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The migration of incoherent excitations in energetically disordered systems is studied 
theoretically using a self-consistent diagrammatic approximation. Spatial diffusion 
and energy relaxation observables are related to the solutions of a nonlinear integral 
equa!ion. Extensive numerical illustrations are given for two-component and 
~ultIc~mponent. sys~ems. In the latter, spatial transport is found to be highly 
dIspersIve (nondIffusIve) over an extremely wide range of timescales, in accordance 
with results from simulations and experiments. The dependence of spatial and 
sp~tral transport properties upon the spatial range and the energy dependence of 
!he mt~rmolec~lar hopping rates is examined. Several measures of energy relaxation, 
mcludmg detatl~. pr.obability distributions in energy space, relaxation-time spectra, 
and the noneqUlhbnum entropy are calculated and compared. The intimate 
relationship between spatial transport and energy relaxation is discussed in detail. 

I. INTRODUCTION 

Over the past few years a detailed, quantitative, and 
comprehensive theoretical picture of incoherent excitation 
transport in spatially disordered systems (solutions, ran­
dom lattices, or amorphous structures) has emerged. An 
important component of this picture is provided by what 
we refer to, rather broadly, as effective medium theories. 
In these theories, perturbative expansions are partially 
summed by introducing frequency-dependent parameters 
which are determined by imposing self-consistency con­
~itions; in a sense, a disordered system described by 
sImple dynamical equations is replaced by an ordered 
one having more complicated dynamics. I

- 5 The effective 
medium results agree very well with exact calculations 
except in the immediate vicinity of a percolation edge, 
and even then provide a qualitatively reasonable, though 
quantitatively unsatisfactory, interpolation. They are also 
consistent with experimental results on a wide variety of 
systems6

•
7; in fact, such deviations as are observed are 

probably due to the inadequacy of the microscopic model 
rather than of the transport theory.7 Clearly, generaliza­
tions of this approach to more complicated systems would 
be of value. In this paper we develop an effective medium 
theory for systems in which both the energies and the 
positions of the excitation-conducting sites are random. 
Such systems are said to possess energetic, as well as 
topological, disorder. They have received much experi­
mental attention in recent years.8- 11 

The microscopic description of the transport process 
in these systems can be formulated in the same way as 
for systems having only spatial disorder. One constructs 
a microscopic master equation for the site excitation 
probabilities, and considers the transition rates in this 

a) Present address: Department of Chemistry, University of Washington, 
Seattle, Washington 98195. 

equation to be random variables whose distribution reflects 
the disorder. The major new effect that appears when 
energetic disorder is present arises from the asymmetry 
of the master equation: detailed balance implies that the 
forward and reverse rates connecting a pair of sites are 
related by a Boltzmann factor. At long times the excitation 
settles into the low-energy sites, so that spatial transport 
leads to energy relaxation. However, this relaxation also 
affects the rate of spatial transport since the distribution 
of site energies is not uniform; as relaxation takes place 
the higher-energy sites become increasingly difficult to 
reach so that the number of accessible sites decreases with 
time. This coupled relaxation process is of great impor­
tance for systems such as glasses,8.9 polymer aggregates, 10 

and orientationally disordered crystals, II in which even 
at fairly high temperatures (certainly high enough to 
guarantee incoherent motion) the spread of site energies 
greatly exceeds the available thermal energy. 

Our starting point is a natural generalization of the 
self-consistent diagrammatic expansion developed by Go­
chanour, Andersen, and Fayer, I henceforth referred to as 
GAF. This theory is formulated in a continuum approx­
imation, which should be valid when the average distance 
between sites is much larger than the minimum distance. 
In practice, the continuum approximation works well 
even when this restriction is violated, provided that an 
ad hoc short distance cutoff is imposed.7.1

2 (The most 
important effects of the cutoff, which merely removes the 
contribution to the overall transport of very rapid transfer 
between sites separated by very short distances, may be 
taken care of by using an effective transfer rate in place 
of the actual microscopic one.) We assume at the outset 
that spatial and energetic disorder are uncorrelated; this 
assumption is probably justified if the energy-conducting 
species are dispersed in an amorphous matrix, but is 
clearly false if they themselves form the amorphous 
structure. Since the transfer rates have an infinite range, 
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there is a certain amount of self-averaging in the system 
which weakens the effect of such short-range correlations, 
so that ignoring them may be acceptable as a first 
approximation; nevertheless, this is perhaps the weakest 
assumption of the model. Once it is made, the diagram­
matic approximation scheme of GAF can be applied, 
treating the site energy as an additional spatial coordinate. 
Since there is no translation invariance in this "energy 
coordinate," the resulting self-consistent equations are 
much more complicated than those which arise in the 
isoenergetic problem. They are nonlinear integral, rather 
than algebraic, equations. Nevertheless, they can be solved 
numerically without special difficulties, yielding the re­
newal function GS(E, t) (the probability that an excitation 
will be found on the site at which it was created, which 
obviously depends on the energy E of the site) and a 
generalized, time-dependent transition rate ~(rE, r'E') 
connecting points rE and r'E'. From these one can 
calculate the spatially averaged excitation density at a 
specific energy, a quantity directly related to spectral 
diffusion experiments where only migration in energy is 
studied. One can also average over energies and obtain 
the effect of energetic disorder upon spatial transport by 
calculating a generalized diffusion coefficient. In Sec. IV 
we discuss results for both of these quantities. In order 
that this paper be reasonably self-contained, we repeat 
some material which has been previously presented in 
abbreviated form l3

; however, most of the present results 
(in particular, all of the numerical examples) are new. 

While this work was being completed, a paper by 
Grunewald and co-workers appeared l4 which presents a 
theory similar in many ways to ours. In their work, the 
effective medium concept is implemented through a self­
consistent decoupling of the renormalized perturbation 
expansionls for the lattice Green function, the continuum 
limit being taken at a later stage. The theory invokes the 
same physical approximations as ours, but a detailed 
comparison is not easy; we give a general discussion in 
Sec. V. We believe that our theory and our calculations 
provide a useful complement to the work of Grunewald 
et al., especially since the GAF formalism upon which 
we build is probably more familiar to workers in the field 
of. molecular excitation transport than the techniques 
used in Ref. 14. 

