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This paper analyzes the stability of gas bubbles in a medium which contains dissolved gases and de­
forms due to creep. The effects of mass diffusion and surface tension on the dynamic behavior of a gas 
bubble are taken into account. Asymptotic solutions valid for large times are obtained which predict the 
radius-time relation, the creep rate, and the rate of diffusion of dissolved gases induced by the growth of 
a gas bubble in an oversaturated solution. The case where the bubble is situated in a saturated or un­
dersaturated solution is also examined. 

INTRODUCTION 

Considerable attention has recently been focused on 
the dynamics of a gas or vapor bubble in a boiling 
liquid, in a liquid-gas solution, or in a cavitating flow 
of a liquid. A vapor bubble in a boiling liquid will grow 
or shrink by heat diffusion according as the liquid is 
superheated, saturated, or subcooled. Analogously, the 
growth or collapse of a gas bubble in a liquid-gas solu­
tion will occur according as the solution is oversatu­
rated or undersaturated. In a cavitating flow of a 
liquid, however, the growth or collapse of a gas bubble 
is controlled by the external pressure, surface-tension 
force, viscous force, and inertia forces. 

In the present paper, the problem dealing with the 
dynamic behavior of a gas bubble situated in a deform­
able medium containing dissolved gases is formulated. 
The effects of mass diffusion and surface tension on 
bubble dynamics are taken into consideration. Approx­
imate solutions valid for large times are obtained 
through which stability of a gas bubble in an over­
saturated, saturated, or undersaturated solution is ex­
amined. 

Results of the study may be applied to the swelling 
of fissionable materials caused by the growth of inert 
gas bubbles which are generated as a result of irradi­
ation,t-8 the expansion or shrinkage of gas emboli 
formed in extravascular tissues or organs,9,IO the growth 

or collapse of gas bubbles III polymer melts during 
plastic foaming process, etc. 

ANALYSIS 

Consider a spherical gas bubble situated in an infinite 
region of a homogeneous material in which the distri­
bution of the stresses is spherically symmetrical around 
the bubble. At the initial time t = 0, the radius of the 
bubble is Ro and the concentration of the gas dissolved 
in the material is uniform and equal to Co. The system 
is assumed to be at constant temperature T and pres­
sure, and the equilibrium concentration of the dis­
solved gas at this temperature and pressure is C. The 
center of the gas bubble is taken as the origin of a 
spherical polar coordinate system (r, fJ, cJ». 

Owing to spherical symmetry, the nondiagonal com­
ponents T8,p, T8r, and T,pr of the stress tensor are equal 
to zero and T'88=Tq,,p=-T .. /2. In order to describe the 
process of creep in the material, it is proposed that the 
creep rate Err=dvr/dr may be related to the intensity 
of the tangential stresses T88-Trr by the expression 

(1) 

where Vr is the radial component of the deformation 
rate v and a and b are nonzero constants determined 
by the properties of the material, the temperature, etc. 
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However, it is required that 

V·V= (dv~/dr)+ (2vr/r) =0. (2) 

Hence, vrr2 must be a function of time only or at any 
time t>O 

v~= (R/r)2dR/dt, (3) 

where R is the instantaneous radius of the bubble. The 
stresses 7rr and 799 must satisfy the equilibrium equation 

nate by ~=r-R, the solution can be easily found to be 

(Co-G.) r~ I [ (- a-~1)2) 
C(r,t)=C'+ 2r (lI"Dt)1/2]o (R+n exp 4Dt 

(_ (~_~1)2)] 
-exp d~'. 

4Dt 
(14) 

The concentration gradient at the bubble surface is 
found directly from Eq. (14) as 

(d7rr/dr) + (2/r) (7rr-799) =0 (4) (aC/ar)T=R= (Co-C.) [R-l+ (lI"Dt)-1/2]. (15) 

Since the rate of the dissolved gas flowing into or out 
(5) of the bubbles is 

subject to the boundary conditions 

r=R: -7rT+ (2u/R) =Pg , 

r= 00: (6) 

in which u is the surface tension and Po(t) is the gas 
pressure inside the bubble. Equation (5) signifies the 
balance of forces at the bubble surface. 

With the substitution of Eqs. (1) and (3), Eq. (4) 
is solved with the boundary conditions (5) and (6). 
It yields 

dR/dt= (R/2b) (3/2a)a[Pg - (2u/R)Ja. (7) 

If the gas in the bubble behaves like an ideal gas, the 
equation of state reads 

(8) 

wherein met) is the mass of the gas contained in the 
bubble and R is the gas constant. Now, Eqs. (7) and 
(8) are combined to eliminate Pg. It gives 

(
dRila)l/a = (3a)1/a (~)(3mRT + 2uR2). 

lit 2b 2a 411" 
(9) 

The differentiation of Eq. (9) with respect time pro­
duces 

~ (dRila)l/a = (3a)1/a (~)(3RT dm 4uR dR) . 
dt dt 2b 2a 411" dt + dt 

(10) 

N ext, the diffusion of the dissolved gas to or from 
the bubble will be investigated. At any time t>O when 
the bubble radius is R, the dissolved gas concentration 
C(r, t) at a point in the material at a distance r from 
the origin is to be found from the mass diffusion equa­
tion which reads 

ac/at = DPC, ( 11) 

where D is the diffusion coefficient of the gas in the 
material. The appropriate initial and boundary condi­
tions are 

C(r, 0) = Co, for r>R (12) 

C(R, t) =G., C(oo,t)=Co, for t>O. (13) 

Through the transformation using u=r(C-G.) as the 
dependent variable and a linear shift in the r coordi-

dm/ dt =411' R2D( aC/ ar) r=R, (16) 

therefore the combination of Eqs. (10), (15), and (16) 
yields 

~ (dRila)l/a = (3a)1Ia (~) 
dt dt 2b 2a 

[ 
_ dR] X 3RTR2D(Co-C.) [R-l+ (lI"Dt)-1/2J+40'R at . 

