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The concept of flow field velocimetry based on scalar imaging measurefi@mgs. Fluids A4,
2191(1992] is here formulated in terms of an integral minimization implementation, where the
velocity field u(x,t) is found by minimizing weighted residuals of the conserved scalar transport
equation, along with the continuity condition and a smoothness condition. We apply this technique
to direct numerical simulatiofDNS) data for the limiting case of turbulent mixing of a St
passive scalar field. The spatial velocity fielg,t) thus obtained demonstrate good correlation
with the exact DNS fields, as do the statistics of the velocity and the velocity gradient fields. The
results from this integral minimization implementation also show significant improvement over
those from the direct inversion technique reported earlier. These results are shown to be largely
insensitive to noise at levels characteristic of current fully resolved scalar field measurements.
© 1996 American Institute of Physids$1070-663196)01507-3

I. INTRODUCTION them are given by Wallack,Foss and WallacE, and Wal-
lace and Fos¥ Kim and Fiedlet’ subsequently used a six-
Information on the fully resolved, three-dimensional sensor probe for simultaneous measurement of the stream-
spatial structure and simultaneous temporal dynamics of thgise and cross-stream vorticity componenis, and ;.
full nine-component velocity gradient tensor fie¥i(x,t) at  Recently Vukoslavevic, Wallace and Balint® and Balint,
the small scales of turbulent flows is key to the developmen{yallace, and Vukoslawvict® have succeeded in building
of physical models for these scales of turbulence. Thesgnd using a nine-sensor hot-wire probe that yields simulta-
scales are generally presumed to be quasi-universal in highegus measurements for all three vorticity components
Reynolds number flows, and are thus studied in a generig,, and w,. This probe permits resolution of the vorticity
context. To date, this has been done almost exclusively Vigector at a scale approximately six times coarser than the
direct numerical simulationgDNS) of the Navier-Stokes |ocal Kolmogorov scale at their measurement location in a
equations. Laboratory experiments capable of directly yieldyhjckened turbulent boundary layer. Kt al2>?*have devel-
ing useful information on the detailed structure and dynam-oped a nine-wire probe to measure components of the veloc-
ics of these scales have been comparatively few. Most havigy gradient tensor, and more recently Tsinober, Kit, and
been limited to single-point measurements of a small subsg$,5:022 have assembled a 12-sensor hot-wire probe, and
of the full velocity gradient tensor field. _ even a 20-sensor probe without any common prongs, for
The earliest and still the most widely used experimentalneasyring all nine independent components of the velocity
techniques for measuring one or several of the velocity grag agient tensor at a single spatial point. In their grid turbu-
dient tensor components rely on multiple hot-wire or hot-jence experiment, this probe allowed resolution of length

film probes. The original four hot-wire probe was developedscges roughly five times coarser than the local Kolmogorov
in 1950 by Kovaszndyfor measurements of the streamwise scale

comp'onentu1 Qf the vorticity veqtor at a single spgtial point. Among the strengths of these multiple hot-wire/film
Corrsin and Kistlef, and later Wél_lr7narth and Lﬁ,W|IImarth probe techniques are the ease with which extensive statistical
and Bogal, and Kastrinakiet al>~" used probes of this type  gamples can be collected, and their ability to isolate large-
for streamwise vorticity component measurements in turbUg e contributions to the velocity and velocity gradient sta-
lent boundary layers. Vukoslageic and Wallac® subse- yigtics. Despite the successes in development of these tech-
quently developed an improved Kovasznay-type probgigies however, all have certain common characteristics
which used four independent wires to det%rﬂme the streampa¢ yitimately influence their ability to provide data on the
wise vorticity component. FossFosset al'®* and Haw,  gyrycrure and dynamics of the velocity gradient tensor field.
Foss and Fos§ have successfully used a similar four hot- gyen in principle these methods allow time series measure-
wire arrangement to measure the cross-stream compaRent ments at only a single spatial “point,” with one-dimensional
of the vorticity vector at a single point. A five-sensor Not- gnatia| structure in the velocity gradient component fields
film probe fo_r simultaneously measuring the spanwise andjiscernible only if a Taylor hypothesis is accepted. Of a
normal vorticity componentsy, andws, was developed and  qre practical nature, interference between the various wires
used by Eckelmanet al™= Surveys of some of the charac- 4 prongs in such probes leads to complex calibrations and
teristics of these vorticity probes and the data obtained frony, o potential for erroneous measuremefesy., see Vuko-
slavevic, Wallace, and Balint® and Tsinober, Kit, and
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In part to overcome these concerns about intrusiveénvolves the product of the Reynolds number=Rg|*/v
probes, more contemporary non-invasive optical techniqueand the Schmidt number Sa/D, wherev andD are respec-
have been developed, of which laser Doppler velocimetrytively the vorticity and scalar diffusivities.Given fully
(LDV) remains by far the most popular. Lédgleveloped an  space- and time-differentiable scalar field data, the only un-
LDV with four focal volumes to measure the spanwise vor-knowns in this equation are the components of the velocity
ticity in a turbulent shear layer. More recent advances irfield u(x,t). We have proposéd*® that from sufficiently re-
laser diagnostics and high-speed data acquisition and prgolved, four-dimensional measurementsZof,t) and an ap-
cessing capabilities have facilitated a variety of opticallypropriate set of additional constraints, one can extract the
based, non-intrusive velocimetry methods which provide invelocity fieldu(x,t) despite that only the component wfx,t)
formation over two-dimensional fields of many points. Re-along the scalar gradient vect®i(x,t) direction affects the
views of some of these are given, for example, byscalar field evolution. The latter observation recognizes that,
Adrian?*?®  Merzkirch?®  Lauterborn and  Vogél!  in addition to the true velocity fieldi(x,t), Eq. (1) in prin-
Hesselink® Miles and Nosenchuck, Gad-el-Hak® and  ciple admits all other velocity fields with streamlines con-
Chiang and Reid" The majority of these techniques involve fined to isoscalar surfaces. We assert, however, that in tur-
particle imaging methods. These generally yield two-pulent flows these spurious velocity fields can be excluded,
component velocity vectors over two-dimensional fields,since Sc-1 scalar fields contain length scales smaller than
though three-dimensional particle trackifigishino, Kasagi, those admissible in the underlying velocity fields. It will be
and Hirata}” Papantoniou and Ma&$ and holographic par-  seen that by taking into account the relative smoothness be-
ticle image velocimetry (HPIV) (Haussmann and tween the scalar and velocity fields in turbulent flows, it is
Lauterborr* Malyak and Thompsoff, Meng and Hussai,  indeed possible to determine the velocity field accurately.
Scherer and Bernd) are being developed for measuring  There are two closely related methods by which this can
full, three-component vector velocity fields in complex pe done. The first, referred to as direct inversion scalar im-
flows. However, in all these particle based techniques, th@ging velocimetry, involves inverting the scalar transport
seeding densities required to resolve the smallest spati@quation(1) directly throughout the data space to yield the
scales in a flow can become so high as to prevent sufficienfelocity component fieldy,(x,t) which lies along the local
optical penetration into the interior of the flow. Various tech- g¢cg|ar gradient vectoV{(x,t). The full vector velocity field
niques ((O3hU et al,*® FfflCi)z and Ch&? Hassa, Paul and yxt)is then extracted using the gradient fild, (x.t), rec-
Hansori)® Miles etal,*** Pearlstein and Carpent, ognizing that certain constraints must be met which reflect
Gruen;* Maas;® Tokumaru and Dimotakf§) have also been the relative smoothness between the scalar field data and the
proposed for extracting the velocity or certain components of,g|ocity field in turbulent flows. The second method, referred
the velocity gradient tensor field from scalar field measuretg a5 integral minimization scalar imaging velocimetry, is a
ments obtained through laser-induced fluorescence, phosphgsfinement of the first that addresses the issues of relative
rescence, or other optical techniques. _ smoothness and scalar field noise through a variational for-

