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The concept of flow field velocimetry based on scalar imaging measurements@Phys. Fluids A4,
2191 ~1992!# is here formulated in terms of an integral minimization implementation, where the
velocity field u~x,t! is found by minimizing weighted residuals of the conserved scalar transport
equation, along with the continuity condition and a smoothness condition. We apply this technique
to direct numerical simulation~DNS! data for the limiting case of turbulent mixing of a Sc51
passive scalar field. The spatial velocity fieldsu~x,t! thus obtained demonstrate good correlation
with the exact DNS fields, as do the statistics of the velocity and the velocity gradient fields. The
results from this integral minimization implementation also show significant improvement over
those from the direct inversion technique reported earlier. These results are shown to be largely
insensitive to noise at levels characteristic of current fully resolved scalar field measurements.
© 1996 American Institute of Physics.@S1070-6631~96!01507-3#

I. INTRODUCTION

Information on the fully resolved, three-dimensional
spatial structure and simultaneous temporal dynamics of the
full nine-component velocity gradient tensor field“u~x,t! at
the small scales of turbulent flows is key to the development
of physical models for these scales of turbulence. These
scales are generally presumed to be quasi-universal in high
Reynolds number flows, and are thus studied in a generic
context. To date, this has been done almost exclusively via
direct numerical simulations~DNS! of the Navier-Stokes
equations. Laboratory experiments capable of directly yield-
ing useful information on the detailed structure and dynam-
ics of these scales have been comparatively few. Most have
been limited to single-point measurements of a small subset
of the full velocity gradient tensor field.

The earliest and still the most widely used experimental
techniques for measuring one or several of the velocity gra-
dient tensor components rely on multiple hot-wire or hot-
film probes. The original four hot-wire probe was developed
in 1950 by Kovasznay1 for measurements of the streamwise
componentv1 of the vorticity vector at a single spatial point.
Corrsin and Kistler,2 and later Willmarth and Lu,3 Willmarth
and Bogar,4 and Kastrinakiset al.5–7 used probes of this type
for streamwise vorticity component measurements in turbu-
lent boundary layers. Vukoslavcˇević and Wallace8 subse-
quently developed an improved Kovasznay-type probe
which used four independent wires to determine the stream-
wise vorticity component. Foss,9 Fosset al.10,11 and Haw,
Foss and Foss12 have successfully used a similar four hot-
wire arrangement to measure the cross-stream componentv3
of the vorticity vector at a single point. A five-sensor hot-
film probe for simultaneously measuring the spanwise and
normal vorticity components,v2 andv3, was developed and
used by Eckelmannet al.13 Surveys of some of the charac-
teristics of these vorticity probes and the data obtained from

them are given by Wallace,14 Foss and Wallace,15 and Wal-
lace and Foss.16 Kim and Fiedler17 subsequently used a six-
sensor probe for simultaneous measurement of the stream-
wise and cross-stream vorticity components,v1 and v3.
Recently Vukoslavcˇević, Wallace and Balint,18 and Balint,
Wallace, and Vukoslavcˇević19 have succeeded in building
and using a nine-sensor hot-wire probe that yields simulta-
neous measurements for all three vorticity componentsv1,
v2, andv3. This probe permits resolution of the vorticity
vector at a scale approximately six times coarser than the
local Kolmogorov scale at their measurement location in a
thickened turbulent boundary layer. Kitet al.20,21have devel-
oped a nine-wire probe to measure components of the veloc-
ity gradient tensor, and more recently Tsinober, Kit, and
Dracos22 have assembled a 12-sensor hot-wire probe, and
even a 20-sensor probe without any common prongs, for
measuring all nine independent components of the velocity
gradient tensor at a single spatial point. In their grid turbu-
lence experiment, this probe allowed resolution of length
scales roughly five times coarser than the local Kolmogorov
scale.

Among the strengths of these multiple hot-wire/film
probe techniques are the ease with which extensive statistical
samples can be collected, and their ability to isolate large-
scale contributions to the velocity and velocity gradient sta-
tistics. Despite the successes in development of these tech-
niques, however, all have certain common characteristics
that ultimately influence their ability to provide data on the
structure and dynamics of the velocity gradient tensor field.
Even in principle these methods allow time series measure-
ments at only a single spatial ‘‘point,’’ with one-dimensional
spatial structure in the velocity gradient component fields
discernible only if a Taylor hypothesis is accepted. Of a
more practical nature, interference between the various wires
and prongs in such probes leads to complex calibrations and
the potential for erroneous measurements~e.g., see Vuko-
slavčević, Wallace, and Balint,18 and Tsinober, Kit, and
Dracos22!.a!Corresponding author. Electronic mail: wdahm@engin.umich.edu
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In part to overcome these concerns about intrusive
probes, more contemporary non-invasive optical techniques
have been developed, of which laser Doppler velocimetry
~LDV ! remains by far the most popular. Lang23 developed an
LDV with four focal volumes to measure the spanwise vor-
ticity in a turbulent shear layer. More recent advances in
laser diagnostics and high-speed data acquisition and pro-
cessing capabilities have facilitated a variety of optically
based, non-intrusive velocimetry methods which provide in-
formation over two-dimensional fields of many points. Re-
views of some of these are given, for example, by
Adrian,24,25 Merzkirch,26 Lauterborn and Vogel,27

Hesselink,28 Miles and Nosenchuck,29 Gad-el-Hak,30 and
Chiang and Reid.31 The majority of these techniques involve
particle imaging methods. These generally yield two-
component velocity vectors over two-dimensional fields,
though three-dimensional particle tracking~Nishino, Kasagi,
and Hirata,32 Papantoniou and Maas33! and holographic par-
ticle image velocimetry ~HPIV! ~Haussmann and
Lauterborn,34Malyak and Thompson,35Meng and Hussain,36

Scherer and Bernal37! are being developed for measuring
full, three-component vector velocity fields in complex
flows. However, in all these particle based techniques, the
seeding densities required to resolve the smallest spatial
scales in a flow can become so high as to prevent sufficient
optical penetration into the interior of the flow. Various tech-
niques ~Chu et al.,38 Falco and Chu,39 Hassa, Paul and
Hanson,40 Miles et al.,41,42 Pearlstein and Carpenter,43

Gruen,44Maas,45 Tokumaru and Dimotakis46! have also been
proposed for extracting the velocity or certain components of
the velocity gradient tensor field from scalar field measure-
ments obtained through laser-induced fluorescence, phospho-
rescence, or other optical techniques.