II. SELF-CONSISTENT DIAGRAMMATIC 
EXPANSION FOR ENERGETICALLY 
DISORDERED SYSTEMS 

The microscopic master equation for the site exci­
tation probabilities Pn(t) is 

n' 

(2.1) 
n" 

The rate of transitions from site n' to site n, Wnn·, depends 
upon the distance and energy mismatch between the sites: 

The energy dependence consists of a detailed balance 
factor and an unspecified, in general, temperature-depen­
dent symmetric factor C/>, which depends upon the details 
of the system-bath coupling. Since we assume that a 
continuum treatment is adequate, we will be interested 
in quantities defined at a point in space rather than on a 
specific molecule: 

p(rE) = L o(rn - r)b(En - E)Pn, b(E) == o(E) (2.3) 
n f(E) . 

Here f(E) is a normalized distribution of site energies. 
In the usual way, p(rE) is understood to refer to a small 
volume in rE space which is large enough to contain 
several molecules. 

Observable properties can be related to the configu­
ration averaged probabilities. In the continuum limit the 
averaging can be carried out as 

(p) = V-N IT J drn J dEnf(En)p({rn, En}), (2.4) 
n=1 

where N is the number of molecules and V the volume 
of the system; we will take the thermodynamic limit 
N --+ 00, V --+ 00, N/ V = p. As in earlier work,1.2·12 we 
obtain the averaged probabilities from a Green function 
which is separated into diagonal (same-site) and nondi­
agonal (different-site) contributions: 

G(r, r', E, E', u) = L (o(r - rn)o(r' - rn·)b(En - E)b(E' - En·)[u - W];;~.) 
nn' 

n 

+ L' (o(r - rn)o(r' - rn·)b(E - En)b(E' - En·)[u - W];;~.) 
n"+n' 

== o(r - r')b(E - E')GS(E, u) + Gm(r - r', E, E', u). (2.5) 

Note that Gm is (because of averaging) translation invariant 
in r space but not in E space, and that for the same 
reason the diagonal piece GS depends upon E but not 

upon r. We can thus remove the r dependence b:r a 
Fourier transform: 
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G(k, E, E', u) = f dr e-k'(r-r')G(r - r', E, E', u) 

= beE - E')GS(E) + Gm(k, E, E', u), 

(2.6) 

but there is no analogous way to reduce the energy 
dependence because the distribution of energies is not 
uniform. 

A diagrammatic analysis of the series expansion (in 
powers of I/u) of the Green function may be developed 
precisely as in the isoenergetic case studied by GAF. We 
summarize this procedure very briefly, as it has been 
lucidly discussed in the original treatment. The various 
products of wnn,'s which appear in the expansion are 
written as diagrams connecting sites labeled nand n'. 
The diagrams for the diagonal Gnn and nondiagonal Gnn, 
parts of the unaveraged Green function are treated sepa­
rately. A standard topological reduction procedure leads 
to a formal expression for Gnn, in terms of Gnn and a two­
point self-energy function Snn', defined as the sum of all 
irreducible diagrams (diagrams which cannot be broken 
by cutting a single interaction line) connecting sites nand 
n'. In more physical terms, S is a generalized transition 
rate between the sites; it is defined to include all transitions 
among the two sites. The formal expression takes the 
form (henceforth we shall suppress the k and u dependence 
when it is not needed): 

Gnn, = 2: 2: GnnSnnIGnlnISnln2' •. SnJn,Gn'n" (2.7) 
J~I {n.} 

Since each S is itself a sum of diagrams, it actually refers 
to many site labels; by definition these labels do not 
occur in any other S that occurs in each of the products 
in Eq. (2.7). In other words, each product describes a 
self-avoiding walk among the labels ni. All revisitation 
events contribute to diagonal pieces or loops Gnn ; since 
such loops occur, in general, in the irreducible parts S, 
each S is a function of the G, and thus implicitly of the 
Laplace variable u. The crucial feature of the formal 
expansion (2.7) is that successive factors of S are uncor­
related since the site energies and locations are independent 
random variables; thus the factors can be averaged inde­
pendently. Identifying (Gnn ) with GS and (Gnn ) with G m 

and Fourier transforming one has 

Gm(k, E, E') = ~ pJ+1 IT f dEJ(Ej ) 

J~I j~1 

x [GS(E)~(k, E, EI)GS(EI) 

. . . ~(k, EJ. E')GS(E')], (2.8) 

in which the self-energy ~ is defined by the average: 

~(k, E, E') 

= (N - 1)( exp[ik· (Tn - Tn')] 

X Snn,b(E - En)b(E' - En.). (2.9) 

Formally, the average runs over the positions and energies 
of all sites, but the values of the initial and final energies 
are constrained by the {) functions. 

It is at this point that the lack of translation invariance 
in energy requires an extension of the theory. The presence 
of E-dependent factors in Eq. (2.8) prevents the simple 
summation carried out by GAF; instead, we must generate 
the series with the integral equation 

G(k, E, E') == beE - E')GS(E) 

+ GS(E)r(k, E, E')GS(E'), (2.IOa) 

r(k, E, E') = p~(k, E, E') + p f dE" f(E") 

X ~(k, E, E")GS(E")r(k, E", E'). 

(2. lOb) 

In general, ~ is a functional of GS(E) as well as an explicit 
function of E and E'. Following the ideas of GAF once 
more, we can obtain explicit, albeit approximate, expres­
sions for G by choosing a convenient and accurate 
approximate form for the functional ~[GS], and then 
determining GS by insisting that the approximation con­
serve total probability: 

f dEf(E)G(k = 0, E, E', u) = I/u, 

or using Eq. (2. lOa): 

UGS(~', u) = 1 + f dEf(E)GS(E, u) 

X r(k = 0, E, E', u). 

