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Universal curves are constructed that provide an immediate determination of the effect of a series
resistor on the electron emission from a field emitter. These curves are applicable to both the low
current and high current regime. The effects of space charge and of the series resistor are apparent
from these curves, which are applicable to a large class of materials. An example is given to
illustrate their use. ©1996 American Institute of Physics.@S0003-6951~96!02544-2#
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Field emitters are an important, high brightness electr
source for display and for generation of cohere
radiation.1–3 Electron emission, from both metal and sem
conductor field emitters, has been observed to follow t
Fowler–Nordheim~F–N! relation, according to which the
emission current density rises rapidly with voltage. Th
rapid rise in the emitter current with voltage leads to serio
implication of the emitter stability~thermal, mechanical, and
electrical!, and an obvious way to improve the emitter st
bility is to add a series resistor to the emitter.4 However, the
addition of a series resistor would result in a higher operati
voltage, loss in efficiency, and much higher cost.

In this letter, we use a simple model to provide a qua
titative analysis of the effects of a base resistor on t
voltage–current (V– I ) characteristics of a single field emit
ter. Two features of the present work are noteworthy. Fir
we present a set of universal curves, from which the effe
of a series resistor can immediately be determined once
F–N coefficientsA, B, and the gap spacingD are specified.
Thus, these curves are applicable to a wide variety of fie
emitters. Second, our calculations take into account the
fects of space charge that is present in the gap. The imp
tance of the space charge and of the series resistor are ap
ent from the curves, as illustrated by the example given.

Before applying the theory to a specific device, let u
first consider a planar model for the field emitter, driven by
dc voltageV and connected to a series resistorR at its base
@Fig. 1~a!#. We assume that the field emitter emits accordi
to the F–N relation

J5AEs
2e2B/Es, ~1!

where J is the emission current density,Es is the surface
electric field, and the F–N coefficientsA, B are taken to be
known constants. LetSbe the area of the emitting surface,D
be the gap separation, andVg be the gap voltage. A lumped
circuit element of impedanceZ is used to represent the field
emitter @Fig. 1~b!#. Thus, we have

V5Vg1IR5I ~Z1R!, ~2!

where I5JS is the emitter current. It is clear from the las
expression that the base resistorR will have a significant
effect only whenR is of orderZ or larger.

a!Also with: Applied Physics Program, University of Michigan, Ann Arbor
Michigan 48109. Electronic mail: yylau@umich.edu
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The field emitter impedanceZ depends nonlinearly on
the current, which in turn depends on the electron dynam
within the gap. The determination ofZ requires a simulta-
neous solution to the equations of motion, the continui
equation, and the Poisson equation; with the F–N relati
being used as a boundary condition. The number of para
eters in these equations may be substantially reduced if so
scales are constructed in such a way that, in terms of th
scales, all equations become dimensionless. Note that in
doing, the electron dynamics in the vacuum region may th
be linked to the materials properties, which are represen
by the F–N coefficientsA andB in the present formulation.
It is obvious from Eq.~1! that the F–N coefficientB provides
an electric field scaleE0, and the F–N coefficientA provides
a current density scaleJ0. From these two scales, the time
scalet, length scalel, and voltage scaleU follow.5 Specifi-
cally,

E05B, J05AB2, t5e0E0 /J0 ,
~3!

l5eE0t
2/m, U5 lE0 ,

wheree0 is the free space permittivity, ande andm is, re-
spectively, the electron charge and mass. In this letter
physical quantities, such ase,J,I,V,andEs are positive, by
convention.

We shall use a bar to designate normalized quantitie
D̄5D/ l , J̄5J/J0 , Ē5Es /E0 , V̄5V/U, V̄g5Vg /U.
Then the F–N relation~1! reads

J̄5Ē2e21/Ē, ~4!

,
FIG. 1. ~a! The field emitter model and~b! the circuit diagram.
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which becomes material independent. The circuit equat
~2! may be written in either of the following forms~for rea-
sons to be given shortly!:

V̄

J̄D̄
5
Z̄

D̄
1
R̄

D̄
, ~5a!

V̄

J̄D̄4/3
5

Z̄

D̄4/31
R̄

D̄4/3, ~5b!

where the normalized impedancesZ̄ and R̄ are defined by

Z̄[V̄g / J̄, R̄[R3~J0S!/U. ~6!

The normalized impedanceZ̄ is a function of J̄ only,
once the normalized gap spacingD̄ is specified. It may be
obtained from theV–I characteristics that was constructe
from the simultaneous solution to the force law, continui
equation, Poisson equation, and the Fowler–Nordhe
equation.5 Shown in Fig. 2~a! are the curvesZ̄/D̄ as a func-
tion of J̄ at several values ofD̄ @cf. Eq. ~5a!#. From Fig. 2~a!,
we see that at low values ofJ̄, the quantityZ̄/D̄ is indepen-
dent ofD̄. The underlying reason is that at these low curre
densities, the space charge effects are unimportant, the

FIG. 2. ~a! The plot of Z̄/D̄ vs J̄ for various values ofD̄. The asymptote at
low values ofJ̄ is the Fowler–Nordheim relation in which the surface ele
tric field is the vacuum field~i.e., space charge is unimportant!. ~b! The plot
of Z̄/D̄4/3 vs J̄ for various values ofD̄. The asymptote at high values ofJ̄ is
the Child–Langmuir law~i.e., space charge effect is very important!.
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malized surface electric fieldĒ is approximately equal to the
vacuum fieldV̄g /D̄, in which case Eq.~4! may be inverted to
yield V̄g /D̄ as a function ofJ̄. Thus, the functionZ̄/D̄
5V̄g /DJ is a function ofJ̄ only, in this low current density
limit. The divergence of the curves at higher values ofJ̄ in
Fig. 2~a! indicates that the space charge effects become
portant, i.e., when the surface electric fieldĒ may no longer
be represented by the vacuum fieldV̄g /D̄.