The optical penetration difficulty can be circumvented yiation. This method is still based on the scalar transport
by using an effectively continuou§ distribution of laser fluo- equation(1), but recognizes that any measurement errors in
rescent dye moleculg®r other suitable tracgms the seed, he scalar field daté(x,t) will lead to a non-zero right-hand
whose size eliminates the Mie scattering associated with pagjye in Eq.(1). The method thus determines the velocity field
ticulates and thus maintains optical transparency in the flovm(x,t) which minimizes an integral composed of various re-
field. Instead of relying on the displacement of discrete pargjgya| terms. One of these residual terms measures the agree-
ticles seeded in the flow, we use tbentinuumfield created  ment of the velocity field and measured scalar field with the
by the concentration of a dynamically passive, conserved giar transport equatiofl), while another imposes the
scalar quantity which is transported by the underlying turbusmgathness constraint as a regularization parameter. The
lent flow (Dahm, Su, and Southerlatid9). This continuum  jont hand side of Eq(1) thus is not required to be exactly
field approach circumvents many of the difficulties noted, e, ¢ rather is minimized subject to smoothness and other

above in conjunction with particle based methods, and igqnsraints. By selecting the weight assigned to the smooth-

based on the recently demonstrated experimental capabilityesq constraint, the correct ratio of length scales in the ve-

for obtaining fully resolved, four-dimensional measurements, i ang scalar fields can be ensured. We will see that this

of S(ﬁllcogser(\j/ed r?}%ﬂ%r fields(lx,t)_ in t_urbulelnt flows integral minimization formulation has advantages over the
(Southerland and Da - In scalar imaging velocimetry, direct inversion scheme, both in flexibility of application and

extraction of the underlying space- and time-varying VeIOCItyin the potential accuracy of the results. Validation tests also

field u(x) from such scalar field measuremgnts IS t?ase_d %Uhow that the integral minimization formulation is capable of
the e>.(act conservgd scalar transport equation, which in dIdetermining velocity and velocity gradient fields accurately
mensionless form is in turbulent flows, even in the limit of unity Schmidt number
9 where the finest length scales of the scalar gradient and ve-
S Hu V-2 SCVZ {(x,1)=0. (1) locity fields become comparable. A companion paf@u
and Dahm?), hereafter referred to as Part Il, applies this
(All variables are taken to be normalized with referencetechnique to fully resolved, four-dimensional 8& scalar
length and velocity scalds andu*, and a reference scalar field data to obtain the first non-invasive laboratory measure-
concentration valug*. The dimensionless scalar diffusivity ments for the full nine-component velocity gradient tensor
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field Vu(x,t) and the pressure gradient fieW¥p(x,t) in a tur-  plied this direct inversion technique to test cases with a
bulent flow. single Se-1, passive, conserved scalar field in turbulent

The direct inversion approath® begins by recognizing flows and have extracted the corresponding velocity and ve-
that the convective terra-V{ in the scalar transport equa- locity gradient fields.