The optical penetration difficulty can be circumvented
by using an effectively continuous distribution of laser fluo-
rescent dye molecules~or other suitable tracer! as the seed,
whose size eliminates the Mie scattering associated with par-
ticulates and thus maintains optical transparency in the flow
field. Instead of relying on the displacement of discrete par-
ticles seeded in the flow, we use thecontinuumfield created
by the concentration of a dynamically passive, conserved
scalar quantity which is transported by the underlying turbu-
lent flow ~Dahm, Su, and Southerland47,48!. This continuum
field approach circumvents many of the difficulties noted
above in conjunction with particle based methods, and is
based on the recently demonstrated experimental capability
for obtaining fully resolved, four-dimensional measurements
of Sc@1 conserved scalar fieldsz~x,t! in turbulent flows
~Southerland and Dahm49–51!. In scalar imaging velocimetry,
extraction of the underlying space- and time-varying velocity
field u~x,t! from such scalar field measurements is based on
the exact conserved scalar transport equation, which in di-
mensionless form is

F ]

]t
1u–“2

1

Re Sc
¹2Gz~x,t !50. ~1!

~All variables are taken to be normalized with reference
length and velocity scalesl* andu* , and a reference scalar
concentration valuez* . The dimensionless scalar diffusivity

involves the product of the Reynolds number Re[u* l * /n
and the Schmidt number Sc[n/D, wheren andD are respec-
tively the vorticity and scalar diffusivities.! Given fully
space- and time-differentiable scalar field data, the only un-
knowns in this equation are the components of the velocity
field u~x,t!. We have proposed47,48 that from sufficiently re-
solved, four-dimensional measurements ofz~x,t! and an ap-
propriate set of additional constraints, one can extract the
velocity fieldu~x,t! despite that only the component ofu~x,t!
along the scalar gradient vector“z~x,t! direction affects the
scalar field evolution. The latter observation recognizes that,
in addition to the true velocity fieldu~x,t!, Eq. ~1! in prin-
ciple admits all other velocity fields with streamlines con-
fined to isoscalar surfaces. We assert, however, that in tur-
bulent flows these spurious velocity fields can be excluded,
since Sc.1 scalar fields contain length scales smaller than
those admissible in the underlying velocity fields. It will be
seen that by taking into account the relative smoothness be-
tween the scalar and velocity fields in turbulent flows, it is
indeed possible to determine the velocity field accurately.

There are two closely related methods by which this can
be done. The first, referred to as direct inversion scalar im-
aging velocimetry, involves inverting the scalar transport
equation~1! directly throughout the data space to yield the
velocity component fieldui~x,t! which lies along the local
scalar gradient vector“z~x,t!. The full vector velocity field
u~x,t! is then extracted using the gradient field“ui~x,t!, rec-
ognizing that certain constraints must be met which reflect
the relative smoothness between the scalar field data and the
velocity field in turbulent flows. The second method, referred
to as integral minimization scalar imaging velocimetry, is a
refinement of the first that addresses the issues of relative
smoothness and scalar field noise through a variational for-
mulation. This method is still based on the scalar transport
equation~1!, but recognizes that any measurement errors in
the scalar field dataz~x,t! will lead to a non-zero right-hand
side in Eq.~1!. The method thus determines the velocity field
u~x,t! which minimizes an integral composed of various re-
sidual terms. One of these residual terms measures the agree-
ment of the velocity field and measured scalar field with the
scalar transport equation~1!, while another imposes the
smoothness constraint as a regularization parameter. The
right-hand side of Eq.~1! thus is not required to be exactly
zero, but rather is minimized subject to smoothness and other
constraints. By selecting the weight assigned to the smooth-
ness constraint, the correct ratio of length scales in the ve-
locity and scalar fields can be ensured. We will see that this
integral minimization formulation has advantages over the
direct inversion scheme, both in flexibility of application and
in the potential accuracy of the results. Validation tests also
show that the integral minimization formulation is capable of
determining velocity and velocity gradient fields accurately
in turbulent flows, even in the limit of unity Schmidt number
where the finest length scales of the scalar gradient and ve-
locity fields become comparable. A companion paper~Su
and Dahm52!, hereafter referred to as Part II, applies this
technique to fully resolved, four-dimensional Sc@1 scalar
field data to obtain the first non-invasive laboratory measure-
ments for the full nine-component velocity gradient tensor
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field “u~x,t! and the pressure gradient field“p~x,t! in a tur-
bulent flow.

The direct inversion approach47,48begins by recognizing
that the convective termu–“z in the scalar transport equa-
tion ~1! may be written asuiu“zu, whereui is the projection
of the velocityu onto the local scalar gradient vector direc-
tion, or

ui~x,t ![u~x,t !•ê
“z~x,t !, ~2!

with

ê
“z~x,t ![“z~x,t !/u“z~x,t !u. ~3!

From measurements of the scalar fieldz~x,t! which are fully
resolved in space and time, the scalar field derivative terms
]z~x,t!/]t, “z~x,t! and ¹2z~x,t! which appear in the scalar
transport equation can be computed. This allowsui~x,t! to be
found by inversion of~1! as

ui~x,t !5F 1

Re Sc
¹2z~x,t !2

]z~x,t !

