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The possibility of parametric excitation of high-frequency electromagnetic waves by lower- 
frequency dipole pumping is studied. It is shown that the obtained general dispersive 
equation may be reduced to the Mathieu equation, provided the case of the flux instability is 
neglected. In the framework of the developed approach, the excitation of 
magnetohydrodynamic waves and whistler oscillations is examined. 

1. INTRODUCTION 

The problems of the generation of modes of high fre- 
quency in the presence of lower-frequency oscillations at- 
tract the researcher’s attention both in the theoretical and 
experimental aspects. lW3 The authors of the above- 
mentioned papers studied the excitation of Langmuir 
waves. However, to better understand the physical mech- 
anisms of the generation of modes of high frequency in the 
presence of lower-frequency oscillations it is necessary to 
study the behavior of nonpotential oscillations as well. Be- 
sides, electrodynamic waves allow us to make use of more 
diverse means while studying them experimentally. 

The present paper considers the excitation of electro- 
magnetic modes by the lower-frequency dipole pumping. 
Unlike in Refs. l-3, the analysis is made in the approxi- 
mation of regular phases (see, for instance, Ref. 4). As is 
shown below, the smallness of the pumping wave fre- 
quency and neglect of the flux instability allow us to ana- 
lyze the dispersive equation of arbitrary electromagnetic 
oscillations by reducing the task to the solution of the 
Mathieu equation. However, this paper is limited to con- 
centrating on certain cases of a particular interest. 

II. THE DISPERSIVE EQUATION OF 
ELECTROMAGNETIC OSCILLATIONS IN THE FIELD 
OF DIPOLE PUMPING 

The dispersive equation of electromagnetic oscillations 
in the field of the dipole pumping is known fairly well (see, 
for instance, Ref. 4 and references therein). However, be- 
low we will obtain this equation in a different, more con- 
venient form for us. 

Let us consider a homogeneous plasma in the magnetic 
field B, oriented along axis z(Bcll z). Let the plasma be 
acted upon by the dipole harmonic field of pumping 
Es(w,t). (Subsequently, we will neglect the magnetic field 
of the pumping wave everywhere.) Then electrons and ions 
in the field of the pumping will have speed Uoa(wot) and 
oscillation coordinates re,(wct) (for the electron-proton 
plasma QI = i,e) . 

The dispersive equation of electromagnetic oscillations 
will be obtained in the coordinate system, connected with 
macroscopically moving electrons. In this coordinate sys- 
tem, the field of pumping does not act upon the electrons 
and the linearized kinetic equations for the disturbance of 
the distribution function f, has a well-known forrm5 

I4 == E+;(wxB) l $$ (1) 

where wBe is the gyrofrequency, fo, is the undisturbed elec- 
tron distribution function, and the rest of the notation is 
standard. 

Going over into the Fourier representation in Eq. ( 1 ), 

A(r,t) = 
s 

e-i”‘+‘k/j (w,k) C&8 h4 
(2r) ’ 

and using the Maxwell equation 

18B 
rotE=-;dt, (2) 

we can write the expression for the electron current? 

j(e) = (p)E 

HereycrCuJ 

mn n. (3) 

is the linear conduction of o-sort particles that, 
obvious;;: has the form similar to the one in the plasma 
without macroscopic motion5 

In order to write the dispersive equation, we will have 
to calculate the linear, relative to the field of excitation, ion 
current in the electron coordinate system. 

If we go over into the coordinate system connected 
with macroscopically moving ions, in the linearized kinetic 
equation for ions, we thereby shall exclude the pumping 
field. Then, just as for electrons, we can write 

p=*co&, m (4) 
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where the tilde indicates that the values are taken in the ion 
coordinate system and o$i has the form similar to the one 
in the plasma without the macroscopic motion. Thus, to 
write the ion current in the electron system of coordinates, 
we will have to transform Eq. (4) into this system. 

In the electron coordinate system, the pumping field 
causes the movement of ions with the following values of 
coordinates and velocities? 

( 

(I&--@OS q)t=xo cos coot 
r,(t) = ( di- 6,) sin Wet=&~ sin wet 

1 

, (5) 
(t$i-&)COS COOtGZO COS UOt 

(Z&-U&)Sin mot= 241 sin oJot=iVl sin mot 

uo(t) = (u&--z&)cos W&a2 cos coot= v, cos coot . 

(2&--Z&sin uotzu3 sin w0t=iV3 sin qt 1 
(6) 

Moreover, we can write 

kro(t) =a sin(oot+@, 

a2= (k~o+kgcJ2+$& (7) 

8=arctan(k~o+k~o)/k$o. 