tion (1) may be written asi |V{], whereu, is the projection When applying this technique to experimental scalar
of the velocityu onto the local scalar gradient vector direc- field data, the effects of experimental noise and numerical
tion, or errors in the scalar field derivatives can be dealt with by such

measures as writing E¢6) for multiple sets of points at each
X. However, it is impossible to eliminate entirely the effects
with of noise on the velocity field results, even in principle. This
- _ is because, despite high resolution and signal quality in the
Cv (X )=VLD/VEX D] ®) underlying scalar field measurements, small but unavoidable
From measurements of the scalar fié(®,t) which are fully  errors will be present in the various scalar field derivative
resolved in space and time, the scalar field derivative termterms of the exact conserved scalar transport equéfipn
aL(x,lat, V(x,t) and V2¢(x,t) which appear in the scalar These errors will arise both from experimental noise and
transport equation can be computed. This alloyg,t) to be  from the discretization errors inherent in the numerical dif-
found by inversion of1) as ferencing operators. The presence of these errors in the scalar
field derivatives means that, even if the true velocity field
V2{(x,t)— 9 [Vext)]~t, (4  ulb) were introduced in Eq(l), the right-hand side of the
Re Sc ot equation will not in general be exactly zero. As a result, the
as first demonstrated by Southerlagical 5% This uy(x,b) dif- v_elocity field_s optained by strict local enforcement of a zero
fers between any two points and x+8x due to both the fight-hand side in the scalar transport equation, as done in
change in the scalar gradient vector direction, and the changieterminingu;(x,t) by Eq. (4), will be affected by these er-

in the velocity fieldu(x,t). To first order this can be written TOrs in the scalar field derivatives. o
The objective of implementing the scalar imaging ve-

8Uy=U(X) -8y (X) + (VU(X) - 6X) - 8y (X + 6X), () locimetry technique with a formulation that is less sensitive

where thes s represent the differences between the values 4 noise in the scalar field derivative data naturally suggests
X+ 3Sx andx. that the inversion of the scalar transport equation be ap-

The direct inversion scalar imaging velocimetry tech_proached_ using a minimization technigue. The v_elocity field
nique uses thisi,(x1) field, together with a smoothness con- U(.t) which results from such an approach wilbt then
dition, to determine the vector velocity fieldx,t) through ~ force a zero right-hand side in E¢t), but rather will mini-
an iterative process. The starting solution proceeds from aftize the integral of the left-hand side of the scalar transport
initial assumption that, within small neighborhoods of each®quation over the entire domain, subject to a smoothness
point X, the contribution of spatial variations ia [repre- conetramt as before, and if desired, additional physical con-
sented by the second term on the right-hand-side of/®g.  Straints. o _ _
to variations in the measureg values can be ignored. This Since the present scalar imaging velocimetry technique
is equivalent to assuming that the scalar gradient vector diwas first presented in 199Dahm, Su and Southerlatf,
rectionéy, varies more rapidly than does the velocity vector; Other scalar based velocimetry approaches for four-
this assumption was motivated by the high Schmidt numbeflimensional measurements in turbulent flows have been pro-
of currently available fully resolved experimental scalar fieldPosed. The most closely related is a method of Tokumaru
measurementS~>! Within such small neighborhoods, the and Dimotakig!® but this does not use the scalar transport
u,'s at three different points are then treated as projections o¢quation, and instead finds the velocity field which maxi-
a single local velocity vecton onto three different unit vec- Mizes a correlation between scalar fields. Similarly, a two-

ull(x,t)Eu(X!t)'évg(xvt)! (2)

u(x,t)=

torsévg.This leads to the linear system scalar approach has been proposed by Pearlstein and
. . . Carpentef? but this relies on a method for simultaneous
(up1 (evoix (Evoiy (viiz|| u measurement of two scalar fields, and requires that the two
(U2 | =| (Bvpax (Bvpay (Bvpaz|| v |, (6)  scalar gradient vectors not align.
2 A 2 The presentation is organiz follows. ion Il dis-
(U)s (Bv)sx (Byv)sy (8v)ss e presentation is organized as follows. Section Il dis

cusses the formulation of the integral minimization scheme,
which is solved for the components v, w to yield the  while Section Ill presents an assessment of the errors in-
starting solutionu. Subsequent iterations assume that thecurred when using the direct inversion and integral minimi-
velocity u varies linearly within small neighborhoods Bf  zation techniques to extract velocity fields from essentially
Namely, the resulu® ) of the k—1 iteration is differenti- noise-free DNS computations. The data used are from the
ated, and the resulting velocity gradient information is usedimiting case of unit Schmidt number, and thus pose an es-
in the determination of thith solutionu®™, or pecially stringent test on the viability of the integral minimi-
ok A K—1 A zation scheme. Comparison of the results from the integral
8uy= U (x) -8y, () + (VU D(x)-8%) -8y (x+ 8x).  (7) minimization and direct inversion techniques, as applied to
The iterations are performed until thé)(x,t) converge to a the DNS data, demonstrate that both give velocity fields that
self-consistent result. Dahm, Su, and Southeffihdve ap-  reproduce the basic structural features of the underlying DNS
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velocity field. A proper choice of the adjustable weights inscheme is to penalize deviations from the continuity equation
the integral minimization technique gives results considerV-u=0. This is represented in strictly non-negative form as
ably better than achieved by direct inversion.