(2.11) 

(2.12) 

If Eq. (2.10) is substituted into Eq, (2,12) one obtains an 
exact relation between "2(k = 0) and GS: 

GS(~', u) = u + p f dEf(E)"2(k = 0, E, E', u). (2.13) 

This nonlinear integral equation determines the appro­
priate function GS(E) to be used with a given approximate 
functional "2[G S

]. It is not a unique condition since it 
only involves the k = 0 values of "2; however, we will 
only be concerned with the region near k = 0 and we 
will choose "2 to be analytic in k there. For a system 
which can be described (exactly or approximately) by a 
few discrete energies, the numerical solution of Eq. (2.13) 
is straightforward, although the computational labor in­
creases rapidly with the number of energies retained . 

The simplest approximate ~ functional, analogous 
to the "two-body" approximation of GAF, is obtained by 
summing all diagrams in the "2 series having exactly two 
sites. Physically this corresponds to retaining migration 
paths in which an excitation hops repeatedly within a 
pair of sites, occasionally making excursions (via G S

) to 
other sites but always returning to that site from which it 
left, and eventually moving on and never returning to 
that pair. The summation is straightforward (see Appendix 
A) and leads to 
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( 

exp[ - ~ (E - E') }I>(E - E')v(r) ) 

~(k E E') = f dr e- ikr X 

, , 1 + {exp[ - ~ (E - E') ]GS(E') + exp[ + ~ (E - E')]GS(E)}<t>(E - E')v(r) , 
(2.14) 

which agrees with GAF when E = E'. Note that ~(E, E') 
and ~(E', E) are related by a Boltzmann factor since the 
denominator is symmetric in E, E'. Also, in this approx­
imation ~(E, E') depends upon the value of G S at the 
two points E, E' only. In higher approximations, integrals 
over additional E" will appear, greatly increasing the 
complexity of the calculation. Since the three-body cal­
culation of GAF yielded only small corrections to the 
two-body calculation, we will restrict ourselves to the 
latter approximation. 

For low densities and short times, a reasonable 
approximation for GS(E, t) can be obtained by discarding 
entirely the nondiagonal part of the master equation 
(2.1). This approximation is obviously not self-consistent, 
but it provides an excellent starting point for the iterative 
numerical solution of Eq. (2.13). The procedure for 
averaging dW when the nondiagonal part of W is neglected 
is well known16 and yields (Appendix B) 

GS(E, t) ~ exp[-p f dE' fee') f dr(1 - e-1W(r.E"E»] , 

(2.15) 

which we call the diagonal approximation to G S
• The 

energy-independent version of this approximation has 
seen considerable use in non-self-consistent theories of 
energy transport. 17 

III. TRANSPORT PARAMETERS 

In this section we relate the approximation scheme 
presented above to phenomenological transport properties. 
We first consider spatially averaged quantities, which 
describe migration in the energy coordinate only, and 
then proceed to spatially resolved quantities. 

An obvious phenomenological description of the 
time evolution of the spatially averaged excitation density 
is a set of rate equations for an ensemble of phenome­
nological energy levels, i.e., a master equation in energy 
space: 

jJ(E) = L: K(E, E')P(E', t), (3.1) 
E' 

in which PeE) is the probability that a particle occupies 
energy level E and K(E, E') is the rate of transitions from 
E' to E. Such an equation is only true in special circum­
stances; however, a generalized version can be used under 
much broader conditions. If we define PeE) as 

(3.2) 

[note that we have factored out the density-of-statesf(E); 

the actual relative number of excitations having energy E 
is given by f(E)p(E)], we can write 

PeE, t) = L G(k = 0, E, E', t)P(E', t = 0) 
E' 

+ (inhomogeneous term). (3.3) 

The inhomogeneous term arises from the arbitrary initial 
condition and vanishes if at r = 0 the excitation density 
is uniform in r space. The Laplace transform of Eq. (3.3) 
can then be rearranged into a generalized master 
equation I 8. 19: 

up(E, u) = L K(E, E', u)P(E', u) + PeE, t = 0). (3.4) 
E' 

The generalized master equation can be well approximated 
by a master equation, by replacing K(u) by K(u = 0) 
(Markovian approximation), if the time scale for migration 
between energy levels is much longer than the time scale 
for migration within a level. 

We can immediately relate the kernel K(u) to the 
solutions of the self-consistent equation (2.13). From Eqs. 
(3.3) and (3.4), expressed in an obvious matrix notation, 
we have 

K(u) = ul - [G(k = OWl, 

and from Eq. (2.10) 

G·f = GS·(l + r·f·G') 

so 

K = ul - f'[GT I + pf·};(k = O)·f 

or, for E 1= E': 

(3.5) 

(3.6) 

(3.7) 

K(E, E', u) = pf(E)~(k = 0, E, E', u)f(E'), (3.8) 

the interpretation of which is clear: the spatially averaged 
transition rate between levels depends upon the "intrinsic" 
generalized transfer rate ~, integrated over space, and 
density-of-states factorsf(E). By using the self-consistency 
equation (2.13) one can readily show that Eqs. (3.4) and 
(3.7) conserve total probability. Once ~ has been obtained 
from Eq. (2.13), the level populations can be obtained by 
solving the linear system (3.4). This procedure is quite 
general, requiring no separation of time scales since the u 
dependence of K is retained, and thus may be used to 
study the conditions under which the Markovian approx­
imation is valid. Some numerical examples are discussed 
in the next section. 