]t G u“z~x,t !u21, ~4!

as first demonstrated by Southerlandet al.53 This ui~x,t! dif-
fers between any two pointsx and x1d x due to both the
change in the scalar gradient vector direction, and the change
in the velocity fieldu~x,t!. To first order this can be written

dui5u~x!–ê
“z~x!1~“u~x!–dx!•ê

“z~x1dx!, ~5!

where thed ’s represent the differences between the values at
x1d x andx.

The direct inversion scalar imaging velocimetry tech-
nique uses thisui~x,t! field, together with a smoothness con-
dition, to determine the vector velocity fieldu~x,t! through
an iterative process. The starting solution proceeds from an
initial assumption that, within small neighborhoods of each
point x, the contribution of spatial variations inu @repre-
sented by the second term on the right-hand-side of Eq.~5!#
to variations in the measuredui values can be ignored. This
is equivalent to assuming that the scalar gradient vector di-
rectionê

“z varies more rapidly than does the velocity vector;
this assumption was motivated by the high Schmidt number
of currently available fully resolved experimental scalar field
measurements.49–51 Within such small neighborhoods, the
ui’s at three different points are then treated as projections of
a single local velocity vectoru onto three different unit vec-
tors ê

“z . This leads to the linear system

F ~ui!1
~ui!2
~ui!3

G5F ~ ê
“z!1,x ~ ê

“z!1,y ~ ê
“z!1,z

~ ê
“z!2,x ~ ê

“z!2,y ~ ê
“z!2,z

~ ê
“z!3,x ~ ê

“z!3,y ~ ê
“z!3,z

GF uv
w
G , ~6!

which is solved for the componentsu, v, w to yield the
starting solutionu~0!. Subsequent iterations assume that the
velocity u varies linearly within small neighborhoods ofx.
Namely, the resultu(k21) of the k21 iteration is differenti-
ated, and the resulting velocity gradient information is used
in the determination of thekth solutionu(k), or

dui5u~k!~x!–ê
“z~x!1~“u~k21!~x!–dx!–ê

“z~x1dx!. ~7!

The iterations are performed until theu(k)~x,t! converge to a
self-consistent result. Dahm, Su, and Southerland48 have ap-

plied this direct inversion technique to test cases with a
single Sc@1, passive, conserved scalar field in turbulent
flows and have extracted the corresponding velocity and ve-
locity gradient fields.

When applying this technique to experimental scalar
field data, the effects of experimental noise and numerical
errors in the scalar field derivatives can be dealt with by such
measures as writing Eq.~6! for multiple sets of points at each
x. However, it is impossible to eliminate entirely the effects
of noise on the velocity field results, even in principle. This
is because, despite high resolution and signal quality in the
underlying scalar field measurements, small but unavoidable
errors will be present in the various scalar field derivative
terms of the exact conserved scalar transport equation~1!.
These errors will arise both from experimental noise and
from the discretization errors inherent in the numerical dif-
ferencing operators. The presence of these errors in the scalar
field derivatives means that, even if the true velocity field
u~x,t! were introduced in Eq.~1!, the right-hand side of the
equation will not in general be exactly zero. As a result, the
velocity fields obtained by strict local enforcement of a zero
right-hand side in the scalar transport equation, as done in
determiningui~x,t! by Eq. ~4!, will be affected by these er-
rors in the scalar field derivatives.

The objective of implementing the scalar imaging ve-
locimetry technique with a formulation that is less sensitive
to noise in the scalar field derivative data naturally suggests
that the inversion of the scalar transport equation be ap-
proached using a minimization technique. The velocity field
u~x,t! which results from such an approach willnot then
force a zero right-hand side in Eq.~1!, but rather will mini-
mize the integral of the left-hand side of the scalar transport
equation over the entire domain, subject to a smoothness
constraint as before, and if desired, additional physical con-
straints.

Since the present scalar imaging velocimetry technique
was first presented in 1991~Dahm, Su and Southerland47,48!,
other scalar based velocimetry approaches for four-
dimensional measurements in turbulent flows have been pro-
posed. The most closely related is a method of Tokumaru
and Dimotakis,46 but this does not use the scalar transport
equation, and instead finds the velocity field which maxi-
mizes a correlation between scalar fields. Similarly, a two-
scalar approach has been proposed by Pearlstein and
Carpenter,43 but this relies on a method for simultaneous
measurement of two scalar fields, and requires that the two
scalar gradient vectors not align.

The presentation is organized as follows. Section II dis-
cusses the formulation of the integral minimization scheme,
while Section III presents an assessment of the errors in-
curred when using the direct inversion and integral minimi-
zation techniques to extract velocity fields from essentially
noise-free DNS computations. The data used are from the
limiting case of unit Schmidt number, and thus pose an es-
pecially stringent test on the viability of the integral minimi-
zation scheme. Comparison of the results from the integral
minimization and direct inversion techniques, as applied to
the DNS data, demonstrate that both give velocity fields that
reproduce the basic structural features of the underlying DNS
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velocity field. A proper choice of the adjustable weights in
the integral minimization technique gives results consider-
ably better than achieved by direct inversion.

II. INTEGRAL MINIMIZATION SCALAR IMAGING
VELOCIMETRY

A. The integral minimization formulation

The velocity field sought here is that which minimizes
the integral of a functionalE over the domainD as

min
u~x!PR3→R3

E
D
E~u1 ,u2 ,u3 ;x1 ,x2 ,x3!d

3x, ~8!

where the componentsui of u are the dependent variables in
E, and the componentsxi of x are the independent variables.
E itself is composed of residuals representing deviations
from exact agreement with the scalar transport equation~1!,
as well as terms which measure the smoothness in the solu-
tion u~x,t!. In general,E in Eq. ~8! may be written as the sum
of an arbitrary number of such residuals

E[E11a2E21b2E31•••. ~9!

Here eachEi>0 represents a local condition involving the
velocity field and possibly the scalar field. The factorsa2,
b2,....0 allow control over the relative weights assigned to
the individual residualsEi in the minimization functionalE.

