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We present results of a numerical formalism developed to address the band structure and charge
control problem inn- and p-type silicon and silicon-germanium metal-oxide-semiconductor field
effect transistors. We focus on the following issué$:the dependence of the in-plane carrier
effective mass on sheet charge density and germanium cofitenitte fraction of charge near the
interface and the evaluation of the interface roughness matrix element. Results are compared to
existing models. Fon-type structure, the effective mass approximation and deformation potential
theory is used to describe the electron states. Howevep-fgpe structure, a six-barkdp Kohn—
Luttinger formulation is used to describe the hole states due to the strong coupling of heavy-hole,
light-hole, and split-off bands. This allows us to examine the influence of the coupling of the
heavy-hole, light-hole, and the split-off bands. 1®98 American Institute of Physics.
[S0021-897€08)00108-X

I. INTRODUCTION charge control studies of PMOS. It is important to note that
while a four-bandk-p method has been used to study the
The metal-oxide-semiconductor field effect transistorpseudomorphig-type modulation doped field effect transis-
(MOSFET) technology based on Si—Sj®@chnology is the tor (MODFET),* no such studies have been done for the
most important device technology for modern microelectronMOS structure(ii) The variation of the effective mass in the
ics. Both n-type MOSFET(NMOS) and p-type MOSFET  channel for both NMOS and PMOS as a function of gate bias
(PMOS are an integral part of this technology. In spite of (or sheet charge densjtand Ge content; anii) the inter-
the importance of the MOS there are a number of unresolvethce roughness matrix elements and the validity of the cur-
issues for botm-type andp-type devices. These includ@) rently used interface roughness limited mobility model.
Interface roughness scattering and its role in transport: This In current charge control models to address PMOS one
important issue is presently addressed through the use sElf-consistently solves Schtimger equation and Poisson
very simplistic models for the envelope functions representequation by using an effective mass approximation method.
ing the two-dimensional interface char@e Present PMOS In the effective mass approximation method, the heavy-hole
charge control models do not include the coupling of theand light-hole bands are treated separately and usually the
heavy-hole(HH) and light-hole(LH) bands and ignore the effect of SO band is neglected. However, as we know, the
split-off (SO) band. Since the split-off energy in Si is only 44 valence bands are very nonparabolic and anisotropic ik the
meV it is important to verify if this approximation is justified space, which is mainly due to the strong coupling effect of
(iii) An important manifestation of the simplistic nature of heavy-hole, light-hole, and split-off hole states. The spin-
the modeling of MOS physics is the significant disagreemenorbit energy splitting between split-off and heavy-hole and
in the calculated and measured velocity-field relatibns. light-hole is comparable to the energy splitting between
With the development of lattice-mismatched heteroepit-heavy-hole and light-hole under a large quantum confine-
axy, it is possible to fabricate semiconductor devices withment and strain. As a result, it is necessary to use a six-band
strained layer components. The heteroepitaxial system df-p method in order to give an accurate representation of the
Si,_,Gg, layers grown on Si substrates is of great techno-strongly coupled states.

logical interest for fabricating semiconductor devices. Sili-  The outline of the remainder of this article is as follows.
con based Si—SiGe heterojunction bipolar transisidi&Ts)  In Sec. I, the modeling formalism for the- and p-type.
have shown remarkable performance. The combined effecggvices is described. In Sec. llI, results of the formalism

of strain and alloying are found to produce a monotonic in-are presented. These include the resultsrforand p-type

crease in hole mobility in the theoretical study on the transMOSFET. Conclusion are made in Sec. IV.

port properties of pseudomorphictype materiaf: Further-

more, it has been §hown that thg strain in the chan.nel _olfl. MODELING EORMALISM

PMOS remarkably improves device performance which is

related to higher mobility and lower carrier mdss. Our model gives the potential profile in a MOS structure
In this article we will examine the following issueg) by solving the Schidinger equation and Poisson equation

the importance of including the influence of the couplingself-consistently. The Schdinger equation yields the con-

between the heavy-hole, light-hole and split-off bands on thdéined charge terms in the Poisson equation which, in turn,
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determines the potential profile which is fed back into thebelow this cut-off value, they are treated as two-dimensional
Schralinger equation. An iterative process brings Poissorgas. For those whose energy is above this cut-off value, they
equations into convergence. are thus treated as free carriers.

