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We considered an incompressible fluid motion driven by space-dependent body force. For a
one-dimensional case, the problem was solved analytically, with the arbitrary choice of body force
coordinate dependence. It was shown that unsteady fluid flow can be represented as a series of
separate modes, each with its own characteristic response time. ©2002 American Institute of
Physics.@DOI: 10.1063/1.1481743#
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The problem of fluid motion induced by a variable bo
force has many applications. There are several ways to a
this force to the fluid. One is the nonuniform distribution
particles settling in the container. These particles inter
with nearby fluid, initiating its motion. On the other han
moving fluid exerts a force on the particles and influen
their motion.

The literature on the dynamics of suspensions is v
extensive and due to the limited scope of this study, it
impossible to cover the topic completely. We reviewed
sampling of studies closely related to the subject of this
per.

There are many studies of sedimentation of spheres
container, which assume that particles are distributed
formly in the area no closer than the radius of a particle
the container wall. Close to the wall~closer thana!, the
concentration of particles is zero, because no particle ca
closer to the wall, than its own radius.

Bruneauet al.1 stated this problem in a simple way
There are two infinitely high walls with particles distribute
between them~no closer thana!. They discussed only a
steady-state problem, with no-slip boundary conditions,
introduced a zero net-flux condition~no net fluid flux
through the cross section of the container! *cross sectionwdS
50.

a!Telephone: ~508!-831-6797; fax: ~508!-831-5491; electronic mail:
rost@wpi.edu
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One reason to introduce this condition is that the purp
of the analytical solution is to investigate fluid motion in
finite real container, where the zero net-flux condition is o
viously satisfied. Introducing this condition makes it possib
to solve a system of hydrodynamic equations. The auth
managed to solve the problem exactly and found that
intrinsic convection is a combination of Poiseuille flow and
slip velocity near walls. They obtained the expressions
the fluid velocity on the edge of the wall layer and in th
center of the container. These velocities are found to be
the order ofV0s, whereV0 is the Stokes velocity of settling
particles, ands is a volume fraction of solid particles.

In another work made by Bruneauet al.,2 they discussed
the same steady-state problem in the geometry of an
nitely high rectangular container. As before, they looked
solution as a superposition of constant stress flow and
seuille flow. An expression was obtained for fluid veloci
inside the container. It was shown that if the length of o
side of the container tends towards infinity, then the solut
approaches the one for one-dimensional case. The de
dence of an intrinsic convection on a suspension concen
tion was estimated. An accurate description of the intrin
convection, at moderate and high concentrations, would
quire an analysis of multi-particle hydrodynamic interactio
in the presence of walls.

Beenakker and Mazur3 studied a possible dependence
sedimentation on container shape. The phenomenon o
trinsic convection was predicted: an intrinsic, microscop
2 © 2002 American Institute of Physics
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density inhomogeneity at the container wall causes a ma
scopic vortex motion of the mean volume velocity.

The above authors agreed on the following: In order
fluid bulk motion in the container to exist, particles shou
not be distributed uniformly throughout the container. T
difference of particle concentration in different parts of t
container results in pressure gradient in the fluid, caus
fluid motion.

In this work, we focus on the unsteady large-scale fl
dynamics, and discuss arbitrary spatial distribution of
body force throughout the container. As an example, we c
sidered a problem of unsteady intrinsic convection betw
the two walls.

We consider a fluid flow between two infinitely hig
walls separated by a distanceL0 . The fluid experiences bod
force f, which depends on coordinatex and acts in thez
direction. We do not specify for now the origin of this bod
force, which acts on the fluid and arouses a motion. I
obvious that fluid motion will occur only in thez direction
and governing equations are one-dimensional. We ass
the fluid to be Newtonian and use nondimensional conse
tion of momentum equation

]w~x,t !

]t
52p~ t !1

]2w~x,t !

]x2 1G~x!, ~1!

with the following initial and boundary conditions

w~x, 0!50, w~0, t !5w~1, t !50,

E
0

1

w~x, t !dx50. ~2!

The governing equation~1! is nondimensionalized with re
spect to the following quantities

w0; f L0
2/m, t;r fL0

2/m,

x;L0 , p5 f p~ t !z, ~3!

where w is z component of fluid velocity,r f is the fluid
density, p is the pressure,p(t) is an unknown nondimen
sional function of time. Also,f is the scale of the body force
G(x) is the nondimensional function of order of unity.

In the steady-state casep(t) approaches some limitpst

and governing equation reduces to

]2wst

]x2 5pst2G~x!, ~4!

wst~0!50, wst~1!50,
~5!

E
0

1

wst~x!dx50.

After some algebraic manipulations we obtain the solution
Fourier series

wst~x!52 (
k51

` 2pst~12~21!k!
1

pk
2Gk

~pk!2 sin~pkx!, ~6!
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pst5 (
k51

`
Gk~12~21!k!

~pk!3 Y (
k51

`
2~12~21!k!2

~pk!4

and

Gk52E
0

1

G~x!sin~pkx!dx, k51,...,̀ . ~7!