Specification of the termsEi must be made with an eye
to the mathematical tools by which Eq.~8! will be solved.
The scalar field measurements of Southerland and Dahm49–51

will, in the context of scalar imaging velocimetry, yield com-
putational domains as large as 3.33105 points. With three
degrees of freedom at each point, corresponding to the three
components of the velocity field, the result is a system of
approximately one million equations which must be solved
at each timet. This number of equations can be lowered
somewhat in practice through subsampling of the domains,
as discussed in Section II C, but the reductions will amount
at the most to one order of magnitude. Interest is therefore
confined here to those residualsEi which will produce a lin-
ear system, so that the simplicity of linear algebraic solution
schemes may be applied. A further restriction which is im-
posed is that the system of equations contain only first and
second derivatives of the velocity field, leading to simple and
compact discrete difference operators; this restriction allows
the matrix associated with the linear system to remain sparse.
These conditions, together with the Euler equation of varia-
tional calculus@given as Eq.~14!#, require that the termsEi
be at most second-order in the components ofu and“u.

In this workE1 is chosen to be the left-hand side of Eq.
~1!, and measures the extent to which the scalar field data
and any candidate velocity fieldu~x,t! are in ‘‘good’’ agree-
ment with the exact conserved scalar transport equation.
Thus, formally

E1[S F ]

]t
1u–“2

1

Re Sc
¹2Gz~x,t ! D 2. ~10!

Because only incompressible turbulent flows will be of inter-
est to the present work, a logical second element in our

scheme is to penalize deviations from the continuity equation
“–u50. This is represented in strictly non-negative form as

E2[~“–u!2. ~11!

A further condition is needed to specify three-
dimensional velocity fields uniquely. This ideally would be a
direct mathematical representation of a specific physical
property of the flow, however the existence of flow proper-
ties which can be represented as minimizations of integral
quantities is very limited—e.g., to certain simple inviscid,
circulation-preserving flows~Truesdell54!. Independent of
the need to specify velocity fields uniquely in three dimen-
sions, however, is the need to counteract the tendency ofE1
andE2 to introduce artificially small length scales into the
velocity field solutions. Such artificial length scales may
arise by two mechanisms. The first, which involvesE1 only,
concerns the relative smoothness of the velocity and scalar
fields. Velocity fields satisfying onlyE150 would in general
contain length scales as small aslD , the finest length scale
of the scalar field. The conditionE150 alone is thus, in
general, inconsistent with the true relationship of the finest
scales in the velocity and scalar fields. The other mechanism
involves bothE1 and E2 , and is driven by the effects of
experimental noise and discretization errors, which will lead
to spurious length scales on the order of the grid spacing of
the calculations. These considerations naturally suggest the
introduction of some regularizing operator in the inversion
process. The use of such regularizing operators is common in
inverse problems which involve the analysis of discrete data,
and the mathematical basis of the regularization process is
well described by Tikhonov and Arsenin.55 The residual cho-
sen to supplementE1 andE2 is one which penalizes non-
smoothness of the velocity field. This is most directly ac-
complished by minimizing some measure of the magnitude
of the velocity gradient components. Among the simplest of
these measures is

E3[“u:“u, ~12!

which is simply the sum of squares of the velocity gradient
tensor components. Regularizing operators of the form of
Eq. ~12! are known as ‘‘stabilizers’’~in particular,E3 is a
Tikhonov stabilizer of first order!, and provide the solutions
for u with the property of mathematical stability in the face
of small noise or discretization errors in the initial data.

B. Implications of the smoothness condition

At this point it is helpful to state the arguments pertain-
ing to the vorticity and scalar diffusion length scalesln and
lD , which represent the finest scales on which spatial gradi-
ents can be sustained in the vorticity and scalar fields. As
noted by Buch and Dahm,56,57 the relationship between these
scales provides a measure of the relative smoothness of the
velocity and scalar fields and is dependent upon the Schmidt
number Sc as

ln

lD
5Sc1/2. ~13!

The direct inversion implementation of scalar imaging ve-
locimetry was formulated around the assumption that the tar-
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get velocity fields were smoother than the scalar fields. This
assumption was driven by the high Schmidt number of the
scalar field measurements of Southerland and Dahm49–51

~where Sc'2075!, together with the relation of Eq.~13!. The
smoothness assumption, rather than being present as an ex-
plicit condition satisfied by the velocity field, was present as
an implicit consideration in the construction of the direct
inversion method. In contrast, the integral minimization
implementation allows a smoothness condition to be defined
explicitly @here by Eq.~12!#, with its weight adjusted to re-
flect the Schmidt number.

This last point deserves closer inspection. Though the
direct inversion technique was formulated with the high Sc,
turbulent scalar field data of Southerland and Dahm49–51 in
mind, the only Schmidt number regime for which turbulent
scalar field data would clearly be insufficient to determine
velocity field information is Sc,1; in such cases, the target
velocity fields would containmore information than the sca-
lar fields, rendering accurate velocity field determination
from scalar field information impossible. For other Schmidt
numbers, the scalar fields in principle contain sufficient in-
formation to determine the velocity fields, provided that the
smoothness condition is defined and weighted appropriately.
The ‘‘appropriate’’ weighting for the smoothness condition
must take into account both the Schmidt number and the
level of experimental and numerical noise present in the sca-
lar field data. The influence of the Schmidt number on the
weighting is obvious—larger Sc should require greater val-
ues of b2, i.e., an increased emphasis on the smoothness
condition E3 relative to the scalar transport conditionE1 .
The effect of the noise level, however, is harder to definea
priori . Besides affecting the relative weights assigned toE3
andE1 , noise and discretization effects influence the relative
weighting ofE3 andE2 as well. Numerical experiments that
quantify the effects of various choices fora2 and b2 are
given in Section III C.