The calculation of spatially resolved quantities is 
more complicated. We begin by considering the time 
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development of the mean-squared displacement, which 
serves to define a generalized diffusion coefficient: 

D(u) = ~; ( ~ r~G~u) ) (3.9) 

or 

-1 
D(u) = 2d ~! V'W(k, u), (3.10) 

where d is the dimension of space. Again we go over to 
a matrix notation in energy indices: 

(3.11 ) 

We assume that ~(k) is analytic near k = ° and expand 
in k: 

G(k, u) ~ G(O, u) + [G(O, u) 

X pf· 0(0, u)· f)]P + O(k4
), (3.12) 

where 

D(k, u) = - V'~~(k, u). (3.13) 

The energy-resolved generalized diffusion coefficient is 
then seen to be 

D(E, E', u) = ~; I dE, I dE2 

X G(O, E, EI> u)f(EdD(O, E" E2 , u) 

Xf(E2)G(0, E 2 , E', u). (3.14) 

Of particular interest is the average of this quantity over 
final, but not initial, energies: 

D(E, u) = IdE' f(E')D(E', E, u) 

= u I dE, I dE2 f(E,)D(0, E" E 2 , u) 

(3.15) 

This quantity is appropriate for spatially resolved experi­
ments (direct measurements via transient grating or other 
methods) where the initial energy is selected, but detection 
is not energy resolved. The calculation of D(E, u) is seen 
to involve the solution of an initial value problem in 
energy space as well as the calculation of the D matrix, 
which is obtained immediately from the self-energy ~. 

IV. NUMERICAL EXAMPLES 

A. Two-component system 

The simplest nontrivial example of an energetically 
disordered system has exactly two discrete site energies. 
This case is interesting primarily because it allows one to 
investigate the behavior of the equations with minimal 
computational effort; however, it is obviously applicable 
to systems containing two energy-conducting species such 

as binary solutions or mixed crystals (in the latter case 
one must account for corrections to the continuum 
approximation). 

If the two components are denoted as (+) and (-), 
the self-consistent equation (2.13) becomes 

(4.1) 

(If the microscopic rates w+_ leading from lower to higher 
energy sites are set equal to zero, a zero temperature, or 
deep trap limit, this becomes identical to the self-consistent 
trapping equation of Loring, Andersen, and Fayer.2) This 
equation is easily solved numerically; in all of our work 
we used a modified Newton-Raphson algorithm20 which 
avoids the explicit calculation of derivatives and requires 
fewer function evaluations than the standard one. We 
found that for most parameter «(3, u, ¢) choices the 
diagonal approximation, Eq. (2.15), made an excellent 
initial guess; at low temperatures it frequently failed, but 
this was remedied by continuing the solution down from 
high temperatures to low. To ensure that a reasonable 
choice was made among the multiple solution branches 
which may occur, we chose various initial (u, (3) values, 
obtained a solution starting from the diagonal approxi­
mation, and followed the solution branch in the (u, (3) 
plane by using each result as an initial guess for a nearby 
point. Nowhere did we find alternative solutions having 
positive GS(u); although we have not searched the entire 
parameter space, we can say that any alternative solutions 
must lie very far from the physically reasonable results 
that we have obtained. Our experience in this regard is 
similar to that described by Loring and Faye~ for the 
simple trapping model, and suggests that the two-body 
self-consistent approximation may have analytic properties 
similar to those that have been proved for the coherent 
medium approximation.2' 

We are particularly interested in the time scale on 
which GS(t) decays, as this determines the times for which 
the Markovian approximation is valid. The resulting two­
level rate equation dynamics is sufficiently familiar not 
to require explicit discussion here, although we emphasize 
that the value of ~+_(u = 0) gives the spatially averaged 
rate of energy transfer between components, and that 
when the Markovian approximation fails one can still 
obtain the level populations by solving a 2 X 2 linear 
system and inverting the Laplace transform. For our 
examples, we chose an isotropic transition multipole­
mediated transfer rate: 

v(r) = (l/r)(R/rY, (4.2) 

where r is the mean time required for a hop of a distance 
R. We consider here the most common case of dipole­
dipole (Forster) transfer, s = 6, in three dimensions, and 
choose length and time scales such that R = r = I and 
an energy scale in which E+ - E_ = 2. We also set p 

= 1 (given the time dependence, the density dependence 
can be obtained from a scaling argument'2). The two­
body self-energy becomes 
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~(k = 0, E, E', u) = [e-fJGS(E') + e+fJGS(E)p/2 . (4.3) 

In an experimental system, one would obtain cP(E) from 
the spectra of individual molecules through the Forster 
prescription.22 For these examples, we have set cP(O) = I 
and chose cP(2) equal to 1.0 and 0.1; the latter choice 
reflects the expectation that the resonant process will be 
faster. We consider the case of equal component concen­
trations, f+ = f- = 0.5. 

In Figs. 1 and 2 we show the function G~(t), the 
probability of an excitation being found at the origin, as 
determined by numerical Laplace inversion23 of the so­
lution to Eq. (4.1). As one of course expects, this proba­
bility is greater if the initial site is in the lower level, and 
the asymmetry increases with decreasing temperature. 
Decreasing the rate of nonresonant transfer (Fig. 2) slows 
down all processes, but primarily affects the upper level; 
in the lower level, nonresonant transfer is already opposed 
by the Boltzmann factor so that decreasing cP(2) has only 
minor effects, particularly at the lower temperature. Our 
basic time unit corresponds roughly to the time required 
for a transfer to a site separated by an average intermo­
lecular distance; one can see that G~(t) has decayed 
essentially to zero by this time, so that most of the 
transport does occur in the Markovian regime and a 
simple rate equation description is appropriate for this 
example. 

~ 
~ 

(f) 
t:) 

~ 
~ 

(f) 
t:) 

!J=1 

o 

dL--------------=::======~~~=;~+ 
0.00 0.10 0.2 

T 

o + 

d~------------------~-------------0.00 0.10 0.2 
T 

FIG. I. Renewal functions for two-component systems. The functions 
G~(t) and GW) are plotted against time for fJ = I (upper graph) and fJ 
= 5 (lower graph).J+ = f- = 0.5, and a mismatch parameter.p = 1.0. 

~ 

(f) 
t:) 

~ 

~ 
~ 

(f) 
t:) 

o 

d~---------------------------------0.00 0.10 0.2 
T 

o 

d~--~~+---------------------------
0.00 0.10 0.2 

T 
FIG. 2. Same as Fig. I, except that .p = 0.1. 