E,=(V-u)2 (11)

A further condition is needed to specify three-
1. INTEGRAL MINIMIZATION SCALAR IMAGING dimensional velocity fields uniquely. This IdeaIIy would be a
VELOCIMETRY direct mathematical representation of a specific physical

property of the flow, however the existence of flow proper-
ties which can be represented as minimizations of integral
The velocity field sought here is that which minimizes quantities is very limited—e.g., to certain simple inviscid,

A. The integral minimization formulation

the integral of a functiondE over the domairD as circulation-preserving flowsTruesdeft¥). Independent of
the need to specify velocity fields uniquely in three dimen-
min f E(uy,Uy,U3;X1,Xy,X3)d%X, (8) sions, however, is the need to counteract the tenden&y of
D

andE, to introduce artificially small length scales into the
velocity field solutions. Such artificial length scales may
arise by two mechanisms. The first, which invohNggsonly,
oncerns the relative smoothness of the velocity and scalar
elds. Velocity fields satisfying onli,; = 0 would in general
ﬁpntain length scales as smallag, the finest length scale

of the scalar field. The conditiok,=0 alone is thus, in
general, inconsistent with the true relationship of the finest
scales in the velocity and scalar fields. The other mechanism
E=E;+a’E,+B°Eg+-. (9)  involves bothE; and E,, and is driven by the effects of
experimental noise and discretization errors, which will lead
to spurious length scales on the order of the grid spacing of
the calculations. These considerations naturally suggest the
introduction of some regularizing operator in the inversion

Specification of the termg, must be made with an eye process. The use of such regularizing operators is common in
to the mathematical tools by which E() will be solved inverse problems which involve the analysis of discrete data,

The scalar field measurements of Southerland and B&fiin ~ @nd the mathematical basis of the regularization process is
will, in the context of scalar imaging velocimetry, yield com- Well described by Tikhonov and Arserﬁﬁ_?l’he residual cho-
putational domains as large as 8B0° points. With three SN 0 supplemerk,; andE; is one which penalizes non-
degrees of freedom at each point, corresponding to the threanoothness of the velocity field. This is most directly ac-
components of the velocity field, the result is a system Of:ompllshed.by miNiMizing Some measure of the magmtude
approximately one million equations which must be solved©f the velocity gradient components. Among the simplest of

at each timet. This number of equations can be lowered (NES€ measures is
somewhat in practice through subsampling of the domains, E;=Vu:Vu, (12

as discussed in Section Il C, but the reductions will amount

at the most to one order of magnitude. Interest is therefor%\’hICh is simply thte SLFJQm Ofl sgquares of thte velofC|ttk3]/ g;ad|entf
confined here to those residu@swhich will produce a lin- ensor components. Regularizing operators ot the form o

ear system, so that the simplicity of linear algebraic solutio g- (12 are kppwn as stabilizers™{in pa_rtlcular,Es IS a
schemes may be applied. A further restriction which is im- ikhonov stabilizer of first ordgr and provide the solutions

posed is that the system of equations contain only first an&0 U with the propgrty o_f m?‘thema“c"’?' Stab'.llt.)/. in the face
second derivatives of the velocity field, leading to simple anoOf small noise or discretization errors in the initial data.
compact discrete difference operators; this restriction allow
the matrix associated with the linear system to remain sparse.
These conditions, together with the Euler equation of varia- At this point it is helpful to state the arguments pertain-
tional calculuggiven as Eq(14)], require that the termk; ing to the vorticity and scalar diffusion length scalesand
be at most second-order in the components ahd Vu. N\p, which represent the finest scales on which spatial gradi-
In this work E; is chosen to be the left-hand side of Eq. ents can be sustained in the vorticity and scalar fields. As
(1), and measures the extent to which the scalar field dataoted by Buch and Dahnif;®’ the relationship between these
and any candidate velocity fieldx,t) are in “good” agree- scales provides a measure of the relative smoothness of the
ment with the exact conserved scalar transport equatiorvelocity and scalar fields and is dependent upon the Schmidt

u(x) e 723 —.723

where the components of u are the dependent variables in
E, and the components of x are the independent variables.
E itself is composed of residuals representing deviation%
from exact agreement with the scalar transport equdtipn '

tion u(x,t). In generalE in Eq. (8) may be written as the sum
of an arbitrary number of such residuals

Here eachE;=0 represents a local condition involving the
velocity field and possibly the scalar field. The factars
B2,..>0 allow control over the relative weights assigned to
the individual residualg; in the minimization functionak.

. Implications of the smoothness condition

Thus, formally number Sc as
E=(|Z+uv \& 2 10 M _gar 13

Because only incompressible turbulent flows will be of inter-The direct inversion implementation of scalar imaging ve-
est to the present work, a logical second element in oulocimetry was formulated around the assumption that the tar-
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get velocity fields were smoother than the scalar fields. Thi€uler characteristic equation for each dependent variable is
assumption was driven by the high Schmidt number of thesatisfied. FolE as defined here, including only first deriva-
scalar field measurements of Southerland and Damth tives of the dependent variables, the Euler characteristic
(where Se=2075, together with the relation of Eq13). The  equation for a given; has the following general form
smoothness assumption, rather than being present as an ex- .
plicit condition satisfied by the velocity field, was presentas  JE d JE
an implicit consideration in the construction of the direct — gu, &4 (9_x](
inversion method. In contrast, the integral minimization
implementation allows a smoothness condition to be definewith n the number of independent variables. For ), the
explicitly [here by Eq.(12)], with its weight adjusted to re- Euler equation fou is
flect the Schmidt number.