From inspection of the conditionsE2 andE3 , it can be
seen that reduction of these residual terms may occur not
only by a reduction in the velocity gradients, but also by a
general reduction in the velocity vector magnitude through-
out the domain. The magnitude of the velocity vectoru
therefore ‘‘floats.’’ This effect can be countered by a global
multiplicative factor which renormalizes the result foru to
guarantee optimal agreement with the scalar transport condi-
tion E150. It may nevertheless be expected that the peak
velocity component magnitudes will tend to be underesti-
mated by the integral minimization SIV scheme. However,
results from the validation tests of Section III C show that
this effect is quite small.

C. The variational equations

Once the functionalE(u1 ,u2 ,u3 ;x1 ,x2 ,x3) has been
properly specified in terms of the constituent functionalsE1 ,
E2 , andE3 and the weighting parametersa2 andb2, it re-
mains only to solve Eq.~8! for the velocity fieldu~x,t!. This
requires first that the system of three equations, correspond-
ing to the three components of the velocity field, be written
for each point in the computational domain. From the calcu-
lus of variations, the integral of Eq.~8! is stationary if the

Euler characteristic equation for each dependent variable is
satisfied. ForE as defined here, including only first deriva-
tives of the dependent variablesui , the Euler characteristic
equation for a givenui has the following general form

]E

]ui
2(

j51

n
]

]xj
S ]E

]~]ui /]xj !
D50, ~14!

with n the number of independent variables. For Eq.~8!, the
Euler equation foru is

]E

]u
2

]

]x S ]E

]ux
D2

]

]y S ]E

]uy
D2

]

]z S ]E

]uz
D50, ~15!

with directly analogous results forv andw.
With E and its constituent termsE1 , E2 , andE3 given

in Eqs.~10!, ~11!, and~12!, the three Euler equations which
result are

uzx
21vzyzx1wzzzx2a2~uxx1vyx1wzx!2b2¹2u

52S ]z

]t
2

1

Re Sc
¹2z D zx ~16!

uzxzy1vzy
21wzzzy2a2~uxy1vyy1wzy!2b2¹2v

52S ]z

]t
2

1

Re Sc
¹2z D zy ~17!

uzxzz1vzyzz1wzz
22a2~uxz1vyz1wzz!2b2¹2w

52S ]z

]t
2

1

Re Sc
¹2z D zz . ~18!

The determination of the velocity fieldu~x,t! then involves
writing Eqs. ~16!, ~17!, and ~18! for each of the discrete
points in the domain, with the velocity derivative terms rep-
resented by discrete operators. The equations are then con-
catenated to form a linear system in the velocity components,
and the resulting system is solved foru~x,t!.

The scalar field derivatives are evaluated from the scalar
field data using linear central differences and, in the case of
second derivatives, the operators resulting from successive
applications of central differencing. The velocity derivative
terms in Eqs.~16!, ~17!, and ~18! are discretized using the
same difference operators. At the limits of the domain, re-
flective boundary conditions are used@e.g., at x50,
ui(Dx)5ui(2Dx)]. The resulting vanishing derivative
across the boundary is consistent with the minimization of
velocity gradients through Eq.~12!.

As a final note, the linear systemAu5b which results
from Eqs. ~16!, ~17!, and ~18! is solved using an iterative
method~Eisenstatet al.58! similar to the method of conjugate
gradients. The solution convergence is conditioned upon the
residual uAu2bu. For the results presented here, the initial
solution used is simplyu[0. For velocity determination on a
time series of scalar field measurement data, such as will be
seen in Part II,52 increased speed of convergence is pursued
by using the velocity field resultu~x,t! for a given time step
as the initial estimate for the velocity field at the subsequent
step.
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D. Nature of the extremum

We show here that the variational Euler equations~16!,
~17!, and ~18! isolate a local extremum, and that this extre-
mum is a minimum. This will rely on the second variation of
the integral. Because the general theory of the second varia-
tion for functions involving three dependent variables and
three independent variables is not well developed, this also
provides an opportunity to illustrate some of the key math-
ematical principles used in the integral minimization form of
scalar imaging velocimetry.

The integral in question here is~the notation follows
Fox59!

I5E
D
E~u,v,w,“u,“v,“w;x,y,z!dxdydz ~19!

where the explicit dependence on the three components ofu
and the nine components of“u is shown. The~weak! varia-
tions of interest will have the form

u5s~x!1et~x! ~20!

whose components are labeled

ui5si~x!1et i~x!. ~21!

Under the influence of the variations described by Eq.
~20!, the integralI will assume the form

I5I s1dI s ~22!

whereIs is defined by

I s5E
D
E~s1 ,s2 ,s3 ,“s1 ,“s2 ,“s3 ;x,y,z!dxdydz ~23!

and thusI5I s1dI s has the form

I s1dI s5E
D
E~s11et1 ,...,“~s11et1!,...;x,y,z!dxdydz

~24!

wheredI s is itself defined as

dI s5eI 11
e2

2
I 21O~e3!. ~25!

Here I 1 is referred to as the first variation andI 2 as the
second variation.

In order thatIs represents a minimum for the integral
I ,dI smust be positive for all sufficiently small values ofe. It
is thereforesufficientthat I 150 andI 2.0 in Eq. ~25!. That
the first condition,I 150, is observed by the functionalE and
the velocity field resultu is guaranteed by the Euler charac-
teristic equations~16!, ~17!, and~18!. These equations were
specified through application of the general result for the
Euler equations~14!. The theory of the first variation by
which Eq. ~14! may be derived is very well described in
many texts. In contrast, the general theory for thesecond
variation which would be relevant to this form ofI ~involv-
ing three dependent and three independent variables! is ana-
lytically very involved. Instead, the form of the second varia-
tion for this particular problem is derived below.

I 2 for this problem is defined by

I 25E
D
F t i t j ]2E

]ui]uj
1

]t i
]xk

]t j
]xl

]2E

]~]ui /]xk!]~]uj /]xl !
G

3dxdydz. ~26!