The expression for the ion current in the electron coordi- 
nate system has the form 

jco(r,t)= If?/ J Wfi(r,t,W)dW, 

r=ro+r’, w=llo+w’. 
(8) 

Here, the prime indicates that the coordinates and veloci- 
ties are taken with respect to the ion system of coordinates. 
Let us go over into the Fourier representation in Eq. (8): 

jtn (w,k) = 
s 

dt dy pt-W-%(f) [uo(t)$i) crr,t) 

+Fz3 (r’,t) 1. (9) 

After substituting Eqs. (6) and (7) here, and taking into 
account the continuity equation in the ion coordinate sys- 
tem 

T’)(w,k) =k$“(w,k)/w , 

we obtain 

j~‘(o,k)=A-1(k)[S,,w+(Vmk,/2)(L+1+GmL-1)] 

x [ T:)(w,k)/w] 

m,n= 1,2,3=x,y,z. 

Here, we introduce the operators 

(10) 

A(@&) = ~e-‘neJ,(a>A(w-noo,k) 
n 

=A-‘(k)ii(o,k), 

&uoo,k) =L+i(ti,k), 

where S,, is the Kronecker delta and Gp = ( - 1) m. Using 
the transformation for the field7 

&,t) =E(r,t) + (l/c) [udt) xB(r,d 1 
and the Maxwell equation (2) in the electron coordinate 
system, we obtain 

Ei(ti,k)=A(k) S/j W- 
I ( 

knvn 2 (L+‘sG’%-‘1 
) 

v& 1 Ej(a,k) +2 (L+‘+Gk’) - co * (11) 
Here, 

z(w,k) = 1 ci”e.T~(a)A(w+noo,k) =A(k)A(w,k), 
n 

and the combination a,biG i is written as follows: 

albiG ‘= -albl +a2b2-a3b3 . 
From Eqs. ( lo), (4), and ( 11) we obtain the final expres- 
sion for the ion current in the electron coordinate system: 

( 
v&e 

jt’(w,k)=A-‘(k) &,co+~ (L+‘+G’%-‘) 
1 

o:z(w,k) 
x w A(k) 

x hntl 
1 ( 

V.S w-- (L+“teL-‘) 
2 1 

Vnk +2 (L+‘+G”L-‘) 1 T, (12a) 

or in an expanded form: 

&‘(o,k) = 2 ei*e~p(a)Jp+,(a) 
V&E 

Sdw--pwo) +T CL+’ +GkL-*) 
&#w~oc,,k) 

P*Q * -P@o 

(L+‘+G”L-1) En’,“-I;k’ . 1 (12b) 
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The Maxwell equations (2) and 

4r 1 CUE 
rotB=yj+---, (13) 

using Eqs. (3) and ( 12), allow us to write the dispersive 
equation: 

The dispersive equation (14) describes the parametric 
interaction of arbitrary oscillations with the dipole pump- 
ing wave. 

Let us simplify Eq. (14) with reference to our case, 
namely, to the excitation of high-frequency modes in the 
presence of the lower-frequency pumping wave, Expanding 
the electric field and conduction into the Taylor series with 
respect to point (o,k) in Eq. ( 12b), we can sum overp and 
4. Next, using oo(w and kuoa < w (the fulfillment of the 
latter inequality is necessary in order to exclude the flux 
instability), we can restrict ourselves to terms t=O, 1,2 in 
the conduction expansion (see Appendix A). Retaining 
the terms proportional to 1, kuo, kuOWO, ( kuo) 2 and con- 
volving the expansion of the electric field, we finally obtain: 

&'(w,k) =o&w)E,(w) +J@,k), (15) 

where J,(o,k) is the part of the ion current dependent on 
the pumping field. A detailed derivation of Eq. ( 15) and 
the expression for J,Jw,k) are given in Appendix A. 

Using Eq. ( 15), the dispersive equation ( 14) can be 
written as 

I (C2/m2) (k&j-Si#) +6ij+xfj]Ej(m,k) 

+(4ri/o)Jj(m,k)=0, (16) 

where 

x$) is the linear susceptibility of a-sort particles. The anal- 
ysis of the dispersive equation ( 16) in a general form is 
rather complicated, therefore, in the paragraphs below, we 
shall consider the most characteristic, in our view, partic- 
ular cases. Besides, it will be clear from the consideration 
of these particular cases, how to analyze the parametric 
interaction of arbitrary modes with the pumping wave. 