In order to determine the two-dimensionally confined
charge profile, one must solve the Satirger equation for
the subband envelope functions and their occupations. For
then-type MOSFET, the one-band Sckinger equation can

The one-dimensional Poisson equation can be written alse used. The Schdinger equation must, in general, be writ-

2 ten in three dimensions, and the effective mass will be, in

d p(2)

— Ei(2)=— —, (1) general, a tensor. In the electron casezftependent part of

dz €(2) the Schrdinger equation is strictly separable from the in-
whereE, is the conduction band profile in the devigejs ~ Plane part of the equation which gives us extended Bloch-
the total charge density, ards the dielectric constant which like states. The one-dimensionadependent Schralinger
can be changed in different regions of the device to accourffguation can be written using the perpendicular part of the
for different material parameters across interfaces. The totdffective mass tensor as follows:
charge density is the sum of the doping charge, the free B om

W

charge including the hole and electron, and the quantum- 7)+ E —V(z 2)=0 5
confined charge. This can be written as a7 @+ 77 [Ea= V@) ]dn(2)=0, ©

A. Charge control model for NMOS

wherem,, represents electron effective mass along the quan-
tum confinement direction. This method is also referred as
effective mass approximation method. For bulk silicon, the
_2 ny* (2) lﬂi(Z)). %) _band edge of th_e conduction b_and iQ{apoint. Correspond-

i ing to this X point there are six equivalent valleys. Under
. . , i , guantum confinement or strain effect, the sixth degeneracy of
whereN; andNg are the effective doping concentrations, y ,qint is decomposed into a second and forth degeneracy.
Niree 3NUPrree re the free carrier concentrations, and the SUMk, gjectrons in the longitudinal valleyalongk, direction),
is overi two-dimensionally confined subbands of which nor- m,, is equal tom,, electron longitudinal effective mass.

malized envelope functions arg and in which the occupa-  \yhereas for electrons in the transverse vallégsplane di-
tion is n; (p; *for the hole case The effective acceptor con- octiong, m,, is equal tom,, electron transverse effective
centrationNz , can be written as mass. Under the quantum confinement, the two longitudinal
1 valleys will move down with respect to the four transverse
)- ()  valleys. This splitting is related to the difference of longitu-
dinal and transverse effective mass. Since the longitudinal
The solution of the Poisson equation is performed by a veceffective mass for silicon is much larger than the transverse
torized Newton’s method. effective mass, the electron in the longitudinal valleys will
In the calculation of the charge density, one must deteroccupy the lowest subband. In contrast, under the strain ef-
mine the guantized two-dimensional charge and the freefect, the two longitudinal valleys will move up with respect
carrier charge. The quantized two-dimensional charge can ke the four transverse valleys. According to the deformation
calculated from the eigen energy levels obtained by solvingotential theorem, we can write the change of energy of
the Schrdinger equation. The free-carrier charge density carstates along thé€100) direction ink space as,
be written as

p(z)=q

N; (Z) - N; (Z) - nfree(z) + pfree(z)

N* =N,

a

1+ 2e(Ea—Ep/ksT

— (100 — (100
5E(100)=:é )(exx+ €yt ezz)+:(u )exx, (6)

Nired Z) = NcF 1/l (4)

Ef_Ec(Z))

= (100 = (10
kT SEC0=510(¢ + €yt €+ =18 O)ny, (7)

whereN, is the material effective density of states &n

is a half-order Fermi integral. The reagon we use Fgérmi— SECN=E (O (e5t €yt €2) + B[P ezs, 8
Dirac statistics instead of Boltzmann statistics, which have = (100) = (100) Hati oy
been used by many authors in the past, to determine thihere=q " and =" represent the dilation and uniaxial
free-carrier concentrations is that in heavily doped cases, thgeformation _p(_)tentla?sfor the conduction band (D) val-
bands are near degenerate or degenerate, and Boltzmann d8¥S, ande;(i,j=x.,y,z) represents the deformation coeffi-
tistics will overestimate the free-carrier concentrations. Tofi€nt which can be related to strain coefficient. In our case,
calculate the Fermi integral fast and accurately, a look-ugV® €xamine the growth of strained layer along 1091)
table is used. Note that in Eq4), we use a three- direction, as noted earlier,