This equation reflects the dependence ofE on the velocity
componentsui and their first derivatives]ui /]xi , and also
reflects the absence of any cross terms involving both the
velocity components and their derivatives. Applying this to
the specific form ofE given by Eqs.~9!, ~10!, ~11!, and~12!,
this becomes

I 25E
D

@~ t–“z!21a2~“–t!21b2
“t:“t#dxdydz. ~27!

Having applied the Euler characteristic equations to the first
variation, the integral ofE over the domainD is minimized if
this I 2 is positive, independent of the choice oft~x! in Eq.
~20!. This is manifestly satisfied except for the uninteresting
case oft[0. The simplicity of the form of Eq.~27!, and the
similarity of the integrand to the functionalE itself, can be
traced directly to the original formulation ofE in terms of
quantities of at most second order in the components ofu
and“u. That restriction was made to guarantee simplicity in
the solution method, and returns here to simplify the analysis
as well.

III. A DNS-BASED TEST OF SCALAR IMAGING
VELOCIMETRY

This section presents results from the application of this
integral minimization scalar imaging velocimetry technique
to a direct numerical simulation~DNS! of Sc51 passive sca-
lar mixing in a turbulent flow. The velocity fields obtained
by the scalar imaging velocimetry technique can be directly
compared with the actual velocity fields used in the simula-
tion, allowing for rigorous quantification of the accuracy of
the technique. Section III A discusses properties of the DNS
data, and relates these properties to the experimental scalar
field measurements of Southerland and Dahm.49–51 In Sec-
tion III B the choice ofa2 and b2 for these Sc51 data is
discussed. Results from the application of the integral mini-
mization formulation of SIV to these DNS data are presented
in Section III C. For comparison, that section also presents
results from the application of the direct inversion
technique48 to the DNS data.

A. Properties of the DNS data

The DNS scalar and velocity field data used here are
from a simulation of the turbulent mixing of a dynamically
passive Sc51 conserved scalar quantity by Mellet al.60–62

The turbulent flow was decaying, homogeneous, isotropic
and incompressible, and its evolution was computed in a
1283 volume. At the time chosen for this test, the Taylor
scale Reynolds number Rel has decayed to 23 from its initial
value of 36. A sample scalar field plane from this simulation
is shown in Fig. 1.

Because the aim of this study is to assess the applicabil-
ity of the integral minimization scalar imaging velocimetry
technique to actual laboratory turbulent flows, it is important
that the scalar field information used be representative of the
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available scalar field measurements. For this reason, the
original 1283 data volumes are subsampled spatially to 128
3128315, to approximate the relative dimensions of the ex-
perimental scalar field data volumes as well as to match the
levels of spatial resolution. The DNS data are also sub-
sampled in time, as explained below, to make the temporal
resolution comparable to that of the experimental data.

For this simulation of homogeneous, isotropic flow, the
reference length and velocity scalesl* and u* will be the
Taylor length scalelT and the rms velocitŷu–u&1/2, respec-
tively. The scaled grid spacing in the simulation is
Dx5Dy5Dz'0.1lT . The time step between data volumes
is markedly smaller, namelyDt'0.0035lT/uuurms. The rea-
son for the much higher time resolution is that the simulation
used a fixed time step, which was chosen to resolve ad-

equately the time scales of the initial turbulence and over-
resolves the flow as the turbulence decays with time. To
match the spatial and temporal resolutions to a greater de-
gree, only every twentieth simulation time step was used in
forming the central differences from which the time deriva-
tive was calculated. The resulting time separation was
Dt'0.070lT/uuurms, which, when compared with the grid
spacingDx, mimics the roughly equivalent levels of spatial
and temporal resolution characteristic of the experimental
scalar field data of Southerland and Dahm.49–51

B. Numerical parameters

The variational Euler equations~16!, ~17!, and ~18! in-
volve the factorsa2 andb2, which allow the relative weights

FIG. 1. Scalar field and scalar field derivative information from the simulations of Mellet al. ~Refs. 60, 61, and 62!. ~a! The scalar fieldz~x,t!. ~b! The time
derivative field]z~x,t!/]t. ~c! The scalar energy dissipation rate field“z–“z~x,t!. ~d! The Laplacian field¹2z~x,t!.

1875Phys. Fluids, Vol. 8, No. 7, July 1996 L. K. Su and W. J. A. Dahm



of the three residualsE1 ,E2 , andE3 @Eqs. ~10!, ~11!, and
~12!# to be adjusted according to the characteristics of the
given scalar field data. The value ofb2, which describes the
importance of the smoothness residualE3 relative to the sca-
lar transport residualE1 , is chosen to reflect the relation
between the smoothness of the velocity and scalar fields. As
mentioned in Sections II A and II B, satisfaction of the scalar
transport condition alone can be expected to admit velocity
fields with length scales as fine as the smallest length scales
in the scalar field. Since for these Sc51 DNS data the finest
scales of the velocity and scalar fields are nominally equiva-
lent, we anticipate that ideallyb2!1. The continuity residual
E2 may itself permit artificially small length scales, on the
order of the grid spacing of the calculations, to enter the
velocity field results. The need to counteract this effect sug-
gests thata2 andb2 will be of the same order.

