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For a spherically symmetrical intermolecular potential V (r) = 
Ef(r/cr) the quantum calculation of the elastic scattering cross 
section dcr(O) /dfI. in the c.m. system is carried out as follows. 
For a given relative velocity (or deBroglie wavelength) and an 
assumed V(r), the radial wave equation is integrated for suc­
cessive values of the angular momentum quantum number 1, 
yielding the phase shifts '11. Then dcr(O)dfI. is computed in terms 
of the series of m's in the standard way. A general computational 
program (following that of K. Smith) is outlined for the evalua­
tion of the radial wave function and the phase shifts, utilizing 
an IBM 704 computer. Calculations are presented for the L-J 

INTRODUCTION 

FOR molecules interacting according to a spherically 
symmetrical potential 

V(r) =if(rlu) , (1) 

the quantum mechanical problem of the elastic scat­
tering of molecular beams is already solved, in principle, 
by the standard Mott-Massey theory.l For a given 
relative velocity v (or deBroglie wavelength X) and 
an assumed V(r) the radial wave function is integrated 
for successive values of the angular momentum quan­
tum number 1, yielding the phase constants 'Ill. Then 
the differential elastic scattering cross sections (in the 
c.m. system) du (fJ) I dn are computed in terms of the 
'liz'S by the standard equation! 

du(fJ) 1 
--=I(fJ) =4k {[2:(21+1) sin2mPz(cosfJ)]2 

dn 2 z 

+[2:(2/+1) (cos2'11z-1)Pz(cosfJ)]2}, (2) 
z 

where k = 27r IX = J.l.V 1ft, J.I. is the reduced mass, and v is 
the initial relative speed; P z is the Legendre function. 

In connection with the problem of the elastic scatter­
ing of electrons, Kenneth Smith2 has developed a 
computational program for evaluating the radial wave 
function from which the phase shifts may be calculated. 
This program has now been adapted to the molecular 
beam scattering problem, and extensive calculations 

. have been carried out and are here reported for the 
commonly used Lennard-Jones (12, 6) potential func-

* The author acknowledges with thanks financial support of 
this work from the United States Atomic Energy Commission, 
Division of Research, and from the Alfred P. Sloan Foundation. 

1 N. F. Mott and H. S. W. Massey, The Theory of Atomic 
Collisions (Clarendon Press, Oxford, England, 1949), 2nd ed. 

2 Kenneth Smith, private communication, June 24, 1959. The 
computational scheme is outlined briefly in a report by K. Smith, 
W. F. Miller, and A. J. Mumford, Argonne Nat!. Lab., February 
9,1960. 

(12,6) potential function. The results may be concisely repre­
sented using the framework provided by the semiclassical treat­
ment of Ford and Wheeler, i.e., in terms of a set of reduced 
phase constants vs reduced angular momenta at various reduced 
relative kinetic energies K. Tables and graphs are presented 
from which the phases may be obtained, to a good approxima­
tion, for any given E, cr and K. Computation of the differential and 
total cross sections from the phase shifts is then readily ac­
complished. 

The results are compared with the classical and semiclassical 
treatments. The problem of tunneling and orbiting is discussed. 

tion, which may be expressed by 

V*(x) =f(x) =4(x-lL X-6), (3) 

where x = rlu and V*= V If is the reduced potential. 

METHOD 

The differential equation for the radial wave function 
R(r) is usually written1 ,3 in terms of G(r) =rR(r) as 

d2G z(r) Idr2+[kL U(r) -1(1+ 1) Ir2]Gz(r) =0, (4) 

where 

U(r) = (2J.1.lft2) V(r), (5) 

and E= !J.l.V2 is the initial relative kinetic energy. 
The following dimensionless parameters are intro­

duced: 

A=ku and B=(2J.1.lft2)fU2. (6) 

Eq. (4) becomes 

d2yldx2+[ALBf(x) -1(l+1)Ix2]y=0, (7) 

where y(x):=Gz(r). Alternatively, Eqs. (4) and (7) 
may be written in terms of the reduced relative kinetic 
energy, defined as 

(8) 

Here B may be considered an independent variable, 
with either A or K as the second independent variable. 
Then 

where a reduced angular momentum function 

{j= [1(1+ 1)]!1 A (10) 

has been introduced. The "reduced effective potential" 

3 See, for example, L. I. Schiff, Quantum Mechanics (McGraw­
Hill Book Company, Inc., New York, 1955), 2nd ed. 
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TABLE I. (A=20; B=125.) 