dimensional effective density of states to obtain the free-

carrier charge. However, to distinguish two-dimensional car- ~ €xx~ €yy~— & 9)
riers with three-dimensional ones in the quantum well

region, a cut-off value, which usually is set to be the lower €)= — Zle e

boundary value, is used. For those carriers whose energy is C11
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wherec,, andc,; are the elastic stiffness arddcan be ex- The reason we do not usg, as in-plane effective mass for
pressed in terms of the bulk lattice constant of the substratelectrons in the transverse valleys is because the in-plane

material,ag, and the layer materiag, , mass tensor in this case has different values alogdy
a direction, which suggests a elipsordal shape for the constant
€= a_s_ 1. (100  energy surface.
L

For Si_,Ge,-Si system, the lattice constant of the channelB. Charge control model for PMOS
material, Sj_,Ge,, is larger than that of Si. This results in a

negative value foe. bands, a six-banll-p method is used to represent the inter-

Once the Schdinger equation has been solved for the ction among the top three valence bands which are heavy-
envelope functions and the subband energy levels, it i ole, light-hole, and split-off hole bands. In recent study

straightforward to calculate the subband occupations. Since

the subband density of states is constant with energy, th%; the quantlzauoSn 9Tf9Ct I nversion layer qf-type
. . - : OSFET, Huet al> utilized the effective mass approxima-
occupation comes from the first-order Fermi integral which

. ) . - tion to treat the hole bands separately by solving the one-
is analytically integrable. In the electron case, we can write,. ) . i

. dimensional Schmdinger equation. However, due to the
the occupation as

double degeneracy of top valence bands at the zone center
i Ei—E; and the small spin-orbit splitting between the split-off band
nsmln 1+ex T
B

and heavy-hole and light-hole bands, the valence bands are
where m; and g; are the in-plane effective mass and the

strongly coupled to each other to demonstrate an anisotropic

: ) and nonparabolic band structure. Consequently, in order to

degeqeracy of |th supband, respectively. In our case, for ele?jive an accurate representation of the strongly coupled
trons in the longitudinal valleys, we have states, we use a six-barkdp method, introduced by Lut-
m=m,, g;=2. (120  tinger and Kohrl, to solve a six by six matrix which has

included the interaction of HH, LH, and SO valence bands.
The matrix equation, with the Luttinger and Kohn phases, if

To calculate the confined charges in the valence sub-

gim;

: 11

Whereas for those in the transverse valleys, we have

m=(mm)*%,  g;=4. (13 of the form:
|

Hnn b c 0 ib/\2 —iv2c [ an(k;,2) daj0.32 |

b* Hin 0 c —iqg iV3b/\2 bn(Ky,2) - d312,1/2

B c* 0 Hin -b  —i\3b*/\2 —ig Cn(Ky,2) - b3z, -112
0 c* —b* Hpn —iy2c*  —ib*/\2 dn(ky,2) - b312,-32
—ib*/\2 iq iv3b/\2 iy2c Heo 0 en(ky,2)- d112,1/2
iV2c*  —iy3b*/\2 iq ib/\2 0 Heo L fa(Kih2) - 12— 1s2

[ an(k;,2) b3/2,32 |
bn(Ky,2) d3/2.1/2
Ch(Ky,2) - b3z —112

—E _ (14
" dn(ky,2)- P32, -3r2
en(Ky,2) b12,172
L fn(ki,2) - b12,-1/2]
|
The elements in the matrix are given by h2y, s s 92
) , Hgo= 2me kx+ky_P —V(2)+ 6501t Ag, (17
Hhh:Z_mo (k§+k§)(3’1+ ¥2) = (1= 272) °72
342
—V(2)+ Sph, (15) c= zf_mo [72(KZ—K3) = 2i yakyky ], (18)
Hin= " KG+K? +2 -
|h—2m0 (k% y)(71 ¥2) = (y1+272) 972 \/§ﬁ2

) J
_V(Z)+5|h, (16) b=— 2m0 (kx_|ky)'y3 E' (19)
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TABLE I. Material parameters. Alloy parameters are obtained by linear interpolation.