However, a priori specification ofa2 and b2 beyond
these guidelines is not possible. In fact, even if the optimal
values fora2 andb2 were known for a given Schmidt num-
ber, it is not apparent how these might be properly scaled to
a different Sc. The only guarantee is that increasing~decreas-
ing! values of Sc will be accompanied by increases~de-
creases! in the optimal value ofa2 andb2. The result is that
the optimal values of these parameters for a given Schmidt
number must be determined by numerical experiments. The
criterion used for determining whether the optimalb2 has
been found is to require that the finest length scale of the
velocity field results be consistent with the estimate forln .
The optimala2 is then chosen as the highest value which can
be used without spurious, small scale discretization errors
becoming evident. This procedure is simplified by the rela-
tive insensitivity of the integral minimization formulation to
changes ina2 andb2; for example, decreasing values of the
smoothness parameterb2 increase the amount of fine scale
information in the results without significant effect on the
larger structures. The effect of small changes~i.e., within 1
order of magnitude! in a2 andb2 on the velocity field results
is indeed virtually negligible. This is seen in Fig. 2, which
shows the effect of changes inb2 ~with the ratiob/a fixed at
2/3! on the results foru and“u in terms of their correlations
with the known DNS fields.@The correlation measure used
will be defined by Eq.~28!.# Also shown in the figure is the
effect of changes ina2 upon the same correlations, with a
fixed value ofb252•1024. Based on these numerical experi-
ments, the values ofa2 and b2 chosen for the results of
Section III C are, respectively, 5•1024 and 2•1024. From Eq.
~9!, these choices ofa2 andb2 mean that the velocity field is
primarily constrained to satisfy the scalar transport residual
E1 , with only a small weight assigned to either the continu-
ity or smoothness residualsE2 and E3 . The very small
weight on the smoothness residual is a consequence of the
inherent smoothness of the~Sc51! scalar field data.

C. Results

The scalar field derivatives]z/]t, “z, and¹2z provide
the inputs to the scalar imaging velocimetry technique. These
are found through linear central differences from the scalar
field data, and are shown in Fig. 1 along with the correspond-
ing scalar field plane. The velocity component fieldsu, v

andw which result from these derivative fields for both the
integral minimization and direct inversion SIV approaches
are shown in Figs. 3, 4, and 5, together with the exact DNS
fields for comparison. The normalization of all quantities
shown is by thesamescale factor, namely the rms velocity
magnitudeuuurms[^u–u&1/2 from the DNS fields. This allows
direct comparisons of the integral minimization and direct
inversion results with each other as well as with the DNS
fields. It is evident, even from a visual inspection of these
figures, that both SIV formulations reproduce the basic struc-
tural features of the DNS fields. It is also apparent that the
integral minimization approach yields results that are consid-
erably more accurate than those obtained by the direct inver-
sion approach. Since the DNS scalar field data are essentially
free of noise, the improvements obtained with the integral
minimization formulation appear to be traceable to two pri-
mary considerations. One of these is the ability to include the
continuity constraintE2 in the procedure for determining the

FIG. 2. Sensitivity of the integral minimization SIV results to changes in the
weighting parametersa2 andb2. Shown are the velocity component SIV-
DNS correlations~incorporating the three components ofu! and velocity
gradient component correlations~incorporating the nine components of“u!
corresponding to the planes displayed in the preceding figures, for different
values ofb2 ~a!, with a fixed ratio ofb/a52/3 imposed. Also shown are~b!
the SIV-DNS correlations for different values ofa2, with b252•1024. The
results presented in this paper were found with values ofa255•1024 and
b252•1024.
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velocity fields. The other is the more direct fashion in which
the smoothness constraint enters the integral minimization
formulation.

The improvements seen in the integral minimization re-
sults over those obtained by the direct inversion formulation
are quantified in Table I. This table gives the correlation
between the DNS fields and those obtained from both the
integral minimization and direct inversion approaches. The
values shown are standard moment correlationsR, defined
for any two fieldsui anduj as

Ruiuj
[

^ui8uj8&

~ui8!rms~uj8!rms
. ~28!

The correlations between the SIV and DNS velocity compo-
nent fieldsu, v, andw are typically 0.96 with the integral
minimization approach, but only 0.84 with the direct inver-
sion approach. Similarly, when the velocity gradient compo-
nent fields from the two approaches are compared with the
corresponding DNS fields, the resulting overall correlation is
0.84 with the integral minimization approach, but only 0.53
with the direct inversion approach. As a further test on the
accuracy of these results, Table I also includes measures of
the agreement of the velocity field solutions with the conti-
nuity condition“–u50 of incompressible flow. The quantity
labeled ‘‘x-divergence’’ is the correlation between
(]u/]x) and (2]v/]y2]w/]z), which assumes a value of 1

FIG. 3. Comparison of the SIV results foru~x,t! with the DNS fields.~a! The integral minimization SIV result for theu-component.~b! The direct inversion
SIV result.~c! The DNS field. Velocity component correlations are presented in Table I.
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when continuity is exactly satisfied. They- andz-divergence
quantities are similarly defined. These correlations lie in the
range 0.85–0.89 for the integral minimization results, with
much lower values~0.50–0.60! for the direct inversion re-
sults. These correlations clearly demonstrate that the integral
minimization approach is better able to determine the struc-
ture of these velocity fields from the original Sc51 turbulent
scalar field data.

While correlations of the type in Table I allow assess-
ment of the structural similarity~i.e., phase agreement! be-
tween the DNS and SIV fields, they are insensitive to differ-
ences in the absolute magnitudes of these fields. For this
reason, Fig. 6 presents distributions of the values of the ve-
locity componentsu, v, andw for the integral minimization

SIV and DNS fields. These distributions are all normalized
by the same scale factoruuurms. In each case, the SIV and
DNS distributions show strikingly similar form. These distri-
butions also show a result anticipated in Section II B, namely
that the peak velocity component values for the integral
minimization results slightly underestimate the true peak val-
ues. These minor discrepancies in peak values have been
taken into account in the choice of color assignments in Figs.
3–5.

While the DNS data as used in this validation study
emulate the resolution characteristics of currently available
experimental scalar field measurements, they are free of the
random noise which is present in such experimental mea-
surements ofz~x,t!. Figure 7 shows the effect on the SIV

FIG. 4. The integral minimization SIV result for thev-component~a!, the direct inversion result~b!, and~c! the DNS field. Correlations are in Table I.
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results foru and“u of random~Gaussian! noise added to the
DNS scalar fields. The signal-to-noise level indicated is the
ratio of the maximum signal level in the DNS scalar fields to
the rms value of the Gaussian noise distribution added to
those fields. Shown in the figure are the correlations ofu and
“u between the DNS fields and SIV results, using the same
correlation measure as Fig. 2. The values of the weighting
factorsa2 and b2 used are, as before, 5•1024 and 2•1024,
respectively.