This last point deserves closer inspection. Though the E_i(f)_i(f)_i(f)zo (15)
direct inversion technique was formulated with the high Sc, du  dx\du,) dy\duy) dz\du, ’
turbulent scalar field data of Southerland and D&hrtin -
mind, the only Schmidt number regime for which turbulentWlth d!rectly anglogous r_esults for andw. .
scalar field data would clearly be insufficient to determine, With E and its constituent term&,, E,, and I.E3 given
velocity field information is S€1; in such cases, the target in Egs.(10), (11), and(12), the three Euler equations which
velocity fields would contaimoreinformation than the sca- result are
lar fields, rendering accurate velocity field determination, .2 _ 2 _ P22
from scalar field information impossible. For other Schmidt &% Vo Whbma (U vyt W) = FV7U
numbers, the scalar fields in principle contain sufficient in- a¢ 1
formation to determine the velocity fields, provided that the _( -
smoothness condition is defined and weighted appropriately.
The “appropriate” weighting for the smoothness condition ug,z, +v {7+w¢,{,— a®(Uxy+vyy+W,,) — B2V
must take into account both the Schmidt number and the
level of experimental and numerical noise present in the sca- _ _ (‘9_5_ 1 2§> ¢ (17)
lar field data. The influence of the Schmidt number on the dt ReSc y
weighting is obvious—Ilarger Sc should require greater val-
ues of & i.e., an increased emphasis on the smoothnessx{,T v {yl,+WEo— a®(Uyx,+vy,+W,,) — B2V 2w
condition E; relative to the scalar transport conditid . ot 1
The effect of the noise level, however, is harder to define =-— (__ V2§) 5. (18)
priori. Besides affecting the relative weights assigneé{o Jt ReSc
andE,, noise and discretization effects influence the relativ
weighting ofE; andE, as well. Numerical experiments that
quantify the effects of various choices faf and g2 are

a(au; /axj)) =0, (14)

s 2
dt Re ch g“)g“x (16

®rhe determination of the velocity field(x,t) then involves
writing Egs. (16), (17), and (18) for each of the discrete

. . . points in the domain, with the velocity derivative terms rep-
given in Section Il C. resented by discrete operators. The equations are then con-

From |nspect_|on of the cond|t|_orl§2 andE;, it can be catenated to form a linear system in the velocity components,
seen that reduction of these residual terms may occur nal 4 the resulting system is solved faiix.t)

only by a reduction in the velocity gradients, but also by a

o . . The scalar field derivatives are evaluated from the scalar
general reduction in the velocity vector magnitude through

t the d in. Th iude of th locit o Tfield data using linear central differences and, in the case of
?hu fe E)fr|na|tn.” T:’ mfafgn: ude t? € \t/e og'g vecl rb Isecond derivatives, the operators resulting from successive
erefore toats. IS efiect can be countered by a globa applications of central differencing. The velocity derivative

multiplicative factor which renormalizes the result forto terms in Eqs(16), (17), and (18) are discretized using the

guarantee optimal agreement with the scalar transport Condé‘fame difference operators. At the limits of the domain, re-

tion E;=0. It may nevertheless be expected that the pealﬁective boundary conditions are usefe.g., at x=0
velocity component magnitudes will tend to be underesti- ' ’

X SRR u;(AxX)=u;(—Ax)]. The resulting vanishing derivative
mated by the mtegr_al rr_1|n|m|zat|on Siv §cheme. However'across the boundary is consistent with the minimization of
re_sults from thg validation tests of Section Il C show thatvelocity gradients through Eq12).
this effect is quite small. As a final note, the linear systedu=b which results
from Egs.(16), (17), and (18) is solved using an iterative
method(Eisenstaet al>®) similar to the method of conjugate

Once the functionalE(uq,u,,us;X;,X,,X3) has been gradients. The solution convergence is conditioned upon the
properly specified in terms of the constituent functiorigjs  residual|Au—b|. For the results presented here, the initial
E,, andE; and the weighting parametet€ and 82, it re-  solution used is simply=0. For velocity determination on a
mains only to solve Eq8) for the velocity fieldu(x,t). This  time series of scalar field measurement data, such as will be
requires first that the system of three equations, correspondeen in Part IP? increased speed of convergence is pursued
ing to the three components of the velocity field, be writtenby using the velocity field resuli(x,t) for a given time step
for each point in the computational domain. From the calcu-as the initial estimate for the velocity field at the subsequent
lus of variations, the integral of Eq8) is stationary if the step.

C. The variational equations
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titj———+

D. Nature of the extremum J2E i ot 52E
I,= o o
2 JD Plauigu;  ax 9%y d(au; ] Ixi) d(au;1ax,)

We show here that the variational Euler equati¢bs),
(17), and(18) isolate a local extremum, and that this extre-
mum is a minimum. This will rely on the second variation of X dxdydz (26)
the integral. Because the general theory of the second varigis equation reflects the dependenceEobn the velocity
tion for functions involving three dependent variables andcomponentsy; and their first derivativegu;/dx;, and also
three independent variables is not well developed, this alsgeflects the absence of any cross terms involving both the
provides an opportunity to illustrate some of the key math-velocity components and their derivatives. Applying this to
ematical principles used in the integral minimization form of the specific form oE given by Eqs(9), (10), (11), and(12),

scalar imaging velocimetry. this becomes
The integral in question here ighe notation follows
Fox*®) |2:f [(t-V )2+ a?(V-1)?+ B2Vt:Vt]ldxdydz (27)
D
I = fDE(U,v,W,VU,Vv,VW;X,y,Z)dXdde (19 Having applied the Euler characteristic equations to the first

variation, the integral oE over the domaim is minimized if
where the explicit dependence on the three componenis of this |, is positive, independent of the choice k) in Eq.
and the nine components ¥l is shown. Thegweak varia-  (20). This is manifestly satisfied except for the uninteresting

tions of interest will have the form case oft=0. The simplicity of the form of Eq(27), and the
similarity of the integrand to the functiond itself, can be
u=s(x) + et(x) (200 traced directly to the original formulation @ in terms of
whose components are labeled quantities of at most second order in the components of
andVu. That restriction was made to guarantee simplicity in
Ui =si(X) + et;(x). (21)  the solution method, and returns here to simplify the analysis

Under the influence of the variations described by Eq.as well.