Material parameters Symbol Units Si value Ref. Ge value Ref.
Electron mass my mg 0.98 9 1.64 9
my mo 0.19 9 0.082 9
Valence-band structure b1 4.22 10 13.35 10
Yo 0.39 10 4.25 10
V3 e 1.44 10 5.69 10
Spin-orbit splitting Ag eV 0.044 11 0.282 12
Deformation potential a eV 2.1 13 2.0 13
b ev -15 9 —-2.2 9
Lattice constant ag A 5.4309 9 5.6461 9
Dielectric constant € 11.9 9 16.0 9
Elastic stiffness Ci1 10 dyn crm 2 16.56 14 12.853 15
C1o 10" dyn cnm? 6.39 14 4.826 15
252y, . 92 the Si and Ge values. The elemental values are weighted by
q= “omg ks + ky+2(9_22)- (200 the mole fractions of the respective alloy contents. For the

NMQOS, the channel layer remains silicon-like up to large Ge
Here y;, y,, and y; are the Luttinger parametérfor the  content, as a result, we will use the values of effective
given material. The symbol\, represents the spin-orbit masses of Si over the range of Ge composition used in our
splitting energy. The terms likeps), 3, represent the pure work.
angular momentum states from the solution to the hydrogen- The evaluation of our formalism fan-type andp-type
atom problem with spin-orbit interactions included. EquationMOSFETS yields the band profiles, the charge-density pro-
(14) is solved for thep-type MOSFET to determine the sub- file, and the energies and occupations of the two-dimensional
band energy levels and envelope functions. The strainsubbands. This information can be obtained for any given

induced band splitting is given by layer structure. It is useful to have this kind of information
_ 2 available when designing optimized MOSFET structures.
_ €11~ C12 C1112Cyp . . . )
Shn=|2a B +b i (22 In Fig. 1 we show a typical result of simulations for
11 11

carrier density profiles im- and p-type devices. This simu-

C11—Cyo C1yt 215 lation was done for 300 K device operation. The oxide thick-
5|h=[23(c—) —b c—> €, (22)  ness and the background doping density are set to be 100 A
1 1 and 16° cm™3, respectively for all the simulations otherwise
C11—C12 indicated. The figure shows the normalized quantized charge
S50~ 22 0—11 ' (23 density profiles in the typicah- and p-type MOSFET de-

_ _ . vices. The sheet charge density is ¥4 B2 cm™? for both
wherea, b, andc are deformation potentials. It is important NMOS and PMOS devices. From the one hump in the shape
to note that the problem is quite complex due to the fact thal¢ e quantized charge density profile shown in the figure, it
the .resultmg hole bar_1ds are very nonparabphc and aNIS%an be seen that the subbands states are highly spatially lo-
tropic. Because of this, the Safiager equation must be calized in the channel under the S$ic5i interface for both

solved all throughk, space. A consequence of the bandsyyos and PMOS. The peak of the quantized charge density
being nonparabolic and anisotropic is that the density of

states are not a constant function of energy. Hence, we must

get the density of states numerically. We can whbtg, the 0.50
density of states in subbamj as,
2 Kk % 040 |
= [
D=2y fo v, 47 @3
g o030 [
The integration is carried out ovéy space. This expression S
is then numerically multiplied by the Fermi distribution % 020 [
function and integrated over energy to obtain the subbandg i
occupations. g P
2
. RESULTS AND DISCUSSION 0.00
The material parameters used in this work are given in 80 100 120 140 160 180 200
Table 1915 Material parameters for the alloy are not well z(4)

documented in the literature over the wide range of CompoI':IG. 1. Normalized quantized charge density profiles of typitaland

