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The nonlinear formalism developed by Zwanzig and Mori is utilized to derive a kinetic equation for the 
distribution of monomer phase space coordinates and a coarse-grained momentum density. Several 
simplifying approximations are then introduced into the exact kinetic equation. The resulting approximate 
description is shown to be closely related to the starting equations of the Freed-Edwards theory. The 
former differs, however, due to the presence of a non-Stoke's frictional term which accounts for 
dissipation of monomer momentum fluctuations relative to the local velocity field of the solvent. Two 
applications of the approximate description are considered. A derivation of an equation for the two-time 
configuration space distribution function ljI(y, y', t) is presented, where y denotes the collection of 
monomer position vectors. It is demonstrated that ljI(y,y', t) satisfies an equation similar to the 
Kirkwood-Riseman equation. Nonlinear couplings of the polymer distribution function to monomer 
momenta and the momentum density of the solvent lead to a diffusion tensor in which hydrodynamic 
interactions are characterized by a coarse-grained Oseen tensor. The correlation function formulation of 
the intrinsic viscosity proposed by Stockmayer et al. is extended to finite wavevectors and polymer 
concentrations. The specific viscosity is identified as the sum of two terms involving the mechanical 
contribution to the polymer momentum flux tensor and the diffusion current of chain segments. 

I. INTRODUCTION 

It is well known in polymer dynamics that one must 
account for the excitation of hydrodynamic modes in a 
solvent in order to correctly predict the transport prop­
erties of a polymer solution. 1- 7 Traditionally, hydro­
dynamic interactions have been accounted for phenome­
nologically within the context of the Kirkwood-Riseman 
and Rouse-Zimm4,5,6 theories. These theories treat 
these interactions in terms of Oseen's expression for 
the velocity field produced by a point source [assuming 
laminar flow, Eq. (4. 1)]. 

During the past several years, considerable effort has 
been devoted to the derivation of dynamical equations 
for a polymer solution from a microscopic viewpoint.9- 13 

These equations are applicable to the calculation of vari­
ous transport coefficients characterizing the solution. 
Furthermore, such derivations should clarify the under­
lying assumptions in the well-known phenomenological 
theories of polymer dynamics. Yamakawa et al. and 
Curtiss et al. have derived Fokker-Planck equations 
for the polymer configuration space distribution func­
tion. 9

-
11 In each of these derivations a term corre­

sponding to a diffusion tensor is identified. However, 
the relationship between these diffusion tensors and 
those of the phenomenological theories remains unclear. 

There has also been some speculation regarding the 
correlation function formulation of the intrinsic viscos­
ity proposed by Stockmayer et al. 14 Linear response the­
ory predicts that the frequency dependent shear viscos­
ity may be calculated according to the following expres­
sion: 

new) = ~ I~ dte-/ wl (J(t), J(O) , (1.1 ) 
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where ~-1 is the temperature of the system (in units of 
energy); V is the volume of the system, and the brack­
ets refer to an eqUilibrium average. 1S J(t) is the x-y 
contribution to the momentum flux tensor. Starting with 
Eq. (1.1), Doi and Okano and Yamakawa et al. have de­
rived correlation function formulas for the intrinsic vis­
cosity in terms of the reduced polymer dynamics. 9, 10, 18 

Although these formulations are similar to that proposed 
by Stockmayer et aI., hydrodynamic interactions must 
still be introduced phenomenologically. 

The previous derivations indicate that developing a 
theory in terms of reduced polymer dynamics alone may 
be insufficient to understand the microscopic origin of 
the hydrodynamic interactions. On the other hand, a 
coupled description of the polymer-solvent dynamics, 
as pointed out by Freed and Edwards, automatically 
gi ves rise to interactions of the Oseen type. 6 

Recently, Kapral et al. have successfully incorpo­
rated hydrodynamic interactions into a microscopic cal­
culation of the dynamic structure factor, S(k, w), for a 
polymer molecule. 1

! This was done using the mode­
coupling theory of Kawasaki and Fixman. 17, 16 Kapral et 
al. considered the bilinear coupling of the local mono­
mer density for a chain to the coarse-grained [see Eq. 
(3.2)J, transverse momentum density of the entire solu­
tion. Their result is in agreement with the calculation 
of Akcasu and GUrol. 19 The latter started with the Kirk­
wood-Riseman equation. 