B. Multicomponent system 

The major application of this theory is to systems 
having a continuous distribution of energies. In this case, 
the nonlinear integral equation (2.13) must be solved by 
discretizin~ the energy coordinate and solving the resulting 
nonlinear system. Since the computational labor increases 
rapidly with the number of discrete levels retained, it is 
worthwhile to minimize this number by using a Gaussian 
quadrature rule appropriate for the distributionf(E). For 
our examples we used a Gaussian f(E) with a 20-point 
Gauss-Hermite rule.24 In experimental applications, one 
would obtainf(E) from the system's absorption spectrum. 

The calculation of level populations involves two 
steps: first Eq. (2.13) is solved for GS(E, u), from which 
K(E, E', u) is obtained via Eq. (3.8), and then the 
generalized master equation (3.4) is solved for p(E, u) for 
a given initial condition. The methods used for the first 
step are the same as those used for the two-component 
case. The second step requires some care, particularly for 
small U where the matrix [u - K(u)] becomes severely ill 
conditioned. This problem arises from the zero eigenvalue, 
associated with conservation of total probability, of the 
K matrix, and is easily fixed by a simple transformation. 
The transformed system still has some very small eigen­
values (for reasons which we shall describe), and to ensure 
stability of our results we used iterative refinement25 when 
solving the system. This combination gave satisfactory 
results for all of our examples. The complete calculation 
of p(E, t) for ten values of t required about 15 CPU 
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seconds on the Amdahl 5860 at the University of Mich­
igan. 

The 20-point quadrature is entirely adequate for 
relatively poorly resolved initial conditions, such as one 
obtains in experiments using filtered incoherent excitation. 
In order to interpret high-resolution experiments, such as 
one would carry out with laser excitation, one needs a 
high-resolution calculation. This is prohibitively expensive 
to do directly (the computation cost varies as the cube of 
the number of discrete levels); however, one can avoid 
this by noticing that the computationally intensive part 
of the calculation, which is the solution of Eq. (2.13), 
results in a single function GS(E). This function varies 
smoothly with E, so one may compute it using the 20-
point quadrature and then interpolate intermediate values. 
(We interpolated in the log of GS as this varies more 
slowly than G S itself.) The interpolated function is then 
used to construct an enlarged K matrix, from which the 
populations of the enlarged system are calculated. By this 
procedure, we were able to increase the number of 
discrete levels in the final calculation to 100, while 
increasing the computation cost by only a factor of 2. 

An alternative way to characterize the energy-space 
dynamics is to calculate a spectrum of relaxation times. 
Since the energy-space density is given by f(E)P(E), the 
appropriate eigenvalues are those of the matrix K(u)·r- 1

, 

rather than those of K(u). The spectrum yields a quanti­
tative measure of such ideas as "separation of time 
scales," and also describes, through its u dependence, the 
approach to Markovian behavior: when most of the 
eigenvalues become approximately independent of u, the 
transport can be described by Markovian rate equations. 
(To be more precise, one should examine the eigenvectors, 
and associate regions of E space with particular eigenval­
ues, but this is rather cumbersome.) This does not imply 
that all the elements of the K(u) matrix are independent 
of u; many of these elements are irrelevant for the bulk 
of the transport (as an example, consider a system con­
taining perfect traps. Since there is no transport among 
the traps, their "dynamics" is never Markovian; the 
diagonal Green function Gfrap(t) never decays to zero. 
However, the transport among the nontrapping sites may 
be Markovian. This will not be apparent in the energy­
space generalized master equation since all transfer rates 
involving the traps will be u dependent; by computing 
the eigenvalues one sorts out the Markovian and non­
Markovian portions of the transport.) The eigenvalue 
spectrum, even in the relatively coarse discrete approxi­
mation used here, is a very useful and easily calculated 
invariant measure of spectral migration in the system. 

Finally, once one has a solution (in Laplace space) 
of the spectral transport problem for a given initial 
condition, one can calculate the spatial diffusion coefficient 
for this same initial condition from Eq. (3.15). We chose 
to leave these results in Laplace space since D(E,u) 
sometimes varies very slowly with u (this is of course the 
signature of classical diffusion), so that Laplace inversion 
is very ill conditioned. The important features are readily 
seen in the Laplace domain since any deviation of D(u) 
from a constant value indicates nondiffusive behavior. 

We have carried out calculations for three-dimen­
sional systems having a Gaussian distribution of site 
energies, whose 1/ e half-width defines our basic energy 
and temperature scale, and transition-multipole mediated 
intersite excitation transfer rates; we have considered 
specifically the cases of dipole-dipole and octupole-oc­
tupole interactions [s = 6 and 14, respectively, in Eq. 
(4.2)]. The octupole contribution is important for mole­
cules such as naphthalene or benzene which have weak 
or vanishing transition dipole and quadrupole moments. 
The remaining system parameter is the symmetric mis­
match factor cjJ(E). It is difficult to determine what this 
should be a priori; in principle, it is given by the Forster 
spectral prescription,6.22 but this involves the absorption 
and emission spectra of individual molecules in the 
medium. It is quite impossible to separate the spectrum 
of an individual molecule, particularly the multiphonon 
wing which is responsible for off-resonant transfer, from 
the inhomogeneous broadening described by f(E). In lieu 
of any detailed understanding, we have selected a form 
for cjJ(E) which agrees with the intuitive idea that resonant 
transfer should be rapid: 

'-------, -4 

'------->' 0 

4 log t 

-5 +5 

E 

'------..,1-4 

'-----/0 

'--------..,1 4 log t 

~-------~ 8 

-5 
5 

E 

FIG. 3. Spectral migration in an energetically disordered system. The 
energy-space density f(E)P(E, t) is shown for a system having dipolar 
transfer rates and a mismatch parameter", = 0.01, and (a) f3 = I, (b) 
f3 = 9. The curves are rational (not cubic) splines fitted through the 20 
discrete energies; they have been adjusted to be height true (no extraneous 
inflections), but are not necessarily area true. 
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( 
fJ ) {I IE - E'I < a 

cP(E - E')exp + 21E - E'I = cP', IE _ E'I > a, (4.4) 

where cP is a number s; I. Outside of the "resonant 
width" a, the intersite transfer rate (2.2) is independent 
of E except for the Boltzmann factor. We find that the 
qualitative features of our results are not much affected 
by the value of a or by choosing different forms for cP(E) 
consistent with the same ideas. The results presented here 
use a = 0.25, which is the smallest energy step in the 
system, so that transfers within a discrete level are treated 
differently from transfers to other levels. 