sition _Used in our work. In th? absenc_e of S_UCh data’_ alloy, type MOSFETSs at 300 K. The oxide thickness is 100 A and the back-
material parameters are obtained by linear interpolation ofround doping density is #&cm™2.
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FIG. 3. The sheet charge density and occupation of split-off band vs gate
(a) bias at 300 and 77 K for a PMOS with 100 A oxide thickness.
100.00
Total . . .
= 77k e longitudinal valleys and the ground state due to electrons in
& 1000 | the transverse valleys tends to increase. Thus we expect that
o i Valleys the in-plane electron mass will become lighter and eventu-
o . .
c ally saturate. In contrast, an examination of the valence band
g 100 states in quantum wells shows that the top of the valence
s Tr Valleys band has a relatively lighter mass. As one goes to the higher
_2 I 2nd lying subbands, the mass tends to increase. Thus we expect
2 00 that the in-plane hole mass will be lighter for lower sheet
charge and for lower temperatures.
O o In Fig. 2@ and 2b) we show the sheet charge density as
"o R 4 6 s 10 12 1 a function of gate bias for NMOS at 300 and 77 K. Also
shown are the electron density in the first and second sub-
Gate voltage (V)

bands of transverse and longitudinal valleys. For NMOS, we
®) find that the electron density in the first and second subbands
FIG. 2. (a) The total sheet charge density and occupation of the first andQf the transverse and Iongltudlnal vaIIeys increases as the

second subbands of transverse and longitudinal valleys vs gate bias at 3009@'(9_ bia_s ir_'creases at 300 K. At low gate bias, the charge
for a NMOS with 100 A oxide thicknesgb) The total sheet charge density distribution in the subbands of transverse valleys exceeds the

a_nd occupation of the‘first and second subband_s of transverse ar_1d longitsgubbands of longitudinal valleys. This is because at low gate
dinal valleys vs gate bias at 77 K for a NMOS with 100 A oxide thickness. bias, the energy splitting between transverse valleys and lon-
gitudinal valleys caused by the quantum confinement is not
large enough to balance the difference of degeneracy and
for NMOS (about 10 A from the interfages closer to the effective mass. However, as gate bias increases, the energy
SiO,—Si interface than that for PMOS. This indicates that thesplitting becomes larger and larger due to the increased
interfacial roughness effect, which will be presented later inquantum confinement and eventually it will balance out all
this section, will be stronger for the NMOS than for the the difference and the longitudinal valleys will become more
PMOS. occupied by the electrons. As seen from the figure, the ratio
The channel effective mass, also called in-plane effecof occupation of the first of subband of the longitudinal val-
tive mass, is important for transport parallel to the layers. Ineys to the first subband of the transverse valleys increases
our study, the channel effective mass is defined as followsjyith gate bias and approaches a value of 3. From this ratio,
S.nm, we can approximate the chapnel .eﬁ"ective mass to be
meﬁzw, (25 ~0.25m;. At low temperature, this ratio increases to a value
i of 7 then decreases slowly to a value of 5.
wherem; andn; are the density of states effective mass and In Fig. 3 we show the sheet charge density as a function
the occupation ofth subband, respectively. An examination of gate bias at 300 K and at 77 K for PMOS. The hole
of the conduction band states for NMOS device shows thatlensity in SO band and the total sheet charge density in the
several of the lower subbands have a lighter in-plane effecehannel with respect to the gate bias are shown. We find for
tive mass. These subbands are formed by the electrons the PMOS that as the gate bias increases, the occupation
longitudinal valleys which have largerdirectional effective  number of split-off hole states and the total sheet charge
mass,m; and smaller in-plane effective magss,. As one density increase. The ratio of the hole density in SO band to
goes to the higher sheet chargpgher gate bigsthe energy the total sheet charge density increases with gate bias. This
difference between the ground state due to electrons in thiadicates a stronger coupling between split-off hole and
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creases above>610', the channel effective mass begins to
increase slightly. This is due to the slightly increased charge
redistribution in the first subband of the transverse valleys as
noted in our discussion of Fig. 2.