XS Ilx yo' 17cale 

o 0.70 0.005 1 -16.933 
0.65 0.005 10-30 -16.933 
0.60 0.005 10-30 -16.935 
0.60 0.020 10-so -16.947 

0.70 0.005 1 -15.420 
0.70 0.010 1 -15.419 
0.60 0.010 10-30 -15.421 

20 0.65 0.005 10-30 +2.219 
0.60 0.005 10-30 +2.219 

Veff* may be defined by the relation 

[ 
l(l+ 1) fi}] / Z= Veff*= V(r)+-- - E 

r2 2J.! 

=f(X)+I(l+1) (11) 
Bx2 . 

Thus Eq. (7) may also be written 

tFy/ dx2+ (K - Z) By= O. (12) 

For r sufficiently large so that I U(r) l«k2, the solu­
tions of Eq. (4) are1,3 

G1(r),-.{n-kr/2) ![cos17zll+! (kr) 

+(-1)lsin171J_H(kr)J, (13) 

where the J's refer to the usual half-odd-order Bessel 
functions. 

In terms of the reduced parameters, 

y=C[COS17! j!(Ax) -sin171 nl(Ax) J, (14) 

where jl(z) and nl(z) are the spherical Bessel and 
spherical Neumann functions, respectively, and C is a 
constant independent of x. The phase shifts 171 are 
defined1 in terms of the asymptotic solutions of Eq. (4) 
as r~oo: 

(15) 
or 

y,""sin[Ax- (?r1/2) +17!J= sin[A (X+17I*) - (?r1/2) J, 

(16) 
where 17l* = 171/ A. 

The 171'S may be found from a knowledge only of the 
zeros of y at large x. From Eq. (14), if Xn is the nth 
zero of y, then 

17/= arctan[jI(Axn ) /nl(Axn ) J. (17) 

Thus, the procedure is as follows. Apparent phase 
shifts are calculated for successive zeros of y and are 
compared; when the difference between successively 
determined 171 values becomes negligible it may be 
considered that the condition (i U(r) l«k2) necessary 
for the validity of Eq. (14) has been attained and that 
17l has been evaluated. 

The procedure outlined thus far (which is standard 
in the field of nuclear scattering) has also been em­
ployed by a number of workers4- 7 interested in the low 
temperature properties (especially the second vi rial 
coefficient) of helium. In the present instance, the com­
putations were facilitated by the use of an IBM 704 
computer. The standard Runge-Kutta-Gill (RKG) 
method was employed for the numerical integration of 
the wave equation. 

A few features of the present computational program 
may be noted. First, regarding the boundary conditions, 
it was advantageous to modify the assumed potential 
so that for x<x., V=oo (and thus y=O), while for 
x 2:: x., V=ef(x) as usual. For the L-J (12,6) case, it 
was found that all zeros of y (and thus the phase 
shifts) were substantially independent of x. for x.:::;0.7 
(corresponding to V*2:: 255). In addition, it was noted2 

that any arbitrary value of the initial slope, Yo', could 
be used; the zeros of yare independent of Yo'. Lastly, 
as regards the interval size ~x in the RKG integration, 
it was found that for ~x:::;0.005, the zeros and phases 
were essentially independent of ~x; in most cases even 
0.01 was adequate. The integration was carried out to 
a sufficiently large x (typically in the range from 5 to 
15) such that the differences between successive 
apparent phases were consistently less than some 
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FIG. 1. Reduced effective potential and radial wave functions 
for B= 125 and l= O. 

4 H. S. W. Massey and R. A. Buckingham, Proc. Roy. Soc. 
(London) Al68,378 (1938). 

5 J. De Boer and A. Michels, Physica 6, 409 (1939). 
6 (a) R. A. Buckingham, J. Hamilton, and H. S. W. Massey, 

Proc. Roy. Soc. (London) A179, 103 (1951); (b) R. A. Bucking­
ham, A. R. Davies, and D. C. Gilles, Proc. Phys. Soc. (London) 
71,457 (1958). 

7 J. De Boer, Repts. Progr. Phys. 12, 351 (1949). 
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predetermined value (usually <0.0002 rad). The 
computation time was usually ~ 1 min. 

Table I summarizes some of the results illustrating 
the independence of the calculated phase shift, "1calc, 

upon x. and Llx for one of the least favorable cases 
(small ratio of AI (j). On the basis of a number of check 
calculations made under varying conditions, it is 
estimated that the probable error in "1calc is ±0.OO2 rad. 

The program for d(j«()) IdfJ calculated from the phases 
yielded values at 1° intervals in () from 0° to 179°. This 
program was checked by a few direct calculations and 
by duplicating a number of calculations in the litera­
ture. 