Our results for the energy-space density f(E)P(E, t) 

'------7-4 

------_/_ 0 

log t 

~-----r- 4 

8 

are shown in Figs. 3-7. The most notable feature of these -5 5 
results is the establishment of a local (in energy space) 
equilibrium distribution, followed by a slow relaxation of 
this distribution to lower energies. (In Figs. 3 and 5, the 
detailed shape of the distribution is not very meaningful 
towards the ends of the energy scale because the discrete 
energy levels are sparse there. The location and overall 
width are significant.) Eventually, a static global equilib-
rium is established, but at low temperatures the time 
scale associated with this is enormous. The physical 
reason for this is clear: as discussed in the introduction 
the density of accessible sites decreases as the excitation 

E 

-5 
E 

'-------,' -4 

'---------T 0 

'---------7' 4 log t 

8 

5 

'------7 -4 FIG. 5. Same as Fig. 3, except that tP = J.o. 

----.....-------.' 0 

----------------~ 4 
log t 

----------------/- 8 

-5 5 

E 

'---------7' -4 

---------7' 0 

'----------7' 4 
log t 

~-----------~ 8 

~-~----~-----__ J 12 
-5 5 

E 

FIG. 4. The level population p(E, t) (energy-space density divided by 
density of states) is shown. All parameters are as in Fig. 3. 

packet relaxes so that the relaxation process decelerates. 
At very low temperatures excitations get trapped for very 
long times in moderately low energy sites, and are unable 
to reach their equilibrium energies. This is made especially 
clear in Fig. 4, where we have factored out the density­
of-states. We note that while molecular singlet excitations 
have short lifetimes and may thus never undergo signifi­
cant energy relaxation in dilute systems, the lifetimes of 
triplet excitations are very long (on the order of 1 s, 
which is to be compared to a transfer time measured in 
picoseconds), so that much of Figs. 3-5 may be accessible. 
We have not dealt with the exchange-mediated transfer 
which characterizes triplet excitations, but we expect the 
results to be very similar, since the dipole and octupole 
cases do not differ greatly. 

Another important feature of our results is the 
insensitivity of the long-time behavior to initial conditions. 
This is again to be expected on physical grounds; indeed, 
it is implicit in the concept of local equilibrium we used 
above. The effect is easily seen in the high-resolution 
plots (Figs. 6 and 7); the initial narrow peak is essentially 
replaced by a broad distribution which swells up from 
the background. We emphasize that the local equilibrium 
will only be established if the excitation lifetime is long; 
steady state observations of short-lived excitations will 
certainly be sensitive to initial conditions. 
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FIG. 6. High resolution spectral migration. Spectral migration of a 
narrow initial excitation packet, calculated using the interpolation pro­
cedure described in the text, is shown. For this example, 96 discrete 
energies were used. The parameters are those of Fig. 3. 

Figure 8 shows sample eigenvalue spectra. Using the 
criterion discussed above, one can see that at high tem­
peratures Markovian dynamics is established for u < 1. 
One expects this: the short-time dynamics is dominated 
by direct transfer and by motion within small clusters of 
sites, but once enough time has elapsed for transfer over 
typical intersite distances, these correlated transport pro­
cesses become less important. At very low temperatures, 
the lowest-lying eigenvalues take longer to settle down. 
This is also easily rationalized: the dynamics of an exci­
tation in the low-energy tail of the distribution is very 
much like the dynamics in an extremely dilute system, 
since the density of accessible sites is so low. By a well­
known argument,12 one can relate long-time dynamics in 
a low-density system to short-time dynamics in a high­
density system. The enormous spread of time scales 
evident in Figs. 3-7 is made obvious here by the range 
of relaxation times. In contrast, a rectangular distribution 
of energies [Fig. 8(c)] yields a rather compact set of 
eigenvalues, since in this system there is no deceleration 
mechanism; excitations fall quickly into the lowest levels. 

It is useful to have a one-parameter measure for the 
extent of energy relaxation as a function of time. One 
such measure is the average 'excitation energy, the first 
moment of f(E)P(E). This contains, however, no infor­
mation about the shape of the distribution, and is thus 
insensitive to such effects as the narrowing of the excitation 
packet which can be seen in Fig. 6. [One can ascribe this 
narrowing to the rapid decrease of the relaxation rates 
K(E, E') as E moves into the band tail; the excitations 
tend to collect together at a given E' before relaxing to a 
lower one. A subsequent broadening must eventually 
occur, but only when the final equilibrium average energy 
is reached.] A quantity which is sensitive to all moments 
of the distribution is the entropy functional or Liapunov 
functional H(t)26: 

J [/(E)P(E, t)] 
H(t) E dEf(E)P(E, t)ln Peq(E) , (4.5a) 

where 
f(E)e-(JE 

Peq(E) E f . 
dEf(E)e-(JE 

(4.5b) 

~----------~ -2 

o 
log t 
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E 

o 
log t 
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5 

E 

FIG. 7. Same as Fig. 6, except that octupole-octupole transfer rates are 
used. (The rates are scaled so that dipole and octupole interactions give 
the same rate at the Forster radius.) 
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By construction, H(/) decays monotonically to zero (this 
is strictly true for a Markovian master equation, and we 
do not expect the small non-Markovian effects in our 
system to alter this). In Fig. 9, we show that at low 
temperatures the decay of H(t) is given approximately by 
a power law over the range 1 = 1 to t = 108

• This is 
another illustration of the wide range of time scales 
characteristic of energetically disordered systems. 

(b) 

I I II 111111111111 
-26. -18. -to. -2. 

I I ! i 11111111 ~I 
-26. -18. -10. -2. 