As shown in Fig. 4b), for PMOS the channel effective
mass increases with sheet charge density. At low tempera-
¥ ture, this effect is more pronounced. Note in our model, the

effective mass is calculated explicitly from the valence band-
structure. This is achieved by solving the six-band Schro
dinger equation self-consistently with the charge control
model instead o#& priori as is the case in models which do
. . . . not include the coupling of the heavy-hole and light-hole
o 5 10 15 20 25 bands> We see that in-plane hole mass changes by about
Sheet charge density (10 em?) 25% at 77 K as the sheet charge increases froni@! to
5% 10" cm 2. The change for room temperature operation
@ is not significant. The variation of hole masses with occupa-
tion has been reported jo-type MODFETSs® but there is
no such experimental report on the MOSFET.
0.32 The effects of varying strain in the channel of an NMOS
00K and a PMOS through addition of Ge are shown in Fi@) 5
and 8b). The left-most point on the curve is for a strain-free
MOSFET with Ge concentration equal to zero. In each de-
vice, the SiGe well width is chosen to be 100 A. As can be
7K seen from the figure for NMOS, increasing the strain pro-
duces an increase in the channel effective mass. This is due
to the increased splitting of the transverse valleys and longi-
tudinal valleys caused by the strain in the pseudomorphic

0.4

e
w
T

A

Channel effective mass (m,)

0.1

[=]
[
[=]
ﬁ

e

i

o
T

Channel effective mass (my)
o
N
-3

024 -
. layer. This splitting raise the longitudinal valleys above the
o2 Lo v v v vy T transverse valleys in energy. The magnitude of the splitting
0.0 1.0 20 3.0 40 5.0 is given by Eq.(7) and Eq.(8). In the channel direction of

the device, the transverse valleys are much heavier than the
longitudinal valleys. Thus, the channel effective mass can be
®) much higher than the normal electron effective mass.
FIG. 4. (a) In-plane electron effective mass vs sheet charge density at 300 In ContraSt' the effects of \{arylng strain in the channel OT
and 77 K in a NMOS.(b) In-plane hole effective mass vs sheet charge @ PMOS is much more complicated due to the nonparabolic
density at 300 and 77 K in a PMOS. and anisotropic nature of the valence bands. Figut® 5
shows the channel effective hole mass as a function of Ge
concentration. Unlike the case for the NMOS, increasing the
heavy-hole and light-hole as the gate bias increases. Th&rain yields a decrease in the channel effective mass. This is
fraction of holes in the split-off state increases from 3% todue to the increased splitting of the light-hole and heavy-hole
5% for 300 K device operation and from 0.1% to 0.4% for subbands. Increasing strain bring about larger band splittings
77 K operation as the gate bias goes frer@ to —3 V. which cause the masses to become lighter. Thus, we can see
Our studies for PMOS suggest that at low temperaturessignificant decrease in hole effective mass which is brought
the contribution of sheet charge from the SO bands is fairlyabout by the decoupling of the light-hole and heavy-hole
small even up to a large gate bias and thus a four-band modstates due to the strain in the system. At room temperature,
will be sufficient. However, for room-temperature device op-for NMOS, our simulation gives channel electron effective
eration, the contribution from split-off band is not negligible. mass as 0.28, for the lattice-matched channel and 03
As the device temperature increases, the importance of thfer the strained channel with 40% Ge concentration. For
split-off band becomes even more important. Thus it is im-PMOS, our simulation gives the channel hole effective mass
portant to include the SO band for higher temperature studieas 0.3, for the lattice-matched channel and &lfor the

Sheet charge density (10'2 cm )

of the PMOS charge control models. strained channel with 40% Ge concentration. At lower tem-
The results for the in-plane effective mass for NMOS perature, the strain effect is even more pronounced.
and PMOS are shown in Fig(@ and 4b), respectively. The In CMOS circuit design it is important to have a bal-

simulations were done for 300 and 77 K device operation. A@anced performance for PMOS and NMOS in-avell CMOS
shown in Fig. 4a), the channel effective mass for NMOS process. However since the mobility of electrons is almost as
decreases with sheet charge density and approaches a vathece times as that of holes, to balance the discrepancy, a
equal to~0.25m;,. At low temperature, as seen from the usual approach is to increase the area of PMOS so that the
figure, the channel effective mass decreases much faster tachannel current is comparable to that of NMOS. This leads
saturated value, 0.2%. When the sheet charge density in- to a symmetric voltage transient characteristic and balanced
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6U(r,z)=U(z+A(r))—U(z)

~A(r) ;Zuze”é(zm(r). (26)

Here A(r) represents the position dependent height of the
interface islandsE(z) represents the perpendicular electric

in the channel.