RESULTS AND DISCUSSION 

The results of the present study may conveniently be 
presented in two parts. Part A summarizes a detailed 
investigation of the radial wave functions, phase shifts 
and scattering cross sections for one particular example, 
the parameters for which correspond to the HrHg 
system. The scattering of H2 beams by Hg has been 
measured by Knauer while classical cross section calcu­
lations are available9 for the L-J (12, 6) potential. 
Part B involves the transformation of these results into 
a form of more general applicability. The method em­
ployed takes advantage of certain of the features of the 
semiclassical treatment of Ford and Wheelerlo and 
consists of the evaluation of a set of reduced phase 
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K 

x-

FIG. 2. Reduced effective potential and radial wave functions 
for B= 125 and 1= 10. 

g F; Knauer, Z. Physik 80, 80 (1933); 90, 559 (1934). 
I H. U. Hostettler and R. B. Bernstein, J. Chern. Phys. 31, 

1422 (1959). 
10 K. W. Ford and J. A. Wheeler, Ann. Phys. 7,259,287 (1959). 
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FIG. 3. Reduced effective potential and radial wave functions 
for B= 125 and 1= 15. 

constants vs reduced angular momenta at various 
reduced relative kinetic energies K. With the use of the 
tables and graphs presented, it is possible to construct 
a set of phase shifts '11! for any L-J (12, 6) system 
of given E, (j and K. Only in a certain region of "1-l-K 
space (where the mapping has not been sufficiently 
extensive) would it be necessary to perform any direct 
phase calculations; otherwise, the phases may be satis­
factorily estimated by the use of the tables within 
±O.04 rad. 

A. Calculations for the System: H2-Hg 

The L-J (12, 6) parameters for the HrHg system 
are taken9 to be: E= 2.46X 10-14 erg, (j=2.91X10-s cm; 
thus, one obtains the value of B= 124.1 [from Eq. (6)]. 
Figures 1-4 show plots of the reduced effective po­
tential Z vs x for the rounded value B = 125 and 
l=O, 10, 15, and 20. 

Although only the zeros of yare needed for evaluation 
of the phases, the complete radial wave function was an 
optional byproduct of the phase calculation. A number 
of representative wave functions were thus computed, as 
listed in Table II. Plotted on Figs. 1-4 are a few of 
the calculated radial wave functions y(x), all drawn 
with the same asymptotic (X-l- co ) amplitude, and 
vertically placed to indicate the reduced relative 
kinetic energy K. Shown are wave functions for 
K=0.2, 0.8, 1.8, and 3.2, which correspond to A=5, 
10, 15, and 20, respectively. The asymptotic (X-l-oo) 
wavelengths are inversely proportional to A. The 
classical turning points (i.e., the distance of closest 
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4 

FIG. 4. Reduced effective potential and radial wave functions 
for B= 125 and 1= 20. 

approach) are located at the first inflection point in 
the wave function [from Eq. (12), yl/=O when Z=KJ. 
The distortion of the wave function in the region of the 
attractive well and the influence of the centrifugal 
barrier are to be noted. 

The wave functions reveal a number of interesting 
features, particularly with regard to the classical 
phenomena of orbitingll and rainbow scattering,12 
associated with the existence of the hump in the 
effective potential curve. Hirschfelder et a1.H have 
shown classically that for the L-J (12, 6) potential, 
orbiting will occur for any K ~ 0.8 at some particular 
value (dependent on K) of the reduced angular mo­
mentum, if J32 K ~ 2.4624. In terms of the classical 
deflection function e (b) this corresponds to a certain 
impact parameter bo for which e(bo)~- 00. For 
K>0.8 the deflection function goes only to a finite 

TABLE II. List of wave functions computed for B=125. 

A 

3 0, 2,4, 6, 7,8, 10 
5 0, 2, 5, ~ 10, 11, 12, 15, 20, 25, 30 
7 8, 10, 11, 12, 13, 14, 1~ 16, 17, 20 
9 0, 12, 13, 14 

10 0,3,5,8,10,15,16, 17, 1~ 20 
15 0, 3, 10, 15, 20 
20 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 15, 20, 25, 30, 40, 50 

11 J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular 
Theory of Gases and Liquids (John Wiley & Sons, Inc., New 
York, 1954), pp. 553-557. 

12 See footnote reference 10, pp. 313-322. 

minimum, giving rise to rainbow scattering rather 
than orbiting. In the present notation and for B= 125 
the conditions for classical orbiting are therefore as 
follows: A2/B~0.8, or A~10, and 1 less than some 
value 10 given approximately by 1~(2.4624B)i"-'17.5 
I obtained using Eq. (10), approximating [lo(lo+ 1) Ji 
by 10}. 

As pointed out by Ford and Wheeler,12 penetration 
of the centrifugal barrier (tunneling) should occur for 
K slightly less than Z in the region of the hump. Wave 
functions illustrating this effect are shown in Fig. 5. 
Plotted are the curves for K=0.20 (A=5) with 

[-12 

/-15 

2.0 3.0 4.0 o 
)<--

FIG. 5. Radial wave functions illustrating phenomenon of 
tunneling through the centrifugal barrier. 