I I I 11111111111111 
-26. -18. -to. -2. 

LOG EIGENVALUE 

FIG. 8. Energy relaxation spectra. The nonzero eigenvalues of the matrix 
K(u)· r- I (see the text) are shown. For this example, tP = 0.01, (:J = I (a) 
and 9 (b), and (top to bottom) u = 10+4

, I, and 10- 12
• In (c), a 

rectangular density of states, having (:J = 5 in units of its half-width, was 
used. 

Our most interesting results involve spatial transport. 
In Figs. 10 and 11 we show the spatial diffusion coefficient, 
obtained from Eq. (3.15), as a function of the Laplace 
variable u for several parameter choices. One sees im­
mediately that at low temperatures the transport is not 
diffusive on any reasonable time scale, in marked contrast 
to the results obtained for systems having only spatial 
disorder.'-6 A given value of D(u) corresponds roughly to 
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FIG. 9. The decay of the nonequiIibrium entropy H(t) calculated from 
the distributions displayed in Figs. 3(b) (circles, t/> = 0.01) and 5(b) 
(triangles, t/> = 1.0) is shown. 

the diffusion constant associated with times -1/u; more 
precisely, D(u) - u l

-
x implies (r2(t» - tx. At short 

times, the limiting Haan-Zwanzig behaviorl2
: 

(4.6) 

is approached in all cases. However, at t - 1, there is a 
crossover to highly dispersive behavior; in many cases the 
dynamics is farther from classical diffusion at long times 
than at short. The figures demonstrate that at low tem­
peratures the form of the long-time behavior is rather 
insensitive to several of the obvious system parameters. 
This insensitivity is readily rationalized in most cases: 
from Figs. 3-7 one may surmise that the spatial transport 
is locally diffusive, with a diffusion constant depending 
upon location of the excitations in energy space. Because 
of the deceleration of the energy relaxation, excitations 
created at E = 0 catch up with those created at E 
= -2.25, so that the curves in Fig. 10 corresponding to 

s 
0", 

I 
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I 

co 
I 

fL-----______________________________ _ 
-6 -4 -2 -0 6 10 12 14 16 

LOG lIU 

FIG. 10. Spatial migration in an energetically disordered system. The 
generalized diffusion coefficient D(E, u) is shown as a function of the 
imaginary frequency u for: x: {3 = I, E = 0, dipolar transfer; diamonds: 
{3 = 5, E = 0, dipole; circles: {3 = 9, E = 9, dipole; triangles: {3 = 9, 
E = 0, octupole; stars: (3 = 9, E = -2.25, dipole. t/> = 0.01 in all cases. 

co 
I 

fL-----~------------------------------6 -4 -2 -0 10 12 14 16 

LOG lIU 

FIG. II. D(E, u) vs u for {3 = 9, E = 0, dipole-dipole transfer, and: 
triangles: t/> = 1.0; circles: t/> = 0.0 I; stars: t/> = 0.000 I. 

these initial conditions join. An intriguing feature of Fig. 
lOis the rather weak dependence of the long-time behavior 
on the interaction range parameter s. Although the short­
range interaction does give significantly slower energy 
relaxation at long times, and thus a slower approach to 
the equilibrium diffusion coefficient, the qualitative form 
of the approach in the range l/u = 1-108 is similar in 
the two cases (taking into account the different equilibrium 
values being approached). One should note that the 
interaction parameters have been chosen so that the two 
transfer rates are equal at the Forster radius R = 1 [Eq. 
(4.2)]; the octupole rate therefore gives faster transport 
and faster energy relaxation at short times (compare Figs. 
6 and 7). Our observations lend support to the generally 
accepted belief that the dispersion in the site energies is 
much more important than spatial disorder in this type 
of system. 

The dependence of the spatial transport upon the 
off-resonance parameter if> (Fig. 11) is instructive. A larger 
if> gives a greater average transfer rate, so that increasing 
if> increases both the equilibrium diffusion coefficient and 
the coefficient of the short-time power law. One sees from 
Fig. 11, however, that in between these limits a smaller 
if> gives/aster spatial transport at low temperatures, because 
it decreases the rate of energy relaxation and hence keeps 
the excitations in higher-energy sites. Indeed, changing if> 
simply shifts the effective time scale in the intermediate 
time regime. At higher temperatures ({3 = 5), the system 
equilibrates quickly so that this effect is not seen . 

Before concluding this section, we make two com­
ments: first, the existence oflong-time dispersive transport 
in energetically disordered systems has recently been 
experimentally demonstrated.9

•
27 Second, our results agree 

with the predictions of the Scher-Montroll continuous­
time random walk theory28 over a wide range of time 
scales. The latter theory is highly phenomenological: a 
waiting-time distribution having a power-law tail is pos­
tulated, and then used to derive the transport properties. 
We have thus provided a microscopic justification of that 
theory for this type of system. 
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v. GENERAL DISCUSSION 

The variety of examples discussed above indicates 
the wide range of behavior that can be encompassed by 
our theory. One may argue that the qualitative features 
of the results are determined primarily by the input 
parameters f(E), and cp(E), and not by the details of the 
dynamics; any energy-space master equation of the form 
(3.1), which could be written down immediately from 
physical considerations, would do just as well. In response, 
we emphasize that we have not simply used a phenome­
nological master equation; we have obtained the gener­
alized rates K(E, E', u) from a microscopic calculation. 
Without the latter, the short-time, non-Markovian dy­
namics could not have been obtained at all. It is true, 
however, that in order to complete the theoretical work 
by predicting the dynamics of an experimental system 
one must have some knowledge of f and cp. For the 
simplest example, a two-component solution in which 
the components are different chemical species, this is no 
problem; the component concentrations are chosen be­
forehand and cp(E) can be determined from the spectra 
of the individual components via the Forster prescription 
(a recent review6 discusses the application of self-consistent 
transport theories to experiments on solutions; as described 
there, in favorable cases no adjustable parameters are 
required.) The much more interesting systems having a 
continuous distribution of energies are much harder to 
deal with. As we said above, fiE) can often be deduced 
from the absorption spectrum, but the details of cp(E) are 
essentially inaccessible. Our results show that the fine 
details do not appear to be important at long times, so 
one may hope to test the basic correctness of the theory 
with the long-time results, and then use the short-time 
results to determine cp(E). As we have emphasized, the 
theory presented here assumes that spatial and energetic 
disorder are uncorrelated. This necessarily limits its utility 
for glasses and thin films composed of excitation-carrying 
molecules, but one can still be reasonably confident about 
using it for systems in which the excitation conductors 
are doped into an amorphous structure such as a glass or 
a polymer matrix. 

