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We considered an incompressible fluid motion driven by space-dependent body force. For a
one-dimensional case, the problem was solved analytically, with the arbitrary choice of body force
coordinate dependence. It was shown that unsteady fluid flow can be represented as a series of
separate modes, each with its own characteristic response tim&00® American Institute of
Physics.[DOI: 10.1063/1.1481743

The problem of fluid motion induced by a variable body One reason to introduce this condition is that the purpose
force has many applications. There are several ways to applyf the analytical solution is to investigate fluid motion in a
this force to the fluid. One is the nonuniform distribution of finite real container, where the zero net-flux condition is ob-
particles settling in the container. These particles interactiously satisfied. Introducing this condition makes it possible
with nearby fluid, initiating its motion. On the other hand, to solve a system of hydrodynamic equations. The authors
moving fluid exerts a force on the particles and influencesnanaged to solve the problem exactly and found that the
their motion. intrinsic convection is a combination of Poiseuille flow and a

The literature on the dynamics of suspensions is venglip velocity near walls. They obtained the expressions for
extensive and due to the limited scope of this study, it isthe fluid velocity on the edge of the wall layer and in the
impossible to cover the topic completely. We reviewed acenter of the container. These velocities are found to be of
sampling of studies closely related to the subject of this pathe order ofV,s, whereV,, is the Stokes velocity of settling
per. particles, and is a volume fraction of solid particles.

There are many studies of sedimentation of spheres in a In another work made by Bruneat al.,? they discussed
container, which assume that particles are distributed unithe same steady-state problem in the geometry of an infi-
formly in the area no closer than the radius of a particle tonitely high rectangular container. As before, they looked for
the container wall. Close to the waltloser thana), the  solution as a superposition of constant stress flow and Poi-
concentration of particles is zero, because no particle can hssuille flow. An expression was obtained for fluid velocity
closer to the wall, than its own radius. inside the container. It was shown that if the length of one

Bruneauet al' stated this problem in a simple way: side of the container tends towards infinity, then the solution
There are two infinitely high walls with particles distributed approaches the one for one-dimensional case. The depen-
between themno closer thama). They discussed only a dence of an intrinsic convection on a suspension concentra-
steady-state problem, with no-slip boundary conditions, andion was estimated. An accurate description of the intrinsic
introduced a zero net-flux conditiono net fluid flux  convection, at moderate and high concentrations, would re-
through the cross section of the containgf,ss seciodS  quire an analysis of multi-particle hydrodynamic interactions
=0. in the presence of walls.

Beenakker and Maztistudied a possible dependence of
3Telephone: (508-831-6797; fax: (508-831-5491; electronic mai: S€dimentation on container shape. The phenomenon of in-
rost@wpi.edu trinsic convection was predicted: an intrinsic, microscopic
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density inhomogeneity at the container wall causes a macrdABLE |. First ten eigenvalues found from E¢L1).
scopic vortex motion of the mean volume velocity.

The above authors agreed on the following: In order for ;\;g:ggzg ij;géiggg
fluid bulk motion in the container to exist, particles should A3=12.5664 Ag=28.1324
not be distributed uniformly throughout the container. The \4=15.4505 Ag=31.4159
difference of particle concentration in different parts of the As=18.8496 A1o=34.4415
container results in pressure gradient in the fluid, causing
fluid motion.

In this work, we focus on the unsteady large-scale fluid E Gi(1-(-1)" 2 2(1 ( 1)k)2
dynamics, and discuss arbitrary spatial distribution of the Tst— (7Tk)é
body force throughout the container. As an example, we con-
sidered a problem of unsteady intrinsic convection betweeR"
the two walls. 1

We consider a fluid flow between two infinitely high GkZZJ’O G(x)sin(mkx)dx, k=1,...p. ™
walls separated by a distantcg. The fluid experiences body
force f, which depends on coordinate and acts in thez The reason why we prefer series solution, is because it would
direction. We do not specify for now the origin of this body be also applicable in two-dimensionélD) case. To solve
force, which acts on the fluid and arouses a motion. It isunsteady problem we introduce new variablegt) = 7
obvious that fluid motion will occur only in the direction — + 7* (t), w=wg+Ww*, obtaining

and governing equations are one-dimensional. We assume Hw* P2W*
the fluid to be Newtonian and use nondimensional conserva- =—7m*(t)+ —, (8)
tion of momentum equation at X
* - _ * —
at =—’7T(t)+T+G(X), (1) 9