1= 10, 11, 12, and 15. (It should be pointed out that, 
in contrast to Figs. 1-4, the amplitudes here are 
arbitrary and unrelated.) The barrier penetration is 
apparent in the curve for 1= 12. One also notes the 
"loss" of a zero in going from 1= 11~12; this gives rise 
to an abrupt change in phase shift (as anticipated from 
footnote reference 12). Similar results were obtained 
in other cases where A ~ 10 and 1~ 17. Of interest also 
is the location of the (classical) turning points, desig­
nated on the curves by small circles; the x on the curve 
for 1= 12 is, of course, classically inaccessible. 

Table III is a summary of the phase shifts (in 
radians) for the present example (B= 125). The values 
quoted with three decimal places are computed phase 
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TABLE III. Phase shifts ('71) for B= 125. 

"",A 

I"'" 3 5 7 9 10 

0 +2.551 -0.484 -3.140 -5.565 -6.716 
1 -3.92 +0.95 -1.69 -4.10 -5.24 
2 4.994 2.179 -0.371 -2.731 -3.86 
3 5.82 3.263 +0.84 -1.47 -2.572 
4 6.427 4.175 1.90 -0.33 -1.38 
5 6.75 4.906 2.814 +0.727 -0.297 
6 6.653 5.440 3.62 1.69 +0.68 
7 6.302 5.758 4.25 2.50 1.56 
8 3.603 5.826 4.713 3.168 2.336 
9 3.329 5.526 5.01 3.74 3.02 

10 3.246 4.557 5.097 4.152 3.521 
11 0.064 3.788 4.928 4.43 3.90 
12 0.041 0.406 4.473 4.509 4.168 
13 0.027 0.25 3.817 4.395 4.254 
14 0.019 0.157 0.872 4.043 4.150 
15 0.013 0.110 0.490 3.212 3.805 
16 0.079 0.331 1.371 2.977 
17 0.06 0.236 0.780 1.550 
18 0.05 0.17 0.533 0.919 
19 0.04 0.13 0.37 0.64 
20 0.027 0.102 0.292 0.468 
21 0.02 0.08 0.23 0.35 
22 0.02 0.06 0.18 0.27 
23 0.02 0.05 0.14 0.21 
24 0.01 0.04 0.11 0.17 
25 0.009 0.033 0.092 0.142 
26 0.01 0.03 0.08 0.12 
27 0.01 0.02 0.06 0.10 
28 0.01 0.02 0.05 0.08 
29 0.01 0.02 0.04 0.07 
30 0.004 0.014 0.037 0.057 
31 0.03 0.05 
32 0.03 0.05 
33 0.02 0.04 
34 0.02 0.03 
35 0.017 0.026 
36 0.02 
37 0.02 
38 0.02 
39 0.02 
40 0.014 
41 0.01 
42 0.01 
43 0.01 
44 0.01 
45 0.008 

shifts (with a probable error of ±O.002, as mentioned 
previously), while those given to two decimal places 
are interpolated values, with a pe of ±O.02. 

Figures 6 and 7 show graphically the dependence of 
the phase shifts upon 1 at different values of A. The 
dotted lines are used simply to connect the different 
parts of the curves, i.e., to cross the discontinuities 
which arise from the "loss" of a zero. Figures 8(a) and 
8(b) show the dependence of 71l upon A. 

As generally understood, the short-range repulsive 
part of the potential is responsible for the negative low­
order phases, while the long-range attractive part gives 
rise to the positive higher-order phases. As the relative 
kinetic energy is decreased the influence of the attrac-

K 15 18 20 24 30 

0 -12.051 -15.022 -16.933 -20.634 -25.941 
1 -10.56 -13.52 -15.420 -19.10 -24.38 
2 -9.13 -12.08 -13.964 -17.639 -22.85 
3 -7.750 -10.69 -12.547 -16.22 -21.41 
4 -6.45 -9.35 -11.197 -14.84 -20.00 
5 -5.231 -8.060 -9.898 -13.483 -18.60 
6 -4.10 -6.84 -8.662 -12.17 -17.29 
7 -3.06 -5.70 -7.471 -10.93 -16.02 
8 -2.06 -4.63 -6.351 -9.767 -14.78 
9 -1.08 -3.61 -5.278 -8.63 -13.56 