Ill. EXCITATION OF MHD WAVES PROPAGATING 
ALONG THE EXTERNAL MAGNETIC FIELD BY THE 
PUMPING FIELD E,l B, 

Let us introduce the polarization vector for magneto- 
hydrodynamic (MHD) waves with the wave vector k 
along the external magnetic field:’ 

e(d) = [el(o,k),q(+) I = [q(o,k),&(o,k) I. 
(17) 

Then, Jk( w,k) assumes the form [for brevity’s sake we will 
use Gn instead of Gnk and E,( w f no,) = EFl: 

Vkk2@ 
J&-&k) = 4w2 

+ V&&o) (Ge+ Gk, > . (181 

Writing Bq. ( 18), we have made use of the fact that 
a13=a23=0. The smallness of the pumping frequency 
wo(o allows us to simplify 

then Bq. ( 18) assumes the form 

v&b&) 
J/b&)= 402 co (( 

Vlq + iV2e2 
0+&j 

E+2 

-I-Gk iV,e,- 01 E -2 
w-2wo 

+ [iv-&- V@l 

+GkW~q+iV&W(4 . > WI 

Substituting the current equation (20) into Eq. ( 16), con- 
volving with the components of the polarization vector 
e?(w), and, taking into account Eq. (6), we obtain the 
dispersive equation 

Writing Eq. (21), we omitted the terms proportional to 
oe/o and introduced the notation 

c?v 
A(@) = 1 +eFxif?j--$-. 

To solve Eq. (21), it is necessary to know the polar- 
ization vector. Taking into account the smallness of 
ku&w, let us assume that the functional dependence of 
the polarization vector on (w,k) and the medium param- 
eters remain the same as in the plasma without the pump- 
ing field. Note, also, that since wo(o, then to solve the 
dispersive equation, it is more convenient to go over into 
the t space. Before going over into the t space in Eq. (2 I), 
let us carry out obvious simplifications. 

The inequafity kugt < w allows us in Eq. (21) to ex- 
pand into the series with respect to the solution of the 
undisturbed dispersive equation: 

A(w,) =Q, w~=w*+iS, (22) 

where w* is close to w. Besides, assuming S to be a small 
value, we will take into account the imaginary part of sus- 
ceptibilities only in the term of the zero approximation, 
i.e., in Eq. (22) and further expand with respect to we. 
Then, Bq. (2 I ) takes the form 
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reduces Eq. (25) to the Mathieu equation: 
( [Al;(o--w*I+; tAl;b-~*)2) E(o) 

=; [ (E+2+E-2) ( (9 cu:e;-ugq* 

( 
(10 + ‘9 (u~e~-u$$ 

,: ) 
(o--w*) 

, (23) 

where [ * * *I; and [ * * *]G are the first and second deriv- 
atives over o calculated at point w.,,, and ( * * . )* is the 
function value at this point. Going over in Eq. (23) to the 
t representation 

X(t)= e 
s 

dw 
-‘9(w) 2p, (24) 

we obtain 

d2E( t,k) dE(t,W 
T+ (A+ B cos 2q$) 7 

+ (C+ w@ cos 2o,,t)E( t,k) -0. (25) 

Writing Eq. (25), we again used the smallness of 00/o* 
and introduced the following notation: 

2i 
A(k) = -A”(w,,k) A’(w,,k) -ti&‘(w*,k) 

I 

1) 
, 

* 

B(k) =[ik2/A”(o*,k)] [ (xS:/w”)(~te~-~~~)]~, 

2 2 

C(k) = 
A” (w,,k) @&‘(w,,k) -9 A” (w,,k) 

kz 
(( 

Xi? -- 
2 -;JT (+:+&3 

* 

-cd.+. 
( 

*$ (u~ef+z+$)) ) 1, 
* . 

h? 
9(k)= 

(( 

Xs: 
A” (q,$) 

-;;” (u~e~--&$ 
* 

. 

Substituting’ 

E(t) =E( t)e- (1/2)[&-(B/2%+in h3’1 

95 Phys. Fluids l3, Vol. 5, No. 1, January 1993 

(26) 

a%(t) -7$7+[ c-t (AZ+;) 
+ 9 -A; cos 2w&?(t) co. 

( 1 
(27) 

The solution of the Mathieu equation within the frame- 
work employed while obtaining it is given in Appendix B. 
To make use of the results of Appendix B, it is necessary, 
giving the form of susceptibilities and vector of polariza- 
tion, to calculate the coefficients of Eq. (27). 