The objective of this paper is the development of a 
dynamical theory of dilute polymer solutions from a mi­
croscopic viewpoint which takes full account of hydrody­
namic excitations. The origin of these excitations is 
conveniently discussed in terms of the nonlinear formal­
ism developed by Zwanzig and MorL 20,21 A brief review 
of the nonlinear formalism will be presented in Sec. II. 
In Sec. III, a kinetic equation will be derived for the col­
lection of monomer phase space coordinates and a 
coarse -grained transverse momentum density. This 
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choice of variables is in close analogy with that of the 
Freed-Edwards theory. Some simple approximations 
are introduced into this equation. The resulting de­
scription is then shown to have a similar structure to 
the starting equations of the Freed-Edwards theory (for 
discrete chain models). In Sec. IV, the approximate 
description is used to derive equations for the polymer 
two-time configuration space distribution function and 
the transverse momentum density autocorrelation func­
tion. When times much longer than collisional time 
scales are considered, the former reduces to a Kirk­
wood-Riseman-like equation. Hydrodynamic interac­
tions are represented by a coarse-grained Oseen tensor. 
The frequency and wave-vector dependent specific vis­
cosity is identified by observing the equation for the mo­
mentum density autocorrelation function. This will be 
written as the sum of two terms. The first of these in­
volves only the mechanical contribution to the polymer 
momentum flux tensor. The second term is related to 
the diffusion flow of individual chain segments. A sum­
mary is presented in Sec. V. 

II. THE NONLINEAR FORMALISM 

Consider a system, in the absence of external fields, 
which evolves according to the laws of classical me­
chanics. Let 

(2.1) 

denote the collective set of phase coordinates of the sys­
tem, where XI and PI denote the position and momentum 
coordinates of the ith particle, respectively. Further­
more, suppose that the ith particle experiences a force 
Fl' The latter may be written in terms of a potential 
U by the relation 

a 
FI=--U, 

axl 

(2.2) 

Since we will be interested in the interaction of par­
ticles with a field, it will be instructive to develop the 
formalism using a functional notation. 22 Let {A "'(x)} 
={A "(x, r)} represent a set of real fields parameterized 
by x. The time evolution of A" (x) is determined by the 
classical Liouville operator 

..!.s[alt]+ L fdx ~'-_)'U"'[alx]s[alt]- It dT)' j:o[a'] 
at "lial0 ° tt 

or in vector notation 

A "'(x, t) =e ilL A "'(x) , (2.3) 

where 

iL= L{_1 p}, ~+F . _a} 
j mj ax} } ap} 

(2.4) 

and m} is the mass of partic Ie j. A'" (x) will be assumed 
to have an expansion in terms of an orthonormal basis 
{«PI (x)}: 

A"'(x) = LAf(r)«PI(x) • (2.5) 
I 

The set {«PI (x)} satisfy the usual properties of orthonor­
mality and completeness: 

(2.6) 

L «PI (x) «PI(x')=Ii(x-x') (2.7) 
I 

Define a distribution on the space of functionals of 
{A "(x)} by the relation 

s[a]= II Ii(a" -A"')= II n Ii(af -Af) 
" '" ~~ 

(2.8) 

and 

s[al tJ=eitL Sea] (2.9) 

The collection {af} represent a countable infinite set of 
real numbers which may take on values between ± 00. 

Thus, the time evolution of any functional of the form 
F[i1 t, ... , A", ••• ] =F[A] is completely determined by 
Sea It], since 

F[A(t)] = f :o[a]F[a] s[al tJ , (2.10) 

where the operation 

f :o[a]=! II :O[a"] = f II II daf 
" '" I 

denotes functional integration. 

Mori has shown that S[alt] satisfies the following 
equation20

: 

..!.s[altJ+ -.£..,,\)[a]s[alt]- rt drJ:o[a'J-'£'" w[a'll L[a,a'lrJ. (A+x[a'])s[a'lt-r]=- "Ii • u(t)RS[a] 
at 1)a Jo 1)a lia va 

(2.11b) 

The quantities appearing in Eq. (2. 11) are defined as 
follows: 

w[a]=(S[a]) , 

'U"[alxJ=(iLA"'(x), sea]) w[arl , 

(2.12) 

(2.13) 

x"'[alx]= - 1)a~(x)lnw[aJ 

R"'(x) =iLA "'(x) - 'U"'[alx]1 a-A , 
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u(t) = exp{it(1 - a»L} = exp{itQL} , (2.17) 

and 

a>{ }= f :0 [a]({ }, g[a])g[a]w[arl (2.18) 

is Zwanzig's projection operator. 21 The operation 
6/6aa(x) is defined by 

(2.19) 

and 

(F, e) = j dr p(r)F(r) e(r) (2.20) 

denotes an average with respect to the canonical en­
semble 

p(r) =e-8JC 
/ j dre-8JC 

• (2.21) 

JC is the system Hamiltonian. 