(17) 

One can rewrite Eq. (17) in dimensionless form as 

d (dpila)l/a ( 3 ) _ _ = (!a)l/a -
b b 2a 

in which 

p=R/Ro, ip=RTCo / (~ra, 
Xs=G./Co, -y=u/(RoCoRT). (19) 

The initial conditions are R=Ro and dR/dt=O or 

7=0: p=l, dp/d7=0. (20) 

Thus, the problem of determining the dynamic behavior 
of a gas bubble or the time history of the deformation 
rate is now reduced to solving the nonlinear Eq. (18) 
subject to the appropriate initial conditions (20). Un­
fortunately, it is impossible to solve this analytically 
over the entire time domain. Numerical solutions can 
be easily obtained by the Runge-Kutta method with 
the aid of a digital computer. However, from the view­
point of pratical interest in the large-time behavior, 
effort will be directed toward finding the asymptotic 
solution of Eq. (18) in the following. 

When enough time has elapsed, the term 1/(11"7)1/2 

in Eq. (18) becomes much less than 1/ p. In the ab­
sence of the surface-tension effect, the asymptotic so­
lution [satisfying Eq. (20) exactly and Eq. (18) 
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approximately J is11 

p= 1 + (AT) (a+1)/2a, (21) 
where 

A = I [a/ (a+ 1)]1la[9cfJ/ (3a+ 1) J(I- Xs) }a/(a+I). (22) 

When the material is oversaturated with the dissolved 
gas, i.e., X,< 1, it is evident from Eq. (21) that a gas 
bu bble will grow. On the other hand, (1- X s) al (a+I) 

becomes a complex number for Xs> 1 indicating that 
no gas bubble can ever exist in an undersaturated 
solution. 

The radial component of the deformation rate in the 
material is, from Eq. (3), 

t'r = (RoD/r2 ) [( a+ 1) / a JA (AT) (l-a)/2a[1 + (AT) (a+1I2aJ2. 

(23) 

The rate of mass diffusion into the bubble, Eq. (16), 
can be written in dimensionless form as 

dM/dT=3p(1-Xs ) =3(1-Xs)[I+ (AT) (G-H)/2aJ, (24) 

where M is defined as m/mo with mo=4rrRo3Co/3. 
Several special cases are of particular interest: 

(i) In a saturated solution, X8 = 1: Equation (18) 
reduces to 

d (dpaa )l!a 3 (3cfJ,,) dp2 - - =(za)1la - -. 
liT liT a liT 

Or in a more tractable form 

(25) 

Its solution is 

• 00 a(a+ l)(a+2) ••• (a+n-1)p2n 
p3o. I: ------'----'---------'-------'--'--

n=! n!(3a+2n) 

_ f:. a(a+ 1) (a+2)··· (a+n-1) = -!T (3cfJ
a

,,)a. 
n=! n!(3a+2n) 

(26) 

At large times when p2 becomes negligible in compar­
ison with unity, the asymptotic solution of Eq. (25) is 

p=[l- (3a/2) (3cfJ,,/a)aT J3a. (27) 

1£ surface tension is neglected, a bubble of any radius 
would be stable against diffusion in a saturated solid 
solution. 

(ii) b-HI':! or ~rr--}O: When the creep rate is very 
small, a gas bubble will grow or shrink by diffusion 
alone. For the mass diffusion-controlled case, it can be 
shown that its dynamic behavior is governed by the 

equation 

lip 

liT 
_1_-_X_B_ [-1+ ( )-1/2J 
X p+2,,/3p p 'ffT , 

(28) 

where Xp=dg/Co and dg is the gas density under the 
same conditions of pressure and temperature with an 
interface of zero curvature. Equation (28) shows that 
a gas bubble will grow or collapse according as the 
solution is oversaturated or undersaturated. For a 
saturated solution, Xs = 1, a bubble would be stable 
only in the absence of surface tension. The asymptotic 
solution of Eq. (28) for large times is 

j+ for an oversaturated solution 
p= (I±T)1/2 (29) 

- for an undersaturated solution 

in the absence of surface tension. Details on the sta­
bility of gas bubbles in liquid-gas solutions due to 
diffusion are given in Ref. 12. 

(iii) a= 1 and b= -3 p.: This corresponds to a vis­
cous fluid in which p. represents its absolute viscosity. 
Equations (21) and (22) indicates that a bubble will 
grow or shrink as a linear function of time for the case 
where creep deformation controls. On the other hand, 
growth or collapse is a square-root function of time for 
the diffusion-controlled case as shown by Eq. (29). 

CONCLUSIONS 

A gas bubble in a deformable medium oversaturated 
with dissolved gases will grow, while that in an under­
saturated medium cannot exist. In a saturated medium, 
however, a gas bubble will shrink due to surface ten­
sion. At large times, the bubble radius, the creep rate, 
and the rate of diffusion of dissolved gas all vary with 
power functions of time. Special cases reduce to the 
problems of the diffusion-controlled bubble dynamics 
and the dynamics of a gas bubble in viscous liquids. 
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