The reason why we prefer series solution, is because it wo
be also applicable in two-dimensional~2D! case. To solve
unsteady problem we introduce new variables,p(t)5pst

1p* (t), w5wst1w* , obtaining

]w*

]t
52p* ~ t !1

]2w*

]x2 , ~8!

w* ~x,0!52wst~x!, w* ~0, t !50,
~9!

w* ~1, t !50, E
0

1

w* ~x,t !dx50,

wherewst(x) is a steady-state solution found in~6!. We seek
solution of ~8! in the form

w* 5 (
n51

`

exp~2ln
2t !~An cos~lnx!

1Bn sin~lnx!!1E
t

`

p* ~ t8!dt8, ~10!

where eigenvaluesln are still unknown. After applying con-
ditions ~9! and extensive mathematical manipulations
come to an equation forln

ln sin~ln!52~12cos~ln!!. ~11!

This equation gives us two sets of solutions

sin~l/2!50 ~first set!

and

tan~l/2!5l/2 ~second set!. ~12!

The first ten solutionsln of Eq. ~11! are shown in a Table I.
Odd solutions of Eq.~11! are from the first set of solutions
even ones are from the second set of solutions. Finally,
obtain eigenfunctionsf n(x)

f n~x!5H sin~lnx!, if n is odd

2

ln
~cos~lnx!21!1sin~lnx!, if n is even.

~13!

Functionsf n(x) are found to be mutually orthogonal

E
0

1

f n~x! f m~x!dx5H 0, if nÞm

1/2, if n5m.
~14!

TABLE I. First ten eigenvalues found from Eq.~11!.

l156.2832 l6521.8083
l258.9868 l7525.1327
l3512.5664 l8528.1324
l4515.4505 l9531.4159
l5518.8496 l10534.4415
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Solution to the unsteady problem~8! and ~9! can be ex-
pressed as

w* 5 (
n51

`

Cn exp~2ln
2t ! f n~x!,

~15!

Cn522E
0

1

wst~x! f n~x!dx.

We can also introduce nondimensional response time pa
eterst res,n ast res,n51/ln

2. This represents the time scales f
the corresponding modesf n(x) exponential decay. First te
response times are shown in Table II. Finally, the analyt
solution of unsteady problem~1! and ~2! is given as

w~x,t !5wst~x!1 (
n51

`

Cn exp~2ln
2t ! f n~x!. ~16!

As an example, we solve a problem of unsteady intrin
convection between two infinite walls. In this case, bo
force distribution function is constant everywhere, excep
is zero in the vicinity of walls~closer thanj!. Here,j is a
nondimensional parameter, a ratio of a sphere radiusa to the
distance between wallsL0 . We arbitrarily setj50.1. Using
~15!, we calculate the weightsCn of each mode. As soon a
this distribution function is symmetric with respect to th
middle of the container, thenCn50, n51,3,5,7..., i.e., we
have only even modes in the expansion~16!. In our example,
the slowest decaying mode is the second one (n52). There-
fore, t res,251/l2

2'0.012 38 represents the characteris
time, when a steady-state flow develops. In Fig. 1, we plo
flow profiles at several consecutive time moments.

The solution can easily be extended into a nonzero in
condition case. In Eq.~9! we would write w* (x,0)
5winitial(x)2wst(x). In other words we could substitut
wst(x)2winitial(x) in place ofwst(x) in Eq. ~15!. Eigenvalues
and characteristic times, however, would remain unchang

We investigated the fluid motion driven by anx coordi-
nate dependent body force in a one-dimensional case.
solution of the problem~the flow field! was obtained for
unsteady and steady-state cases. As for time dependen
fluid flow, the fluid velocity was found to be the superpo
tion of specific modes, each exponentially decaying with

TABLE II. Response time parameters.

t res,150.025 330 t res,650.002 102
t res,250.012 382 t res,750.001 583
t res,350.006 332 t res,850.001 263
t res,450.004 189 t res,950.001 013
t res,550.002 814 t res,1050.000 843
m-
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own characteristic time. These times were found by solvin
transcendental equation. As an example, the unsteady p
lem of intrinsic convection is solved.

Applicability of this theory represents a separate issue
should be remembered that the unsteady motion studie
this paper can be hidden under other effects that occur sim
taneously. For example, in the problem of intrinsic conve
tion, in order to achieve initial conditions, we need to m
fluid and particles and wait until the fluid settles. This wa
ing time can easily be longer than the characteristic ti
t res,2. Also, in a real container, there are three-dimensio
~3D! fluctuations that can occur. All these effects can mak
difficult to observe this unsteady motion.

The force exerted on the fluid does not necessarily h
to be gravity. Gravity can be replaced by any force that c
be switched on after mixing. For example, in the case
magnetic particles, magnetic forces can be used. Appl
tions in biology are also possible.
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FIG. 1. Development of fluid flow between infinite walls at several conse
tive time moments.