Let us assume that electrons and ions of the plasma are 
cold. Then,’ 

2 

x2=- c 
@pa@ Ba 

a dw2-w2,) ’ 

(28) 

where w,, is the plasma frequency of a-sort particles. Ex- 
pression’# has the form 

J&) = - ri&/w2, 

and for the components of the polarization 
write5 

1 
el=[l+*~/(N2-l-*,)2]1’2r 

x2/(N2--1-*r). 
e2=-[It-*~,(NZ-I_*~~2]1/2r 

The solution of Eq. (22) yields’ 

N2- l-*1=&2, 

vector, we can 

(29) 

(30) 

where g=I for the left-hand-polarized (A- ) and g= --I 
for the right-hand-polarized fast magnetosonic (FMS) 
waves. In the case of low-frequency (@*(wBj) MHD os- 
cillations, the form of susceptibility is considerably simpli- 
fied: 

* l= CO$/O-)~js 22 = W$D/W3gi, (31) 

and CII~ SL I&I: for both types of oscillations 
( lJ~/C2=O~Jld$) * 

Before giving the expressions for the coefficients of Eq. 
(27), the following remark should be made. Since ~~4x1, 
then while calculating derivatives over w from the compo- 
nents Of the polarization Vector, a large parameter w&d* 
will appear. Therefore, while calculating the coefficients of 
the Mathieu equation from the components of the polar- 
ization vector we will take the derivatives of the first order. 

Gamayunov et a/. 95 



Omitting simple, but rather unwieldy, calculations, we 
will write the final form of the coefficients in Bqs. (26) and 
(27): 

k203, 
8w,+Q- (u:-uf, , 

* 

B= -5i(k203Br/604,)(u:+u:), 

x (3~‘:-22u;u;+3u;) , 

In the expression for C-a(A2-t- B2/2), we have written out 
the two last terms because, as will be seen below, during 
the calculation of the nonlinear frequency shift, the terms 
of a higher order are compensated for. From comparing 
Bqs. (27) and (Bl) it is easy to obtain expressions for h 
and 19: 

z= a($. (32) 
Now we can use the results obtained in Appendix B (nat- 
urally, we assume that all restrictions for h and 0, cited in 
Appendix B, are met). 

Expression (Bl2), using Bq. (32), yields the growth 
rate of MHD oscillations: 

2$2& [-y) (E&-y ‘I’‘. (33) 

To obtain the MHD oscillations’ frequency in the presence 
of the pumping wave, we must use Eqs. (B9), (Bl 1 ), (32) 
and the expression for the coefficient A [see Bq. (26)]. 
After simple calculations, we will obtain 

w=w*+ (k2c&&o:) [ (u;+u;) - (k20&/12& 

x (u;-u;)~] EO.++A~. (34) 
It is seen that the last term in Eq. (34) is substantial with 
sufficiently small w* and, besides, it disappears in the case 
of circular pumping polarization. 

In conclusion of this section, we will give the expres- 
sion for the polarization vector of MHD waves. Substitut- 
ing the obtained frequency value into Eq. (29), and retain- 
ing the first term of the expansion, we obtain 

e=A (( 1-g’$),-i(g+y)). (35) 

The pumping field transforms the polarization of MHD 
waves from the circular into the elliptic one, and the large 
semiaxes of A and FMS waves ellipses are mutually per- 
pendicular. 

IV. EXClTATlON OF MHD WAVES, PROPAGATING 
ALONG THE EXTERNAL MAGNETIC FIELD, 
BY THE PUMPING FIELD Eol( B. 

While considering MHD waves with k/l B. in the 
pumping field Ecfl Be the expression for current Jk(o,k) 
assumes the form [see Eq. (AS)] 

acoo affg a& a2@ 
Jk(o,k) = -2 x (E~‘eie+l?;le-ie) -TaJt- E~Leie-E~l&-io-~ [E~2ene+E;2e-“s+2E,(w)] 

> 

kV3 -- 
2 

~-&)-~~ (e~~.-/i!&~e-~~+$-$%.$ (e--“-e”))). (36) 

I 

Using Eq. ( 19), we obtain the dispersive equation 

A(w)E(o) -2 eZ $ (w;y~j,)en(eieE+l+e-ieE-l) 

a2m2 a O *- 
‘.+&T em au e&(o)+sig(kzo)i~ 

X (w*!$enE(w) (37) 

While obtaining Eq. (37)) we neglected the terms that are 
proportional to ws/o and [ (awe) 2/#2] ( Be2 f .Em2), and 
used the obvious relationships [see Eqs. (6) and (7)]: 

kus= -awosig(kzo), 0=(r/2)sig(kzo). 