10 -0.223 -2.640 -4.266 -7.535 -12.392 
11 +0.54 -1.76 -3.32 -6.50 -11.24 
12 1.22 -0.97 -2.431 -5.504 -10.16 
13 1.80 -0.24 -1.61 -4.55 -9.09 
14 2.31 +0.45 -0.846 -3.67 -8.08 
15 2.731 1.096 -0.156 -2.851 -7.10 
16 3.03 1.63 -0.472 -2.10 -6.20 
17 3.209 2.06 1.03 -1.40 -5.32 
18 3.260 2.400 1.503 -0.75 -4.50 
19 3.18 2.65 1.89 -0.11 -3.70 
20 2.880 2.800 2.219 +0.440 -2.981 
21 2.39 2.84 2.46 0.92 -2.30 
22 1.836 2.750 2.576 1.32 -1.65 
23 1.36 2.531 2.607 1.656 -1.08 
24 1.04 2.196 2.531 1.92 -0.55 
25 0.808 1.809 2.344 2.105 -0.04 
26 0.64 1.453 2.08 2.23 +0.41 
27 0.51 1.165 1. 768 2.26 0.800 
28 0.42 0.944 1.469 2.184 1.12 
29 0.35 0.774 1.213 2.05 1.38 
30 0.298 0.642 1.008 1.874 1.592 
31 0.25 0.54 0.840 1.66 1.736 
32 0.21 0.46 0.707 1.447 1.819 
33 0.18 0.39 0.600 1.25 1.843 
34 0.16 0.33 0.51 1.07 1.81 
35 0.135 0.284 0.432 0.925 1.739 
36 0.12 0.24 0.37 0.81 1.64 
37 0.10 0.21 0.32 0.70 1.51 
38 0.09 0.18 0.28 0.61 1.37 
39 0.08 0.16 0.25 0.53 1.23 
40 0.069 0.144 0.219 0.464 1.094 
41 0.06 0.13 0.20 0.41 0.97 
42 0.05 0.11 0.17 0.36 0.86 
43 0.04 0.10 0.15 0.32 0.77 
44 0.04 0.09 0.14 0.28 0.69 
45 0.038 0.080 0.12 0.255 0.62 
46 0.03 0.07 0.11 0.23 0.55 
47 0.03 0.06 0.10 0.21 0.50 
48 0.03 0.05 0.08 0.19 0.46 
49 0.03 0.05 0.08 0.17 0.42 
50 0.023 0.047 0.070 0.150 0.368 

tive well becomes dominant; conversely, as the collision 
energy increases the negative phases predominate. 
The low-order phases tend to approach those13 for the 
rigid-sphere case (where, for example, 710= - A). 
Inspection of Table III also shows that the value of 1 
corresponding to a maximum in 71l is a linear function of 
A (i.e., in the present example, for A>3, lmax=A+3). 

For the higher collision energies, as the semiclassical 
approximation becomes more valid, the initial slopes 
(d71/dl)o are found to approach the expected value of 

13 H. S. W. Massey and C. B. O. Mohr, Proc. Roy. Soc. (Lon­
don) A141, 434 (1933). 
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24 

FIG. 6. Phase constant vs angular momentum quantum 
number. 

11'/2. Using the semiclassical correspondence relation, 

e(l) = 2 (dTJ/dl) , (18) 

for the deflection function, e (l) was calculated for 
several values of A; the curves were quite similar to 
those calculated9 classically, differing primarily in the 
region near the minimum in e. 

A comparison of quantum vs classical calculation of 
the scattering cross sections is shown in Fig. 9. Plotted 
is the angular dependence of the scattering calculated 
[from Eq. (2) ] for the case of A = 14.1 (K = 1.6) using 
phases interpolated from Figs. 6-8, compared with the 
classically calculated9 curve for the same K. The 
predicted14 discontinuity at the characteristic angle 
x. (designated "rainbow scattering" in footnote refer­
ence 10) is not evident in the quantum calculation. 

In Fig. 10 Knauer's8 experimental data are compared 
with the quantum calculation for A=18 (K=2.6), 
which corresponds fairly closely with the "most 
probable" value of A under the conditions of the 
experiments. Properly, one should average over the 

, 
FIG. 7. Phase constant vs angular momentum quantum 

number. 

14 E. A. Mason, J. Chem. Phys. 26, 667 (1957). 

appropriate distribution of relative velocities, which 
would, of course, destroy most or all of the undulating 
character of the quantum curve, and give more nearly 
the observed monotonic dependence of du/dn upon £J. 
In addition, phenomena connected with rotation of the 
H2 molecule and the spin of the protons will tend to 
wash out the structure that would be expected for the 
scattering of one ideal, monoenergetic, J = 0 system by 
another. 

B. Generalization in Terms of Reduced Parameters 

In the Ford-Wheeler12 semiclassical treatment the 

e-125 
Parameter: " 

e-125 
Parameter L 

A 

FIG. 8. Phase constant vs velocity parameter, A. 

reduced phase constant is defined as 

TJ*=TJ/(p,vu/h) =TJ/ A. 

This is the same as the TJ* used in Eq. (16). 