Figure 7 demonstrates that theu and“u correlations are
largely insensitive to scalar field noise throughout a range of
noise levels, from a low noise level with an associated
signal-to-noise level of 600, up to a signal-to-noise level of

10 ~corresponding to the unrealistic case of effectively 3-bit
data!. The results in Fig. 7 should be viewed relative to the
noise estimates in current practical four-dimensional scalar
field measurements.50,51At lower signal levels~the ‘‘camera
noise’’ regime!, the noise level in those measurements is
roughly constant at 0.8 digital levels out of a maximum 256,
so the signal-to-noise level is a linear function of the signal.
At higher signal levels~the ‘‘shot noise’’ regime! the signal-
to-noise level goes as the square root of the signal, with a
maximum noise level of roughly 1.3 digital levels. At their
maximum signal level, Southerland and Dahm estimate a
signal-to-noise value of slightly over 200. This level is indi-
cated in Fig. 7. In fact, because the Gaussian noise distribu-

FIG. 5. The integral minimization SIV result for thew-component~a!, the direct inversion result~b!, and~c! the DNS field. Correlations are in Table I.
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tion used is independent of the scalar value, the noise added
overestimates the experimental noise at low signal levels.
Thus the typical experimental noise level indicated in Fig. 7
represents a worst-case assessment of the influence of noise.
Despite this, it can be seen that at that noise level the overall
SIV-DNS u correlation falls minimally to 0.92 from its
noise-free value of 0.94.

IV. CONCLUSIONS

The high values of these SIV-DNS correlations~typi-
cally 0.96 for the velocity components and 0.84 for the ve-
locity gradient components!, and their insensitivity to antici-
pated levels of realistic experimental noise, offer strong
evidence that the integral minimization scalar imaging ve-
locimetry technique can accurately determine three-
dimensional velocity fields from turbulent scalar field data.
The errors in satisfying continuity, shown in Table I, are
significantly smaller for the minimization technique, which
explicitly penalizes departures from the mass conservation
condition. These errors should be viewed in the context of
current hot-wire techniques used in the measurement of tur-
bulent velocity gradients. In those studies, the continuity cor-
relation values do not exceed 0.7~cf. Tsinober, Kit, and
Dracos22!, in contrast to the values in excess of 0.85 demon-
strated by the integral minimization technique.

It is significant that these results were found from scalar
field data at unit Schmidt number, for which the scalar and
velocity fields have nominally equivalent levels of detail.
Thus the scalar field contains no redundancy of information
which would assist in determining the velocity fields. In con-
trast, for high Schmidt numbers, the disparity in the charac-
teristic length scales of the velocity and scalar fields dictates
that the scalar field data carriesmore information than the
target velocity field. For example, for the Sc'2075 scalar
field data in Part II, the finest velocity gradient length scale

ln is roughly 45 times larger than the scalar gradient length
scalelD . This suggests that this integral minimization SIV
technique will yield results of at least the level of accuracy
achieved for this Sc51 DNS validation test, when ap-

TABLE I. Correlations between the SIV results, for both the direct inver-
sion and integral minimization formulations, and the actual DNS fields. The
correlation measure used in given by Eq.~28!. The overall correlation
shown encompasses all nine components of the tensor“u.

Direct
inversion

Integral
minimization

u-component 0.869 0.964
v-component 0.827 0.961
w-component 0.826 0.946
]u/]x 0.604 0.860
]u/]y 0.604 0.847
]u/]z 0.550 0.806
]v/]x 0.538 0.849
]v/]y 0.492 0.832
]v/]z 0.413 0.867
]w/]x 0.599 0.849
]w/]y 0.535 0.816
]w/]z 0.436 0.784

Overall ]ui /]xj 0.538 0.835
x-divergence 0.557 0.887
y-divergence 0.502 0.865
z-divergence 0.598 0.855

FIG. 6. Distributions of the velocity component values, for both the integral
minimization SIV results and the DNS fields. The SIV results show good
agreement with the DNS fields, save for an underestimation of the highest
velocity magnitudes.~a! The u-component,~b! the v-component,~c! the
w-component.
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plied to the experimental high Sc scalar field data as is done
in Part II.52
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G. Kosàly and J. J. Riley of The University of Washington.
Early development of the scalar imaging velocimetry tech-
nique was supported by the Air Force Office of Scientific
Research~AFOSR! under Grant No. F49620-92-J-0025.

1L. S. G. Kovasznay, ‘‘Turbulence measurements,’’ inPhysical Measure-
ments in Gas Dynamics and Combustion, Vol. 10 ~Princeton University,
Princeton, 1954!.

2S. Corrsin and A. L. Kistler, ‘‘The free-stream boundaries of turbulent
flows,’’ NACA TN 3133 ~1954!.

3W. W. Willmarth and S. S. Lu, ‘‘Structure of the Reynolds stress near the
wall,’’ J. Fluid Mech.55, 65 ~1972!.

4W. W. Willmarth and T. J. Bogar, ‘‘Survey and new measurements of
turbulent structure near the wall,’’ Phys. Fluids20, S9 ~1977!.

5E. G. Kastrinakis and H. Eckelmann, ‘‘Measurements of streamwise vor-
ticity fluctuations in a turbulent channel flow,’’ J. Fluid Mech.137, 165
~1983!.

6E. G. Kastrinakis, H. Eckelmann, and W. W. Willmarth, ‘‘Influence of the
flow velocity on a Kovasznay-type vorticity probe,’’ Rev. Sci. Instrum.50,
759 ~1979!.

7E. G. Kastrinakis, J. M. Wallace, W. W. Willmarth, B. Ghorashi, and R. S.
Brodkey, ‘‘On the mechanism of bounded turbulent shear flows,’’Struc-
ture and Mechanisms of Turbulence I, Lecture Notes in Physics, Vol. 75
~Springer, Berlin, 1977!.
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