1 a 
X jp&?ln n * (j)e (E+‘--E-‘) +sig(kzo)iF ef z Expanding into the series with respect to the undisturbed 

solution, the dispersive equation (37) assumes the form 
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.I 

( 
[*];(o-o*)‘+; [h]po-co;) > 

*s... 
2 E(~)-%J! (eiQ@-l.+e-i~~-l) 

I( 

.a,.: ” 
f. e* - (wX$)en w mati 1 ( 

+ ‘,* 3 (,cn), 
1 

, 

X (u-+.))+~,[~~ (~2~)~~]~(-)~~ig(kzo)i~‘(~~-l~~~1) ( (~6i~+y~~~~~y~~~e~)~z 
_ 

x (W-W,) > +sig(kzO)&zwO JZaw (0x$6?; E(Gj =O. 
( 
if a ) 1 * (38) 

To go over into the t space, it is more convenient to use the 
Pourier transformation with a shifted zero time reference, 
rather than Eq. (24): 

X(T)= e 
1. 

-io(7+d200)x(o) $. (39) 

After simple transformations, Eq. (38) will have the form 

a2E(T,k> . . _ aE(r,k) 
--j-q--+ (A + B cos OOT) 7 

~(C+~ccosw~~>~(~,k)~O. (40) 

Here, as before, we have taken into account the smallness 
of oe/w, and introduced the notation 

A(k) = y PW’(w,,k) 1 (.A’b,,k) --&‘b&), 

__- . 

-.. 

;! 

I 

2 

C(k) =--- 
A” (cc,,,k) 

o,A’(o,,k) +A”(&k) 

‘I a . 
; ef z (qL9en .~ 

* 

-w* ,( 
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3 

Substituting 

E(,~) =~(.),-(1/2)[A7f(B/wo)sin0071 (41) 

reduces Eq. (40) to the Mathieu equation: 

(42) 

_ where, just as in obtaining Eq. (27), the terms propor- 
tional to Bw, sin war and B2 cos 2~~7, are not taken into 
account. 

’ Let us consider electrons and ions of the plasma to be 
-. cold. Using Eqs. (28)-( 31) and omitting simple calcula- 

tions, let us write the final form of the coefficients in Eq. 
(41) and the Mathieu equation: 

-jr, 

B=--csig(kzo) ~&&,~, 

23 -A B/2 =&T sig ( kz,) awow&. 

From Eqs. (42) and (Bl ), we obtain 

40): 2a2c& 
h=g+T’ 0 * 

28=Lcsig(kzo) TaF, 
0 

(43) 
007 z=-, 2 

which allows us to use the results of Appendix:B. Using 
Eqs. (B12), (B9), (Bll), and (43) we obtain the follow- 
ing expressions for the growth rate and the frequency of 
MHD oscillations: 

-&T& (fyq2(;): : 

7a202c02 0 Bi 
w=o,+ 16oi =o,+Ahw. 
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V. EXCITATION OF WHISTLER OSCILLATIONS, 
PROPAGATING ACROSS THE EXTERNAL MAGNETIC 
FIELD, BY THE PUMPING FIELD E,l B,, 

The polarization vector of MHD oscillations with kll ISo in 
the pumping wave field EelI B. is obtained by substituting 
ho from Eq. (44) into Bq. (35). 

In this and previous sections, we considered the exci- 
tation of MHD waves by the dipole pumping, but, natu- Let us consider the excitation of whistler oscillations 
rally, with respect to certain types of oscillations, MHD with the wave vector k= (k,O,O) by the pumping wave 
waves themselves can play the role of pumping. The fol- F&l B. (e.g., A mode). Using Bq. ( 17), the expression for 
lowing section will consider one of such cases. current Jk(o,k) assumes the form [see Es. (AS)] 

(,I$-~-Gk~;~)-~$ [@&t-2+Gke-i@&--2 

+ (emie+Gkeie)Ee(o)] G-l+Gk) 1 
(45) 

I 

Using Eq. ( 19), as in previous paragraphs, we obtain the 
dispersive equation (assuming uf= z$) : 

A(w)E(w) fkUl 2w sigfkx )e* -!- (~@))e O maw mn n 

-sig(kxo) (x~{‘e~-&?~) (eieE+‘+e-ieE-l) 

While obtaining Bq. (46) we, as before, neglected the 
terms proportional to oe/w and [ ( aoo)2/co2] (I? 2 f E- ’ ) , 
and instead used the relationships [see Eqs. (6) and (7)] 

-e2d (q;;‘)+d (o#)) * am 2aw 22 E(o)=O. 