(a) 

(b) 

(19) 

For fixed v, the deflection function is given12 by 

e= 2 (dTJ*/db*) , (20) 

where b* is the reduced impact parameter,11 b*=b/u. 
The reduced centrifugal potential analogous to the 
term l(l+1)/x2B in Eq. (11) is Kb*2/x2, so that the 
reduced angular momentum is Kb*2. The previously 
defined [Eq. (10) ] reduced angular momentum func­
tion {3 is then identified with b*. 
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According to the semiclassical treatment, a set of 
curves of 1]* vs b* for various values of K should be 
unique (i.e., independent of the deBroglie wavelength 
or of e). In footnote reference 10 (p. 317) two such 
curves (for K = 0.4 and 1.6) together with the corre­
sponding deflection functions are shown. 

Referring back to the quantum treatment, it is not 
obvious from Eq. (9) that, for a given K and 13, a 
unique reduced phase constant f/* [Eq. (16) ] would be 
obtained independent of A (or B). In this connection, 
it is interesting to note the implication of the semi­
classical treatment, i.e., that specification of Band K 
suffices to determine f/* (b*) and thus e (b*). In the 
quantum treatment, Eq. (9) suggests that 1]*(13) 
might require the specification of A as well as Band 
K, i.e., a wavelength dependence of the reduced phase 
constants (which would presumably disappear with 
increasing A). 

Figure 11 shows the results of the present calcula­
tions (for B= 125) plotted as f/* vs 13 for various K's. 
The dotted curves identify the abscissa 13 as distinct 
from 13' (defined later) wherever the two are different. 
These 1]* vs 13 curves are unsatisfactory for two reasons. 
First, the semiclassical constraint on initial slopes, 

1.000 

10 

~ 
\ 
\ 
\ 

(df/*/db*) 0= 7r/2, 

OUANTUM CALC. !A.14.t - 6.125 
---CLASSICAL GALC K.~6 

(21) 

10 10 20 30 40 50 60 70 so 90 100 110 120 130 140 
e' 

FIG. 9. Classical vs quantum calculation of the scattering of 
H2 by Hg in the idealization where both systems are considered 
to have zero angular momentum. In actuality the undulations 
will be partly washed out by effects associated with the rotation 
of the H2 molecule, the spin of the protons, and the difficulty of 
securing monoenergetic beams. 

o DATA OF KNAUER 

- QUANTUM CALC {:::~5 

10 

10 10 20 30 40 50 60 70 80 90 100 110 120 130 140 
s· , 

FIG. 10. Scattering of H. by Hg at 295°K. (See the remark on 
the quantum calculations in the caption of Fig. 9.) 

is not satisfied (in fact, an inflection point is noted at 
small 13) ; second, calculations of f/l made with different 
B and the same K yielded points (13, f/*) which were not 
on the same iso-K curve. 

It is well known1.10.15.16 that increased accuracy is ob­
tained in the JWKB approximation for the phases by 
replacing (in the centrifugal potential term) the 
quantity l(l+l) by O+t)2 (the so-called Langer 
modification) .16 In order to take advantage of as much 
as possible of the framework of the semiclassical treat­
ment, a modified reduced angular momentum function 
was defined as 

13'= O+t) / A. (22) 

Of course, for large l, fJ'''''fJ''''l/ A, (as implied in foot­
note reference 10, p. 318). 

The solid curves in Fig. 11 refer to abscissa 13'. These 
curves are found to satisfy the condition of Eq. (21). 
Moreover, at low 13' they agree closely with the iso-K 
curves of f/* vs b* plotted in footnote reference 10, p. 
317. (However, for b* greater than that corresponding 
to the maximum in f/*, the differences become ap­
preciable.) 

The important question, however, is not the extent 
of the agreement with the semiclassically estimated 

15 K. W. Ford, D. L. Hill, M. Wakano and J. A. Wheeler, Ann. 
Phys. 7,239 (1959). 

16 R. E. Langer, Phys. Rev. 51, 669 (1937). 
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TABLE IV. Estimated vs calculated phase shifts. 