Another way to see the importance of the space cha
effects at high current densities is to plotZ̄/D̄4/3 as a function
of J̄ @cf. Eq.~5b!#. These curves are shown in Fig. 2~b! where
we see that at high values ofJ̄, all curves converge to the
same asymptote, regardless ofD̄. Specifically, this high cur-
rent asymptote readsZ̄/D̄4/35(81/32J̄)1/3, which is simply
the Child–Langmuir law,V̄g5(81J̄2D̄4/32)1/3, written in
normalized form.6

Thus, Eq.~5a! and Fig. 2~a! @equivalently, Eq.~5b! or
Fig. 2~b!# provide an immediate assessment of the imp
tance of the series resistorR at various levels of emitter
current. In other words, the curves in Figs. 2~a! and 2~b!
provide the value of the series resistorR that would yield a
matched load toZ @Fig. 1~b!#, at various operating curren
levels as measured byJ̄. Note also that these curves ar
‘‘universal,’’ in the sense that each one of them is fixed on
D̄ is specified.

To apply the above planar model to a realistic field em
ter with a field enhancement factorb ~b51 for the planar
model!, we assume that we may simply replace the elec
field scaleE05B/b whereas all other scale lengths define
in Eq. ~3! remain unchanged.7

As an example, consider a field emitter with work fun
tion f54 eV, D50.5 mm, S53310216 m2, and b520
@See Ref. 7#. In the SI units, this work function gives
Fowler–Nordheim coefficientsA54.7231025 and B55.2
31010, upon using the frequently used expressions ofA,B
in terms of f @See, e.g., Ref. 5#. The electric field scale
E05B/b52.63109 V/m, the current density saleJ05AB2

51.2731017 A/m2, and the other scales in Eq.~3! are
t51.81310219 s, l51.49310217 m, andU53.8731028

V. As these scales are obtained from a mathematical c
struction, they do not have a ready physical interpretati
but their use enables us to reduce the numerous indepen
parameters into a single one,D̄, as shown in Fig. 2. In the
present example,D̄5D/ l53.3631010. If we are interested
in a current ofI50.5 mA being drawn from such a field
emitter, the value ofJ5I /S51.673109 A/m2, and the nor-
malized current density becomesJ̄5J/J051.3131028. For
these values ofJ̄ andD̄, Fig. 2~a! shows that the space charg
effects are unimportant and thatZ̄/D̄'107. This gives Z̄
53.3631017, and thereforeV̄g5Z̄J̄54.43109. This implies
a gap voltageVg5V̄gU5170 V and the emitter impedanc
Z5Vg /I53.43108 V. In the presence of a series resistorR,
the external voltage required isV5170 V1R30.5mA. The
base resistor will exercise a negligible effect~at 0.5mA! only
if R!340 MV. The numerical values of these impedanc
may seem very large. Recall, however, that these values
for a single tip, while the number of tips, which are in pa
allel, is very large in practice.

For other values of emitter currentI, we can use a simi-

-
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lar procedure to deduce the external voltageV required.V–I
characteristics constructed this way are shown in Fig. 3
the above example, for various series resistors. From Fig
we see the obvious fact that for the emitter to emit at
certain level of current, the required dc voltageV increases
with the resistorR. Note also that, at low voltages, the cur
rent is exponentially small and, as a result, the voltage acr
the resistor is also exponentially small and the resistorR then
has a negligible effect on theI–V characteristics, as shown in
Fig. 3 whenV!100 V. TheI–V characteristics in this low
voltage regime is simply the F–N relation in which the su
face electric field isV/D, independent of resistor. In the limit
of high voltages, the situation changes dramatically, depe
ing on the value of the resistance. WhenR is low, ~the lim-
iting case beingR→0!, the gap voltageVg becomes the dc
supply voltageV which, at high values, yields the Child–
Langmuir limiting current. TheR50 curve in Fig. 3 then
shows the transition from the F–N relation to the Child
Langmuir law as the voltage increases. At a high value

FIG. 3. TheI–V characteristic at several values of the series resistorR. Field
emitter parameters:f54 eV,D50.5mm, S53310216 m2, andb520.
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resistor, the currentI approachesV/Rat high voltages, since
Z would be small compared withR @cf. Eq. ~2!#. Once more,
the relative importance of the resistor is measured byR/Z,
and the latter quantity is current dependent@cf. Fig. 2#.

The general treatment given in this letter is applicable t
all emitters as long as the emission law is governed by th
F–N relation. The adoption of the planar model is expecte
to be reliable when the effect of space charge is small. Le
certain is when the space charge effect becomes substant
in which case the use of the planar model and of a sing
local field enhancement factor~b! adopted here may be ques-
tionable. What is given here is then an identification of the
regimes where the series resistor and the space charge effe
are significant, as well as a quantitative assessment of th
relative importance.

This work was motivated by several discussions with
Bruce Gnade, George Haddad, Johnson Lin, Stella Pang, a
J. P. Sun. It was supported by DoD/AASERT and by NRL
ONR.
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