(20), the integrall will assume the form
I1l. A DNS-BASED TEST OF SCALAR IMAGING
=14+ 6l (220 VELOCIMETRY

wherel; is defined by This section presents results from the application of this
integral minimization scalar imaging velocimetry technique
= f E(s1,5,,53,V51,Vs,,Vs3;x,y,2)dxdydz (23)  to adirect numerical simulatiofbNS) of Sc=1 passive sca-

D lar mixing in a turbulent flow. The velocity fields obtained
and thusl =1+ 8l ¢ has the form by the scalar imaging velocimetry technique can be directly
compared with the actual velocity fields used in the simula-
tion, allowing for rigorous quantification of the accuracy of
the technique. Section Il A discusses properties of the DNS
(24 data, and relates these properties to the experimental scalar

field measurements of Southerland and D4Am! In Sec-
tion 11l B the choice ofa? and B2 for these Se-1 data is
e? discussed. Results from the application of the integral mini-
Sls=eli+ =l O(€). (25  mization formulation of SIV to these DNS data are presented
in Section Il C. For comparison, that section also presents
Here |, is referred to as the first variation arld as the results from the application of the direct inversion
second variation. techniqué® to the DNS data.
In order thatlg represents a minimum for the integral .
I, 8l must be positive for all sufficiently small values oflt A. Properties of the DNS data
is thereforesufficientthatl ;=0 andl,>0 in Eq.(25). That The DNS scalar and velocity field data used here are
the first condition) ;= 0, is observed by the functiongland  from a simulation of the turbulent mixing of a dynamically
the velocity field result is guaranteed by the Euler charac- passive Se1 conserved scalar quantity by Madt al50-52
teristic equation$16), (17), and(18). These equations were The turbulent flow was decaying, homogeneous, isotropic
specified through application of the general result for theand incompressible, and its evolution was computed in a
Euler equationg14). The theory of the first variation by 128 volume. At the time chosen for this test, the Taylor
which Eq. (14) may be derived is very well described in scale Reynolds number Rbas decayed to 23 from its initial
many texts. In contrast, the general theory for #ezond value of 36. A sample scalar field plane from this simulation

s+ dls= f E(s;t+etq,...,.V(s1+€ty),...;x,y,2)dxdydz
D

where dl 4 is itself defined as

variation which would be relevant to this form bfinvolv- is shown in Fig. 1.

ing three dependent and three independent varipldema- Because the aim of this study is to assess the applicabil-

lytically very involved. Instead, the form of the second varia-ity of the integral minimization scalar imaging velocimetry

tion for this particular problem is derived below. technique to actual laboratory turbulent flows, it is important
I, for this problem is defined by that the scalar field information used be representative of the
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0. VE-VE/(1/Ar2) 38 ‘14 VRL/(1/Ar?) 14.

FIG. 1. Scalar field and scalar field derivative information from the simulations of &ell. (Refs. 60, 61, and 6§2(a) The scalar field/(x,t). (b) The time
derivative fielddz(x,t)/ét. (c) The scalar energy dissipation rate fidld-VZ(x,t). (d) The Laplacian fieldv2Z(x,t).

available scalar field measurements. For this reason, thequately the time scales of the initial turbulence and over-
original 128 data volumes are subsampled spatially to 12&esolves the flow as the turbulence decays with time. To
X128%x 15, to approximate the relative dimensions of the ex-match the spatial and temporal resolutions to a greater de-
perimental scalar field data volumes as well as to match thgree, only every twentieth simulation time step was used in
levels of spatial resolution. The DNS data are also subforming the central differences from which the time deriva-
sampled in time, as explained below, to make the temporaive was calculated. The resulting time separation was
resolution comparable to that of the experimental data. At~0.070\1/|u|;ms, Which, when compared with the grid
For this simulation of homogeneous, isotropic flow, thespacingAx, mimics the roughly equivalent levels of spatial
reference length and velocity scalEsand u* will be the  and temporal resolution characteristic of the experimental
Taylor length scale\; and the rms velocityu-u)'? respec-  scalar field data of Southerland and Daffre!
tively. The scaled grid spacing in the simulation is
Ax=Ay=Az~0.1\. The time step between data volumes
is markedly smaller, namelgt~0.0035 {/|u|,,s. The rea-
son for the much higher time resolution is that the simulation ~ The variational Euler equatior46), (17), and(18) in-
used a fixed time step, which was chosen to resolve adrolve the factorsy” and 82, which allow the relative weights