Our results appear to be broadly consistent with 
those recently presented by Grunewald et ai.,14 although 
a precise comparison is not possible since both the 
underlying theory and the choice of examples are different 
from ours. These workers study energy relaxation by 
calculating the mean energy of what we have called an 
excitation packet, rather than the full distribution; they 
also find "deceleration" and interpret it in a similar way. 
Their spatial transport results, presented in the form of a 
time-dependent mobility, qualitatively resemble ours. In 
the published work, only the case cp = 1 and only 
exchange interactions are treated (thus, there is no short­
time Haan-Zwanzig asymptote); however, we have been 
informed29 that dipole-dipole interactions give similar 
results, in conformity with our experience with dipole­
dipole and octupole-octupole interactions. In any event, 
we believe that such differences as are seen arise from the 

models used rather than from the underlying theories, 
which although not equivalent are similar in spirit. A 
particularly valuable feature of Ref. 14 is a comparison 
to exact numerical results: the agreement is quite impres­
sive. Overall, we are pleased to see that not only our 
qualitative results, but also our physical interpretations, 
are supported by this quite independent study. 

In conclusion, we believe that the theory described 
here provides a simple yet powerful approach to excitation 
transport in energetically disordered systems. The calcu­
lations, while not trivial, are vastly simpler than computer 
simulations for systems having long-range transfer rates 
and complicated site-energy distributions; moreover, sim­
ulations are just as dependent upon the unknown param­
eters cp(E) and upon assumptions about correlations 
between spatial and energetic disorder, and so do not 
avoid the most important limitations of this work. 
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APPENDIX A: TWO-BODY APPROXIMATION 
FOR THE SELF-ENERGY 

When energetic disorder is present, the summation 
of all two-body self-energy diagrams requires a procedure 
different from, but scarcely more complicated than, that 
described by GAF. We refer the reader to Ref. 1 for a 
discussion of the notation. The basic unit from which a 
diagram is constructed (Fig. 12) is a factor W21G1, denoted 
by a dot in circle 1 and a solid arrow from circle 1 to 
circle 2 [we are using a shorthand notation W12 = w(r\ 
- rl, Eb E 2)]. One also has factors of (-W2IGD, denoted 
by a dot in circle 1, a solid arrow to 2, and a dashed 
arrow back to 1, which arise from the diagonal part of 
the master equation. The GAF rules specify that all head­
to-tail combinations of these units are allowed, yielding 
diagrams such as those shown in Fig. 12; this leads to 
rather involved formulas when W12 1= W21. However, one 
can readily see that the two-body diagrams may be 
calculated by deleting the dashed arrows and instead 

FIG. 12. Examples of two-body self-energy diagrams are shown. These 
are evaluated as, from left to right, W21 GL -(W2IGj)2, and 
(W2I Gj)2wI2m. The notation is discussed in the text. 
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admitting both head-to-tail and head-to-head combina­
tions of solid arrows, at the same time associating a 
minus sign with every diagram having an even number 
of arrows overall. The combinatorial problem becomes 
simply the number of ways of laying down arrows (with 
a dot at the tail of each arrow) across two circles. In an 
nth order diagram there are two choices (two directions) 
for (n - 1) arrows, since the orientation of one arrow is 
fixed by the label on the diagram, i.e., S21G1 or SI2G~. 
The sum of all nth order diagrams is therefore evaluated 
as 

pS\"l = WI2(-I)n-I(WI2G~ + W2IGDn-1 

so that the sum of all two-body diagrams is 

Wl2 
pSI2 = 1 + GS GS 

WI2 2 + W21 1 

whose Fourier transform gives ,,];(k, E, E'). 

APPENDIX B: DIAGONAL APPROXIMATION 
FOR (;8(E, t) 

(AI) 

(A2) 

If all off-diagonal elements of the master equation 
are neglected, the configuration-averaged diagonal Green 
function becomes 

GS(E, t) 

X exp[-t f w(rl - ro, EI - Eo)J . 
1=1 

(Bl) 

In the thermodynamic and continuum limits, a well­
known procedure l6 leads to 

GS(E, t) 

= [1 -~ I dr I dE'!(E')(1 - e-1W(r,E',E»J
v 

= exp[ -p IdE' !(E') I dr( 1 - e-1W(r,E',E»]. (B2) 

This approximation provides an extremely useful initial 
estimate for the numerical solution of Eq. (2.13). It is 
best at short times, but even at long times it works well 
enough, provided the temperature is not too low. For 
transfer rates arising from multipolar interactions, Eq, 
(4.2), one finds 

GS(E, t) 

~ eXP{r[1-:;;/2)] Rdr( 1 - ~b(E)(t/7)dIS} (B3) 

in d spatial dimensions, where r is the usual r function 
and 

b(E) == p IdE' !(E')[eP(E-E'l/2<1>(E - E'WIS. (B4) 

In the three-dimensional dipole-dipole case (d == 3, s 
== 6) the Laplace transform of GS(E, t), which is used in 
the calculations, can be performed: 

GS(E, u) = .!. {I - V;y(u, E)eIY(U,ElJ2Erfc[y(u, Em, (B5) 
u 

where Erfc is the complementary error function and 

(B6) 

For u == 0, Eq. (B5) reduces to 

S(E - 0 _ 97 
G ,u - ) - 8[1I'R3b(E)]2 . (B7) 

In the octupole case, the transform must be performed 
numerically. 
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