K B A 

0.200 375 8.66 0 
2 
5 

10 
20 
30 

0.267 375 10.00 0 
5 

10 
20 
30 

0.800 250 14.14 0 
2 
3 
5 

10 
20 
30 

1.200 62.5 8.66 0 

1.600 62.5 10.00 0 

1.800 62.5 10.61 0 
2 
5 

10 
20 
30 

3.200 62.5 14.14 0 
2 
5 

10 
20 
30 

curves, but rather whether the iso-K curves obtained 
from the quantum calculations (the "Q-i-K" 
curves) are unique (i.e., independent of B, for example). 
To investigate this point, a number of phase shift 
calculations were carried out with different B (and A); 

'I1calc* 7Jeet * '108113 7]est '1est--?Jcalc 

-0.155 -0.157 -1.34 -1.36 -0.02 
+0.176 +0.174 +1.52 +1.51 -0.01 
+0.591 +0.586 +5.12 +5.08 -0.04 
+1.052 +1.046 +9.11 +9.05 -0.06 
+0.108 +0.106 +0.93 +0.92 -0.01 
+0.011 +0.012 +0.10 +0.10 0.00 

-0.319 -0.322 -3.19 -3.22 -0.03 
+0.342 +0.339 +3.42 +3.39 -0.03 
+0.783 +0.777 +7.83 +7.77 -0.06 
+0.743 +0.744 +7.43 +7.44 +0.01 
+0.017 +0.016 +0.17 +0.16 -0.01 

-0.693 -0.695 -9.79 -9.82 -0.03 
-0.485 -0.486 -6.86 -6.87 -0.01 
-0.388 -0.390 -5.48 -5.51 -0.03 
-0.208 -0.210 -2.95 -2.97 -0.02 
+0.152 +0.152 +2.15 +2.15 0.00 
+0.417 +0.415 +5.90 +5.87 -0.03 
+0.035 +0.035 +0.49 +0.49 0.00 

-0.727 -0.728 -6.29 -6.30 -0.01 

-0.770 -0.770 -7.70 -7.70 0.00 

-0.784 -0.781 -8.31 -8.28 +0.03 
-0.515 -0.515 -5.47 -5.47 0.00 
-0.183 -0.182 -1.94 -1.93 +0.01 
+0.163 +0.164 +1.73 +1.74 +0.01 
+0.026 +0.025 +0.28 +0.27 -0.01 
+0.003 +0.003 +0.04 +0.04 0.00 

-0.832 -0.835 -11.76 -11.80 -0.04 
-0.626 -0.625 -8.85 -8.84 +0.01 
-0.359 -0.357 -5.07 -5.05 +0.02 
-0.031 -0.029 -0.44 -0.41 +0.03 
+0.067 +0.066 +0.94 +0.93 -0.01 
+0.008 +0.008 +0.11 +0.11 0.00 

the range of B was from 62.5 to 375, with the range of 
K from 0.2 to 3.2. The results are presented in Table 
IV. The 17ealc * values refer to the directly calculated 
reduced phases, while the 17est * values are taken from 
the data of Fig. 11 (with abscissa (3'). The correspond-
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ing phase shifts TJ are also listed. The average deviation 
TJest-TJcslc is ±0.02 rad. Thus it appears that the present 
Q-i-K curves are very nearly unique, at least over 
the range of practical interest. Without a rigorous 
theoretical foundation, however, this result must be 
regarded as semi-empirical. 

Figures 12 and 13 show the dependence of TJ* upon K 
at various {3'. Table V lists interpolated values of TJ* 
vs (3' and K to allow construction of graphs17 similar to 
Figs. 11-13. 

Thus, for any L-J (12,6) system, the procedure for 
evaluating the scattering cross sections is as follows. 
From a given set of L-J parameters (CT, e) one calculates 
B; knowing J.I. and v, one evaluates A and K. For each 
angular momentum quantum number lone calculates 
(3', reads off the corresponding TJ* from the Q-i-K 
curve and then calculates TJl. From the resulting table of 
phase shifts the computation of dCT(IJ)/dQ[=I(IJ)J is 
straightforward. 

With the exception of the problem of the "bounded 
region" for cases when K:::; 0.8, Table V should suffice to 
enable estimation of the phase shifts without the 
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FIG. 12. Reduced phase constant vs reduced relative kinetic 
energy. 

17 In the "bounded region" of Figs. 11-13, delineated in Table 
Vb, corresponding to the region of collision energies and angu­
lar momenta where orbiting or spiral scattering is possible, in­
sufficient calculations of phase shifts were made to allow the 
precise location of the discontinuities in 1/* vs {3' at each value of 
K. Thus, for any individual case it would be necessary to make 
a few direct calculations of 1/ in the neighborhood of the dis­
continuities. 
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FIG. 13. Reduced phase constant vs reduced relative kinetic 
energy. 

necessity of carrying out the numerical integration of 
the wave equation. 