a&o=-kul sig(kxo), O=(7r/2)sig(kxo) 

and introduced the notation 

A(O) = 1 +$xifj- (cZk2/02)Z$ 

(46) 
Expanding into the series with respect to the undis- 

turbed solution, Eq. (46) assumes the form 

EAl6(~-w*) +k [A];(+o,)~) E(U) -7 (e’eE+‘+e-ieE-l)sig(~o) ( (-lj (x~‘l)e~.-x$~) 

+ (i (xj’t)ef-x$$ -f ef $ (qy$fJe,)’ (O--O.+)) 
* 

em+xE-etg cwxi:‘,+&g (q&9 E(o)=O. 
1 * 

(47) 
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Applying Eq. (39) to Eq. (47), after simple transforma- 
tions we have 

a2E(r,k> i . %(r,k) 
.F+ (A + B cos WOT) --=g-- 

-I- (C-i-9 cos wer)E(r,k) =O. .wj 

Writing Eq. (48) we have taken into account, as every- 
where else, the smallness of w,-Jw* and introduced the no- 
tation 

B(k) = 

-e2 -$ (q-f~:) +i$ a (q&) ‘am -~ aw I) , * 
s(k)= 

2kul 
A”( w,,k) (( 

-2&$) 
i a 

0 et z (ffy$en 

, 
)) . * 

Substituting Eq. (41) reduces Eq. (48) to the Mathieu 
equation: 

eg+[c+2+;) 

+(D-~)cos~oT]~(T)=o, (49) 

where the terms Bcoo sin wer and B2 cos 2wor are ne- 
glected. 

The solution of E!q. (22) for the whistler oscillations in 
question has the form9 

~2=[(~+~~~2-~1/(1+~1), 
where, for the case of a cold plasma, 

2 

,y2= -wpi 
wwBi 

&i(@2@Bil m&l * 
(51) 

In the dense plasma (o&&J, we obtain 0: = k2 Vi from 
Eq. (50). . 

Using Eqs. (28), (29),~ (50), and (51), we can write 
expressions for coefficients in Eqs. (41) and (49). Omit- 
ting simple but fairly unwieldy calculations, we will have 

A=i~~*[4-3((W2,i/W2)], B=i2kUl, in -:- 

4 (A2+3z$ (4)+(k$+ 

From comparing Eqs. (49) and (Bl ) we obtain _ 
2(ku,)2w2,i 

3@0@*. 2 2 , 

28= 
8(kU1)&i 007 

3W*@o 2 , z=--, 2 

(52) 

which allows us to use the results of Appendix B. Using 
Eqs. (B12), (B9), (Bll), and (52), we obtain the growth 
rate and frequency of whistler oscillations: 

f=& (y)2(EJ3, 

(ku1)‘0& *_r 
w=w*- 4w:, rw&Ao. 

Substituting the obtained frequency value in Eq. (29) and 
expanding, we obtain the expression -for the polarization 
vector: 

lAoI -- 
o* 1). (54) 

It is seen from Eq. (54) that the pumping field tends to 
make the whistler oscillations quasilongitudinal. 

The expression for the increment includes small pa- 
rameter w&i/o:, therefore the obtained result is meaningful 
at a not very small relation w&i/w:. Substantially greater 
growth rate [of the IQ. (53) type, but’without the small 
parameter w&i/w:] can be obtained considering the excita- 
tion of whistler oscillations, propagating at an angle 
cos2 8-mJmi(cos f3=kJk). 

Let us note in conclusion, that, since we considered a 
cold collisionless plasma, S=O [see Eq. (22)]. In the case 
S#O, naturally, to determine the threshold value of the 
pumping wave amplitude it is necessary to compare the 
obtained increments with the linear decrement. 

VI. CONCLUSION 

In the present paper, we have considered the excitation 
of electromagnetic oscillations in the field-of the lower- 
frequency dipole pumping. Without setting the aim of ex- 
haustive study the dispersive equation ( 16), we have lim- 
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ited ourselves to the consideration of three particular cases 
differing in the mutual orientation of vectors k, E, and Es. 
However, the proposed methods for the solution of the 
dispersive equation in the lower-frequency pumping field 
(naturally, within the framework of the employed restric- 
tions) allow us to study the dispersive properties of arbi- - - 
trary modes. 
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APPENDIX A: OBTAINING EXPRESSION (15) 
Let us write Eq. (12b) in the following form: 

jf’(o,k) = 2 eiqeJd,+, a~;h--pwo) I P4 

Em[@+ (4+ l)Ql EmE@+(q--l)%l 

@f (q+ l)oo 
+Gs 

w(q--l)orJ 

x &Jo+ (q+ lb01 
Ern[u+ (4+2)WOl +GsEm~o+goO) Ee[u+ (q+2)wol 

o+ (q+2)00 ~+wo u+ (4+2bo 

+G’ J%(~+q@o) ke&+ (p+ 1 ho1 
@+Po +Gk @-(p+lho 

+cS Em[@+ (qR2)@01 V&m En(~+q~o) 