In order to interpret the terms appearing in Eq. (2.11) 
it is helpful to regard the state vector A as consisting 
of a ~et of local macroscopic fie Ids (i. e., the conse rved 
densities). w[a] represents the equilibrium distribution 
in a-space. Indeed, the equilibrium average of any 
functional FG4] may be written as 

(F) = f drp(r)F[A(r)]=j D[a]w[a]F[a] . 

The set {xa} may then be regarded as a set of general­
ized thermodynamic forces. The tensor L[a, a' It] is a 
kinetic tensor which will be responsible for dissipation 
in the system. It is related to the force density Rg[a] 
through the fluctuation dissipation theorem, Eq. (2.16). 
In particular, Mori referred to 

Ra(x, t)= u(t)Ra(x) (2.22) 

as the Langevin force. R(t) appears as the "driving 
force" in the nonlinear Langevin equation for A(t). It 
has the satisfying property that when averaged with re­
spect to certain classes of constrained initial distribu­
tions (for instance, a distribution like exp{ - /3[JC 
+ J dx a(x). A(x)]}) its contribution vanishes. This is in 
the true spirit of the Langevin equation. The vector 
u[a] may be related to oscillations or convective flow 
of the local densities and, hence, represents macro­
scopic reversibility. 

Two physical assumptions about the nature of the 
fields {A a (x)} will be made: 

(i) The time scales associated with the variation of 
{Aa(x)} are much larger than the correlation times of 
{Ra(x, t)}. 

(ii) A smallness is associated with the time deriva­
tives A (x) =iLA(x) (Le., in the case of the conserved 
densities, smallness is associated with the magnitude 
of a restricted set of wave vectors). 

The first of these assumptions implies the Markov na­
ture of the variables {A '" (x)} , 

L a8[a, a'lx,x', t]o: 6(t) • 

The second assumption may be used as the justification 
to expanding the kinetic tensor, L[a, a' It], to various 
orders in A. Zwanzig and Mori have shown that to 
0(.42), L is diagonal in a. 21.23 The expression given by 
Mori is 

L ai3 [a,a'lx,x',t]=26(t)6(a-a') ['" dr(Ra(x,T), R8 (x')s[a]) 

+0(;\.3) = 26(t)6(a - a') La8[a I x, x'] +O(;p) (2.23) 

into which the Markov assumption has also been intro­
duced. Consistent with Eq. (2.23) one also has 

-f dx 6)(x) u(t)Ra(x)S[a] =-f dx 6a~(x)Ra(x, t)g[a] + ~ j dxdx' 6aa(x~;all(xl) g[a] 

x [t dT u(t _ T) QA a(x)K(x', T )+O(. .. p) . (2.24) 

Thus, Eq. (2.11) becomes 

When one is interested in the calculation of correlation 
functions, it will be convenient to work with an equation 
for the conditional mean (defined below) of a functional 
of {Aa(x)}. In order to obtain such an equation, we first 
define 

G[a,a'lt]=(s[a!t], s[a'])/w[a'] . (2.26) 

G [a, a' I t] is the conditional distribution for the state 
A =a at time t given the initial state A =a'. The dynamic 
correlation function of two functionals, F[A] am erA], 
is then given by 

(F(t), e) = f dr p(r)F[A(r, t)] e[A(r)] 

= f D[a]D[a']F[a] e[a']G[a, a' It]w[a'] 

= f D[a'].F""(t)e[a']w[a'] , 

(2.27) 

where the last expression serves to define the condition­
al mean, PO'(t). 

An equation for G[a, a' It] is obtained by multiplying 
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Eq. (2.25) by g [a'] w[a']·l and averaging the resulting 
equation with respect to p(r). This results in a Fokker­
Planck equation for G[a, a' It]: 

! G[a, a'i f] + o~ • u[a]G[a, a'i f] 

_.2.. w[a]·l L[a]. (.2. +X [a]) 
oa oa 

(2.28a) 

x G[a"a'It]=co,;(! -:m)G[a,a'lf]=C o (2. 28b) 

where it is noted that (R(f) g[a], gra'l) =0. G[a, a' If] is 
the solution of this Fokker-Planck equation with the ini­
tial condition 

G[a,a'lo]=o(a-a') . 