A preliminary study has been made of the errors 
introduced in the calculated cross sections due to (a) 
random errors [of the order of ±0.02 to 0.05 in TJIJ and 
(b) omission of the small higher-order phases. Random 
errors do not significantly affect the general shape of 
the scattering curve, but rather introduce strong 
changes locally in a few regions. The "wavelength" of 
the undulations in dCT/dQ is governed primarily by 
1/ A (or A) so that the positions of the maxima and 
minima are virtually unaffected. The error due to (b) 
is, however, more insidious; it affects the low angle 
scattering and thus may alter the total cross section Q 
by a significant degree. In addition, it is obvious 
that the accuracy of the numerical integration de­
creases (and the computing time increases) with 
increasing I, so that the integration technique is un­
suitable for the precise calculation of the very high 
order phases (e.g., 1> 60). For improved accuracy 
in Q one should therefore use the Born approximation 
for the higher phases18 and include in the calculation all 
phase shifts greater than about 0.005 rad. Further work 
in this direction with particular attention to the 
problem of the total cross section and its wavelength 
dependence is in progress. 
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APPENDIX 

TABLE Va. Reduced phase constants (1/*) as a function of K andj3'. 

X 0.2 0.3 0.4 0.5 0.6 0.8 1.0 2.0 3.0 4.0 5.0 

0 -0.244 -0.454 -0.570 -0.642 -0.692 -0.754 -0.790 -0.861 -0.883 -0.890 -0.896 
0.1 -0.096 -0.298 -0.412 -0.487 -0.534 -0.597 -0.636 -0.711 -0.730 -0.738 -0.740 
0.2 0.050 -0.152 -0.268 -0.341 -0.390 -0.453 -0.492 -0.571 -0.592 -0.599 -0.600 
0.3 0.189 -0.016 -0.131 -0.206 -0.258 -0.324 -0.366 -0.438 -0.459 -0.468 -0.471 
0.4 0.314 0.107 -0.008 -0.080 -0.131 -0.196 -0.237 -0.318 -0.340 -0.350 -0.356 
0.5 0.435 0.230 0.112 .0.038 -0.015 -0.082 -0.125 -0.209 ':"'0.232 -0.245 -0.251 
0.6 0.548 0.339 0.219 0.140 0.089 0.024 -0.020 -0.111 -0.138 -0.150 -0.158 
0.7 0.650 0.433 0.317 0.239 0.184 0.115 0.071 -0.025 -0.057 -0.071 -0.081 
0.8 0.748 0.528 0.405 0.325 0.270 0.200 0.153 0.048 0.012 -0.006 -0.018 
0.9 0.834 0.615 0.487 0.403 0.347 0.271 0.220 0.108 0.070 0.050 0.036 
1.0 0.912 0.687 0.557 0.470 0.409 0.330 0.276 0.153 0.110 0.086 0.070 
1.1 0.980 0.746 0.610 0.521 0.458 0.376 0.318 0.186 0.131 0.102 0.087 
1.2 1.038 0.799 0.658 0.563 0.496 0.406 0.348 0.199 0.137 0.103 0.082 
1.3 1.088 0.834 0.690 0.594 0.523 0.424 0.356 0.190 0.120 0.086 0.063 
1.4 1.128 0.868 0.711 0.609 0.531 0.424 0.350 0.154 0.088 0.061 0.047 
1.5 1.151 0.885 0.713 0.606 0.521 0.399 0.304 0.102 0.057 0.040 0.030 
1.6 1.166 0.872 0.700 0.586 0.490 0.344 0.237 0.068 0.039 0.030 0.025 
1.7 1.164 0.859 0.663 0.522 0.418 0.225 0.128 0.048 0.029 0.020 0.017 
1.8 1.145 0.816 0.619 0.481 0.115 0.082 0.033 0.021 0.016 0.012 
1.9 1.105 0.755 0.553 0.128 0.074 0.054 0.023 0.015 0 .. 010 0.007 
2.0 1.013 0.691 0.117 0.084 0.053 0.038 0.019 0.011 0.007 0.004 
2.1 0.910 0.645 0.101 0.073 0.058 0.040 0.031 0.012 0.008 
2.2 0.817 0.072 0.053 0.043 0.030 0.024 
2.3 0.090 0.052 0.040 0.032 0.023 
2.4 0.063 0.041 0.032 0.026 0.018 0.013 
2.5 0.077 0.045 0.032 0.026 0.021 0.014 0.010 0.006 0.004 
2.6 0.064 0.037 0.027 0.020 0.017 0.011 
2.7 0.050 0.030 0.021 0.017 0.012 
2.8 0.038 0.022 0.016 
3.0 0.025 0.013 0.012 0.009 0.008 
3.3 0.015 0.008 0.007 0.006 0.005 

TABLE Vb. Bounded region. 

Lower Upper 

f3' K 1/* K 1/* 

1.7 0.800 0.225 0.704 0.319 
1.8 0.707 0.160 0.538 0.440 
1.9 0.574 0.144 0.422 0.524 
2.0 0.468 0.131 0.353 0.590 
2.1 0.378 0.120 0.301 0.643 
2.2 0.333 0.110 0.249 0.700 
2.3 0.287 0.100 0.200 0.755 
2.4 0.240 0.090 