1 ( 

EJH- k--2hol 
a+ (q--2ho + 2 @fWo 

1-G’ w+ (q-2h) * (Al) 
In the written expression for the current, let us expand the electric fields into the Taylor series with respect to point (o,k), 
then after summing up over q, l3q. (Al) assumes the form 

~~~((w-po) 2 1 2 ‘c E,(o) r=. r! ( i) aur ( 

+Gk 
b-~~b-(p+l)~o] 

~-(p+l)wo 

+ G’e”’ !!&p12e)+!!$! (%$)(!!&+G~e!2~$e-l~6)) 

Writing Eq. (A2), we used obvious relationships: 

and 

iqo (r=0,1,2,...) 

q=-m 

Similarly, we can expand the conductivity into the Taylor series and sum over p. Then 
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j;$&)= 5 -is- f!!? r,t=O r!tl ( i)r+t[-g (Em(o)g-~ (yp-y(e-“&e”+G~e”.ge-“)+~ (F) 
. ar iB a’ ar 

X e-lewe niO_ -8 

)) 

at 
+G e acre zf &~(w)eiaSi” e Em(w)e-le se 

i. 

(A3) 

We are interested in the case of the lower-frequency pumping, i.e., W&O, and besides, to rule out the possible flux 
instability, we will require the fulfillment of k~e(~ < w ((r is determined by conductivity and the type of oscillations under 
consideration). These assumptions allow us to restrict ourselves to terms t=O, 1, and 2 in the expansion of the linear 
conductivity and write 

ar ar e-i~dB’ei~+GneiQ,,,e-ie 
)H 

a&; w; a2*(0 
o:;(m) -tmo cos 8 aw --y (iu sin e---a2 cos2 0) --$/ 

(A4) 

Retaining in Eq. (A4) the terms proportional to 1, kuo, kuowo, ( ku0)2, and summing over r, we finally obtain 

V 
+y 

k a(‘)(w) m me 
w IG,kF,(o+oo)+G,xE,(w--wo)]+oo~ (kmoz’o)) 
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x [hzkEe(@+@o) -G,&+-oo)] -2 z 
am0 a (k,fb)) 

[&eieE,(w+2q,) +G,,@-ieE,(~-200) 

’ +E,(w) (S,,Kie+ G,,eie) ] - “2 ’ z ( krndf(@) ( sd,k f&:$2) + G,G,k G~-;d) 

kn~%4EeW + o2 
k& 

>- +2 

+ 
k,~::(o)Eq(o) 

w2 (G&nkf~qpf%d . )I 
Writing Bq. (A5), unlike Bq. ( 12), we used a mathemat- 
ically more accurate writing, introducing the tensor 

-1 0 0 

Gnk= 0 1 0 . 

( i 0 0 -1 

Finally, we can obtain Eq. (A5) in an abridged form as 
well: 

jf’(w,k) =c$(w,k)E,(w,k) +Jk(W,k). b46) 

APPENDIX B: THE SOLUTION OF THE MATHIEU 
EQUATION AT GREAT h AND 1631 

We shall consider 

a2&,w az2+ (h-28 cos 2z)g(z,k) =0 (Bl) 

as a standard form of the Mathieu equation,” 
It is known from the theory of the Mathieu equation 

that, if the solution of Bq. (Bl) satisfies boundary condi- 
tions 

am 
g(O) = 1, 7=0, 

then characteristic index Y is connected with the solution 
in the following way: 

ch(wT)=g(7f). 032) 

In the present paper we assume that oo<w* therefore 
h) 1. Moreover, the correctness of the expansion used [see 

Eqb+2d E,b--2~0) 
0+2w, + GqpGnk o-26&) 

I 

Bq. (A5 )] requires the fulfillment of h > 2 18 I. Apart from 
these obvious inequalities we shall require that 2 Ie[)f, 
While fulfilling these inequalities, we can use the Loisville 
transformation ‘e to solve (B 1) : 

l/2 
1-y cos 2t dt; q= (h-26’cos 2zjtL4g. 

Then Bq. (Bl ) assumes the form 

8% a,2+w+rw1?1=0, (B3) 

where 

r(x) = 
62(4-l-sin2 2z) -2% cos 22 

(h-28 cos 2z)3 

Taking into account the fact that h) 1 and h > 2 16 I, let us 
