of VCS wave functions of the form
given by Eq. (105) is not essential because the components of different K would a]ready be
orthogonal, without the &% vectors, by virtue of the orthogonality properties of the 28 xp func-
tions. Thus, a VCS wave function is fully defined by the {a%(aL)} coefficients, with or without
the £% vectors. However, as will be shown in a following paper, VCS wave functions for generic
SO(5) irreps of type v=[v,v,] are expressible in the form

W)= a% (aLM)E, T L (D). (107)
KK’

Thus, the generic SO(5) irreps are defined by a matrix array {ay, (aLM)} of coefficients and it
is clear that the vectors {&; ¥} then play an mdependent and essential role as basis vectors and no

longer duplicate the parallel role of the 78 %y functions. The generic SO(5) irreps will be treated
in a following paper.
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