B. Numerical parameters
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of the three residualg, ,E,, and E; [Egs. (10), (11), and I . . .
(12)] to be adjusted according to the characteristics of the /_W\
given scalar field data. The value gf, which describes the os L B ik SN
importance of the smoothness residHalrelative to the sca- - RN
lar transport residuak,, is chosen to reflect the relation
between the smoothness of the velocity and scalar fields. As
mentioned in Sections Il A and Il B, satisfaction of the scalar
transport condition alone can be expected to admit velocity
fields with length scales as fine as the smallest length scales Overall u
in the scalar field. Since for these St DNS data the finest 02 Overall Vu — —
scales of the velocity and scalar fields are nominally equiva-
lent, we anticipate that ideallg?><1. The continuity residual ) . .
E, may itself permit artificially small length scales, on the le-05 0.0001 0.001 001 0.1
order of the grid spacing of the calculations, to enter the
velocity field results. The need to counteract this effect sug- (a) l32
gests that? and 82 will be of the same order. o
However, a priori specification ofe? and 82 beyond e
these guidelines is not possible. In fact, even if the optimal o
values fora? and 82 were known for a given Schmidt num- 08 e AN
ber, it is not apparent how these might be properly scaled to AN
a different Sc. The only guarantee is that increasaegreas- 06 A
ing) values of Sc will be accompanied by increadds-
creasesin the optimal value of? and 8°. The result is that
the optimal values of these parameters for a given Schmidt
number must be determined by numerical experiments. The
criterion used for determining whether the optingfl has
been found is to require that the finest length scale of the
velocity field results be consistent with the estimate Xor 0 00002 00004 00006 00008 0.001
The optimale? is then chosen as the highest value which can
be used without spurious, small scale discretization errors o2
becoming evident. This procedure is simplified by the rela-
tive insensitivity of the integral minimization formulation to FIG. 2. Sensitivity of the integral minimization SIV results to changes in the
changes ine? and 8% for example, decreasing values of the weighting parametera? and 5% Shown are the velocity component SIV-
smoothness parametg?? increase the amount of fine scale DNS_ correIations(incorporati_ng_ the three' compon_ents wf and velocity
. . . . S gradient component correlatioiscorporating the nine components %t
information in the results without significant effect on the corresponding to the planes displayed in the preceding figures, for different
larger structures. The effect of small changes., within 1 values ofg? (a), with a fixed ratio of3/a=2/3 imposed. Also shown ar&)
order of magnitudbin C!2 andﬁz on the Ve|ocity field results the SIV-DNS corre_latio_ns for different values .ﬂrf, with 32=2~1014‘.‘ The
is indeed virtually negligible. This is seen in Fig. 2, which EZSZL’IZt.S]_g[fSented in this paper were found with valueg?sf5-10* and
shows the effect of changes B% (with the ratio/« fixed at '
2/3) on the results fou andVu in terms of their correlations
with the known DNS fields[The correlation measure used
will be defined by Eq(28).] Also shown in the figure is the
effect of changes in upon the same correlations, with a
fixed value of8?=2-10 “. Based on these numerical experi-
ments, the values of® and 8 chosen for the results of
Section Il C are, respectively, 50 % and 210 “. From Eq.
(9), these choices af” and 8> mean that the velocity field is

06

04 |

Correlation

04

Correlation

Overall u

02| Overall Vu — —

andw which result from these derivative fields for both the
integral minimization and direct inversion SIV approaches
are shown in Figs. 3, 4, and 5, together with the exact DNS
fields for comparison. The normalization of all quantities
shown is by thesamescale factor, namely the rms velocity

e rained to satisfy th ar t ¢ resid ag1agnitude|u|,msz<u~u>l’2 from the DNS fields. This allows
primarily constrained to satisfy the scalar transport residu irect comparisons of the integral minimization and direct

E1, with only a small weight assigned to either the Contlnu'inversion results with each other as well as with the DNS

ity or smoothness residualg, .and E3' The very small fields. It is evident, even from a visual inspection of these
yvelght on the smoothness residual is a consequence of trfl‘:f;ures, that both SIV formulations reproduce the basic struc-
inherent smoothness of tl{€c=1) scalar field data. tural features of the DNS fields. It is also apparent that the
integral minimization approach yields results that are consid-
erably more accurate than those obtained by the direct inver-
The scalar field derivativea//st, V¢, and V?¢ provide  sion approach. Since the DNS scalar field data are essentially
the inputs to the scalar imaging velocimetry technique. Thes&ee of noise, the improvements obtained with the integral
are found through linear central differences from the scalaminimization formulation appear to be traceable to two pri-
field data, and are shown in Fig. 1 along with the correspondmary considerations. One of these is the ability to include the
ing scalar field plane. The velocity component fieldsv continuity constrainkE, in the procedure for determining the

C. Results
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FIG. 3. Comparison of the SIV results fafx,t) with the DNS fields(a) The integral minimization SIV result for thecomponent(b) The direct inversion
SIV result.(c) The DNS field. Velocity component correlations are presented in Table I.

velocity fields. The other is the more direct fashion in whichThe correlations between the SIV and DNS velocity compo-
the smoothness constraint enters the integral minimizationent fieldsu, v, andw are typically 0.96 with the integral
formulation. minimization approach, but only 0.84 with the direct inver-
The improvements seen in the integral minimization re-sion approach. Similarly, when the velocity gradient compo-
sults over those obtained by the direct inversion formulatioment fields from the two approaches are compared with the
are quantified in Table I. This table gives the correlationcorresponding DNS fields, the resulting overall correlation is
between the DNS fields and those obtained from both th®.84 with the integral minimization approach, but only 0.53
integral minimization and direct inversion approaches. Thewith the direct inversion approach. As a further test on the
values shown are standard moment correlatiBnslefined accuracy of these results, Table | also includes measures of

for any two fieldsy; andy; as the agreement of the velocity field solutions with the conti-
(u'u’) nuity conditionV-u= 0 of incompressible flow. The quantity
=_ il 2g) labeled ‘x-divergence” is the correlation between
Ru-u- ’ ’ . ( ) .
T (U) imdUj ) rms (aul9x) and (— vl dy— dwl 9z), which assumes a value of 1
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¥
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-2.57 VDNS 2.57

FIG. 4. The integral minimization SIV result for thecomponenta), the direct inversion resu(b), and(c) the DNS field. Correlations are in Table I.