rewrite r(x) to an accuracy of up to terms of order 2 
(where e=28/h): 

/V(X)=-ECOS~~-((E~/~)(~+~~COS~X). 

Equation (B3) is solved by the method of successive ap- 
proximations over parameter e( v = q. f vi + q2) : 

(0): qo=(h-28)1’4cos[h-((E2/8)]1’2~, (B4) 

(1): 
2 cos h”2x cos(h”2+2)x 

l-h - 1 +h”2 

(2): T#T2= (h-28)‘/4 5 
I( 

1 15 2+h 
16 (l-h)‘+m-4(1-h)(4-h) cosh”2 

cos(h’/2+2)x cos(h ‘/2-2)x 
x- l+h*” + 1-h”2 ) 

- c~~~r$~~x (15-&~)-c~(!~~~$))x ( 15-&~)-(l-~)hi,~sinh1nx]. 036) 

- (B5) 
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When writing Bqs. (B4)-(B6), we employed boundary 
conditions. 

Let us substitute x(r) -m.( 1 --E”/16) in the obtained 
solution of the Mathieu equation and, restricting ourselves 
to terms up to 2 inclusive, reduce g(rr) to the form 

g(r) =cosh”2 r( 1-&&) 

2a 
-16(l-h)h~sinh1Rs V37) 

Singling out the real and imaginary parts v= iv’ + v” in the 
characteristic index, let us rewrite (B2): 

ch(v”~)cos(v’~) +ish(v”ff)sin(v’p) =g(r), WI 
and, in order that v”#O, it is necessary to require v’ =n 
(n= 1,2,...). 

Substituting Eq. (B7) in Eq. (B8) and introducing the 
relative frequency shift 

(v’)2=h-A=n2,’ h”2zn+A/2n U39) 
one can write 

ch(yf~T)=~-; (;-$-$) 
(BlOa) 

Expanding ch (v”r), we rewrite Eq. (B 10a) in the form 

4h(v”)2= - (A-$-cr+$ (A-q). (Blob) 

The increment’s extremum is reached at frequency shift 

A=2h/8+2/8 (Bll) 

and takes the value 

2 v” =- 
at Sv?h ’ U312) 

The mechanism of the studied instability can be under- 
stood from analyzing Eqs. (B4)-(B6). In the first order 
over E [see Eq. (BS)], the interaction of the proper mode 
( h”2,k) of the undisturbed plasma with the pumping wave 
generates oscillations with spectrum (h 1’2 h 2,k), whereas 
the interaction of these oscillations with the external field 
leads to the growth of the amplitude of the proper mode 
(h”‘,k) [the last term in Eq. (B6)]. In other words, the 
beats of high-frequency waves (h”2,k) and (h”2*2, k) 
are in resonance with the lower-frequency pumping wave. 

‘V. S. Krivitsky, Yu. M. Prydko, and V. N. Tsytovich, Fii. Plasmy 16, 
801 (1990). 

‘V. S. Krivitsky and V. N. Tsytovich, Conrid. Plasma Phys. 30, 339 
(1990). 

‘S. N. Sarma, R. N. Khound, S. Bujarbarua, and M. Nambu, J. Phys. 
Sot. Jpn. 57, 3029 (1988). 

4V. P. Siiin, Parametric Effects of Powerjkl Radiation on Plasma (Nauka, 
Moscow, 1973). 

5 Electrodynamics of Plasma, edited by A. I. Akhiezer (Nauka, Moscow, 
1974). 

6FundamenaIs of Plasma Physics, edited by A. A. Galeev and R. Sudan 
(Energoatomizdat, Moscow, 1984). Vol. 2. 

‘L. D. Landau and E. M. Lifshits, The Field Theory (Nauka, Moscow, 
1988), Vol. 2 

*G. Korn and T. Kom, Mathematical Handbook (McGraw-Hill, New 
York, 1968). 

‘A. F. Alexandrov, L. S. Bogdankevich, and A. A. Rukhadze, Funda- 
mentals of Plasma Electrodynamics (Vyshaya Shkola, Moscow, 1988). 

toH. Bateman and A. Erdelyi, Higher Transcendental Functions. Elliptic 
and Automorphic Functions, Lame and Mathieu Functions (Nauka, 
Moscow, 1967). 

103 Phys. Fluids B, Vol. 5, No. 1, January 1993 Gamayunov et a/. 103 