Assuming the maximum height of the islands to/bé
is then shown that the-direction matrix element for inter-
face roughness scattering takes the f@using Gauss’ law

Ngeprt nS/2' 27

€s

@ Thus the matrix element is found to be proportionahj@and
the height of the islands. Note that in this simple form the
scattering has no direct dependence on the carrier mass. The

0.35
gral
0.30 i

0.25

020

Channel effective mass (mp

0.15
0 0.1 0.2 03 0.4

Ge concentration

Overlap function

®

FIG. 5. (@) Channel electron effective mass as a function of Ge composition
in the channel. The zero Ge device is lattice matched to the Si substrate. The
width of strained channel is chosen to be 100 A. The gate voltage iSi#) V.
Channel hole effective mass as a function of Ge composition in the channel.
The zero Ge device is lattice matched to the Si substrate. The width of
strained channel is chosen to be 100 A. The gate voltagediy/.

carrier mass dependence only comes from the in-plane inte-

of the density of states.

To study the accuracy of the model given above we
evaluate the weightegtdirection overlap function

0.8

0 4 8 12 16
Sheet charge density (1012 em?)

(@)

045

noise margins. Our study indicates that addition of Ge in the ¢, F 164
channel can increase the electron channel effective mass anc .
decrease the hole channel effective mass and thus balancec
the transport performance of electrons and holes. Results of'% 030 ¢ 124
Fig. 5 suggest that one way to optimize digital circuits based 3 025
on CMOS logic would be to add a small fraction of Ge i:‘ 020 | oA
(about 10% in the NMOS and PMOS which may balance £ o1s |
the NMOS and PMOS performance. ° o0 E o

The performance of a MOSFET depends not only on the 005 F
carrier effective mass and mobility at the active region but :
also on the quality of the interface formed by silicon and °'°°oo ' 2'0 ' 4'0 — 6'0 — oo

silicon dioxide. An important effect that has been studied
extensively®!®is the surface scattering. It has been shtwn
that the surface roughness is the major scattering effect for a
MOSFET device operating at higher sheet charge concentra-
tion (~10' cm™?). Due to the complexity of the problem a FIG.
simple model has been proposed by Afd&arious forms

Sheet charge density (10 cm )

®

6. (&) The weighted overlap function of conduction subbands vs sheet

charge density at 300 K. Results are shown for a number of values of the
parameterA. (b) The weighted overlap function of valence subbands vs

of this approach haV_e be_en used in literature. The interfacg,eet charge density at 300 K. Results are shown for a number of values of
roughness potential is written as the parameten.
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8.0 IV. CONCLUSION

In summary we have presented a charge control model
to examine charge control and interface effects in NMOS
and PMOS. We find the strain in the channel created by
adding small fraction of Ge increases the channel effective
mass of electrons and decreases the channel effective mass
of holes which leads to a better balanced performance of
NMOS and PMOS. We shows that the channel effective
mass decreases with the sheet charge density due to the split-
ting of the transverse and longitudinal valleys and the differ-
ence of effective masses for NMOS and in contrast, we show

0.0 : : : . : : ' that the channel effective mass for PMOS increases with
100 120 140 160 180 200 220 240 260 sheet charge density due to the occupation of higher sub-
2D bands which have relatively larger effective mass. We find
FIG. 7. The field profile of PMOS at 300 K. Result is shown for gate biasthat at low temperature the hole mass has an appreciable
—4 V. The SiQ-Si interface is az=100 A. variation with gate bias. The percentage of the electron den-
sity in the first subband of longitudinal valleys is found to be
~75% of the total sheet charge density at 300 K ar@D%
= [ oni(il g dz g  at77 Kunder high gate bias. The hole density in the split-off
Zin; ’ (28) band is found to be~5% at 300 K. More importantly, we
where A is the distance from the interface andl is the find that the matrix element for interface roughness scatter-

envelope function for the subbaiid The Si—SiQ interface ing has significant departure from the linear model currently

is assumed to be located &t 0. Our results are shown in being used.
Fig. 6(@ and &b) for NMOS and PMOS device. Several ACKNOWLEDGMENTS
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