1
w*(1,t)=0, f w* (x,t)dx=0,
with the following initial and boundary conditions 0
wherewg(X) is a steady-state solution found (@). We seek

w(x, 0=0, w(0,t)=w(1,1)=0, solution of (8) in the form
l (e
fo W(x, 1)ax=0. @ w* =, exp—N2)(A, COSA )
The governing equatiofil) is nondimensionalized with re- ) P
spect to the following quantities +Bn S"‘(AHX)HL m* (t)dt’, (10
w0~fL(2,/,u, r~pr§/,u, where eigenvalues,, are still unknown. After applying con-
ditions (9) and extensive mathematical manipulations we
X~Lo, p=fm(t)z, () come to an equation fox,,
wherew is z component of fluid velocityp; is the fluid AnSin(Ap)=2(1—cog\,)). (11

density, p is the pressures(t) is an unknown nondimen-
sional function of time. Alsof is the scale of the body force,
G(x) is the nondimensional function of order of unity. sin(\/2)=0 (first se}d

In the steady-state casg(t) approaches some limitg

This equation gives us two sets of solutions

and governing equation reduces to and
5 tan\/2)=\/2 (second set (12
w
Wzst: T~ G(X), (4)  The first ten solution&,, of Eq. (11) are shown in a Table I.
Odd solutions of Eq(11) are from the first set of solutions,
W(0)=0, wg(1)=0, even ones are from the second set of solutions. Finally, we
(5) obtain eigenfunction$,(x)
flwst(x)dx=0. sin(\x), if n is odd
° fa(x)= 2 N 1)+ sin(\ if .
After some algebraic manipulations we obtain the solution as )\n(COS{ nX)— D) FsinAx), if nis even.
Fourier series (13

1 Functionsf ,(x) are found to be mutually orthogonal
k

i 2ms( 1= (DD 5 =G . 0, if n#m

Wel(X) = — (k)2 sin(kx), (6) fo fa(X) fm(x)dx= 12

if n=m. 14
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TABLE Il. Response time parameters. 0.003

Tres .= 0.025 330 Tresg=0.002 102

Tres7=0.012 382 Tres 7= 0.001 583 0.002 t+

Tres, &= 0.006 332 Tres, &= 0.001 263

Tres,s~ 0.004 189 Tres,g=0.001 013

Tress= 0.002 814 Tres.16=0.000 843 0.001

Solution to the unsteady proble®) and (9) can be ex- w 0 AN\ e
pressedas L \eee st -

w0 -0.001 1
2
w* = ngl Chexp(— At fa(x), steady-state

-0.002 : '
1 (15 0 02 04

Cy= —2f W X) fr(X)dx.
0

0.6 0.8 1

FIG. 1. Development of fluid flow between infinite walls at several consecu-
We can also introduce nondimensional response time pararf® ime moments.

ClerSTyesy aS Tresn™ 1/)‘ﬁ' This representg the time sqales for own characteristic time. These times were found by solving a

the correspondmg modefg(g) exponentla}l decay. First te_n ranscendental equation. As an example, the unsteady prob-

response times are shown in Table II._Fln_aIIy, the analytlcafem of intrinsic convection is solved.

solution of unsteady problerfl) and(2) is given as Applicability of this theory represents a separate issue. It
* should be remembered that the unsteady motion studied in

W(X,1) =Wg(X)+ >, Cpexp(—NaD)fa(X). (16)  this paper can be hidden under other effects that occur simul-

=t taneously. For example, in the problem of intrinsic convec-

As an example, we solve a problem of unsteady intrinsidion, in order to achieve initial conditions, we need to mix

convection between two infinite walls. In this case, bodyfluid and particles and wait until the fluid settles. This wait-

force distribution function is constant everywhere, except iting time can easily be longer than the characteristic time

is zero in the vicinity of walls(closer thané). Here,éis a 75, Also, in a real container, there are three-dimensional

nondimensional parameter, a ratio of a sphere ragitessthe  (3D) fluctuations that can occur. All these effects can make it

distance between walls,. We arbitrarily sett=0.1. Using difficult to observe this unsteady motion.

(15), we calculate the weight§,, of each mode. As soon as The force exerted on the fluid does not necessarily have

this distribution function is symmetric with respect to the to be gravity. Gravity can be replaced by any force that can

middle of the container, the@,=0, n=1,3,5,7..., i.e.,, we be switched on after mixing. For example, in the case of

have only even modes in the expansi@f). In our example, magnetic particles, magnetic forces can be used. Applica-

the slowest decaying mode is the second ane?). There-  tions in biology are also possible.

fore, Ties7= 1/\5~0.01238 represents the characteristic

time, whgn a steady-state flow dgvelc_)ps. In Fig. 1, we plotted\ c kK NOWLEDGMENTS

flow profiles at several consecutive time moments.
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