when continuity is exactly satisfied. Tlye andzdivergence SIV and DNS fields. These distributions are all normalized
quantities are similarly defined. These correlations lie in theby the same scale factdu|,,s. In each case, the SIV and
range 0.85-0.89 for the integral minimization results, withDNS distributions show strikingly similar form. These distri-
much lower valueg0.50-0.60 for the direct inversion re- butions also show a result anticipated in Section Il B, namely
sults. These correlations clearly demonstrate that the integréthat the peak velocity component values for the integral
minimization approach is better able to determine the strucminimization results slightly underestimate the true peak val-
ture of these velocity fields from the original St turbulent  ues. These minor discrepancies in peak values have been
scalar field data. taken into account in the choice of color assignments in Figs.
While correlations of the type in Table | allow assess-3-5.

ment of the structural similarityi.e., phase agreemerte- While the DNS data as used in this validation study
tween the DNS and SIV fields, they are insensitive to differ-emulate the resolution characteristics of currently available
ences in the absolute magnitudes of these fields. For thisxperimental scalar field measurements, they are free of the
reason, Fig. 6 presents distributions of the values of the verandom noise which is present in such experimental mea-
locity componentsy, v, andw for the integral minimization surements of(x,t). Figure 7 shows the effect on the SIV
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FIG. 5. The integral minimization SIV result for ttve-componenta), the direct inversion resulb), and(c) the DNS field. Correlations are in Table I.

results foru andVu of random(Gaussiannoise added to the 10 (corresponding to the unrealistic case of effectively 3-bit
DNS scalar fields. The signal-to-noise level indicated is thedatg. The results in Fig. 7 should be viewed relative to the
ratio of the maximum signal level in the DNS scalar fields tonoise estimates in current practical four-dimensional scalar
the rms value of the Gaussian noise distribution added tfield measuremenf§:>! At lower signal levelgthe “camera
those fields. Shown in the figure are the correlations ahd  noise” regime, the noise level in those measurements is
Vu between the DNS fields and SIV results, using the sameoughly constant at 0.8 digital levels out of a maximum 256,
correlation measure as Fig. 2. The values of the weightingo the signal-to-noise level is a linear function of the signal.
factors o? and 8% used are, as before, B) % and 21074 At higher signal levelsthe “shot noise” regime the signal-
respectively. to-noise level goes as the square root of the signal, with a
Figure 7 demonstrates that theandVu correlations are  maximum noise level of roughly 1.3 digital levels. At their

largely insensitive to scalar field noise throughout a range omaximum signal level, Southerland and Dahm estimate a
noise levels, from a low noise level with an associatedsignal-to-noise value of slightly over 200. This level is indi-
signal-to-noise level of 600, up to a signal-to-noise level ofcated in Fig. 7. In fact, because the Gaussian noise distribu-
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TABLE I. Correlations between the SIV results, for both the direct inver- 0.6

sion and integral minimization formulations, and the actual DNS fields. The '
correlation measure used in given by HG8). The overall correlation
shown encompasses all nine components of the tévisor
Direct Integral
inversion minimization
u-component 0.869 0.964 03 |
v-component 0.827 0.961
w-component 0.826 0.946
aul ax 0.604 0.860 i
aul gy 0.604 0.847
aul oz 0.550 0.806
vl ax 0.538 0.849
avlay 0.492 0.832
dvlaz 0.413 0.867 0-
Wl x 0.599 0.849 4 4
awl gy 0.535 0.816 (@)
awl gz 0.436 0.784
Overall gu;/ 9x; 0.538 0.835 0.6
x-divergence 0.557 0.887
y-divergence 0.502 0.865
z-divergence 0.598 0.855
tion used is independent of the scalar value, the noise added 03 }
overestimates the experimental noise at low signal levels.
Thus the typical experimental noise level indicated in Fig. 7
represents a worst-case assessment of the influence of noise.
Despite this, it can be seen that at that noise level the overall
SIV-DNS u correlation falls minimally to 0.92 from its
noise-free value of 0.94. 0
-4 4
IV. CONCLUSIONS (b)
The high values of these SIV-DNS correlatiofigpi- 0.6
cally 0.96 for the velocity components and 0.84 for the ve-
locity gradient componenksand their insensitivity to antici-
pated levels of realistic experimental noise, offer strong
evidence that the integral minimization scalar imaging ve- |
locimetry technique can accurately determine three-
dimensional velocity fields from turbulent scalar field data. 03 ]
The errors in satisfying continuity, shown in Table I, are )
significantly smaller for the minimization technique, which
explicitly penalizes departures from the mass conservation
condition. These errors should be viewed in the context of
current hot-wire techniques used in the measurement of tur-
bulent velocity gradients. In those studies, the continuity cor-
relation values do not exceed O(¢f. Tsinober, Kit, and 0 .
Draco$?), in contrast to the values in excess of 0.85 demon- “ 4
strated by the integral minimization technique. () W/|u|rms

Itis significant that these results were found from scalalkg_ 6. pistributions of the velocity component values, for both the integral
field data at unit Schmidt number, for which the scalar andminimization SIV results and the DNS fields. The SIV results show good
velocity fields have nominally equivalent levels of detail. agreement with the DNS fields, save for an underestimation of the highest
Thus the scalar field contains no redundancy of informatiodf(':oocr'r% O’L‘Z‘g{"t“des(a) The u-component,(b) the v-component,(c) the
which would assist in determining the velocity fields. In con- '
trast, for high Schmidt numbers, the disparity in the charac-
teristic length scales of the velocity and scalar fields dictateg, is roughly 45 times larger than the scalar gradient length
that the scalar field data carriesore information than the scalehp. This suggests that this integral minimization SIV
target velocity field. For example, for the S2075 scalar technique will yield results of at least the level of accuracy
field data in Part Il, the finest velocity gradient length scaleachieved for this Sel DNS validation test, when ap-
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