It is also readily verified, with the aid of Eqs. (2.12)­
(2.14), that the equilibrium distribution, w[a], is a sta­
tionary solution of Eq. (2.28) as it must. 

Following Mori, an operator A will be defined by the 
relationzo•23 

J :n[a](:mF[a]) e[a],; J :n[a]- F[a] Ac[a]. (2.29) 

The operator A has the explicit form 

A =c u[a] . .2. + (.2. _ x[a]) w[a]·l. L[a] . .2. 
oa oa oa ' 

(2.30) 

where 

(2.31) 

and Eq. (2.28) has been used. Applying these consider­
ations to the definition of po'(!), Eq. (2.27), yields 

or 

.!. pa' (f) = M a' (t) af • (2.32) 

Equation (2.32) provides a convenient starting point 
for the application of projection operators onto dynam­
ical variables of interest. Similar starting points have 
been used in connection with the polymer problem by 
Bixon, Zwanzig, Akcasu, and GiirolandFreed ef al.Z5

- 27,19 

However, these authors have used the adjoints of the 
Kirkwood and Rouse (i.e., nondraining and free-drain­
ing) operators. 

Although Eq. (2.32) bears a formal resemblance to 
original Liouville equation, there are two major advan­
tages of having first gone to the nonlinear formalism: 

(i) For a suitable choice of the set {A"'(x)}, there is a 
complete separation of rapidly varying and slowly vary­
ing time scales. 

(ii) The nonlinear terms, u[a] and L[a], and the equi­
librium distribution, w[a], may be modeled or approxi­
mated according to some physically reasonable prescrip­
tion. 

III. APPLICATION TO POLYMERS 

In this section, the nonlinear formalism will be ap­
plied to a solution of identical polymer molecules satis­
fying 

nNm/c «1 , (3.1) 

where n is the polymer number density, N is the number 
of segments per molecule, m is the segment mass, and 
c is the solvent mass concentration. The system will 
be contained in a large volume V. 

The polymer solution will be characterized by the col­
lective set of monomer phase space coordinates and a 
transverse momentum density. This set of variables 
will be taken as sufficient to describe the full polymer­
solvent dynamics. When it is necessary to distinguish 
between microscopic variables and their realizations, 
the former will include r as part of their argument. 
Thus, microscopic position and momentum coordinates 
and their realizations shall be denoted by {xj{r), Pl(r)} 
and {Xj, PI}, respectively. 

A coarse-grained, transverse momentum density will 
be defined byz8 

g~{k, r),; A(k)S(k). L Pj{r) exp[ik. xj(r)] , 
i=all particle. 

where 

S(k)= l-kkk'Z , 

{
I ks rr/l 

A{k) = 
o k> rr/l 

(3.2) 

(3.3) 

(3.4) 

The length scale l will be taken to be much larger than 
any solvent correlation length. This restriction allows 
the treatment of the solvent as a viscous continuum. We 
will also see that the presence of S(k) is equivalent to 

, considering only incompressible modes of the solvent. 
The realization of g~(k, r) is g~(k). 

The dynamical vector to be considered will consist of 
{xl(r), PI (r)} and g~(k, r) , 

[

{XI(r)1 i = monomers}] [x(r)] 
A{r)= {PI(r)li=monomers} = p(r) 

{g~(k, r)lksrr/l} g~(r) 

(3.5) 

and 

(3.6) 

The dynamical vector A, Eq. (3.5), is of a more gener­
al form than that discussed in the previous section. 
However, this generalization will not affect the structure 
of the dynamical equations for A [i. e., Eq. (2.25)]. The 
functional notation may be applied directly to g~(k) for 
systems of infinite volume. However, one must keep 
track of the restrictions on g~ and k. This is done most 
easily with the help of Eqs. (3.3)-(3.4). For example, 

Og~(k) g~(k')=A(k)S(k)o(k-k') 
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Having discussed the relevant variables of the system, 
an equation will be obtained for 

S[x,p, gll t] ;:eHLS[x, p, gll , (3.7) 

S[x, p, gl];: O(gl -gJ.(r» o(x - x(r)) o(p - p(r» 

= IT o(gl(k) - gl(k, r» IT 6(XI -xl(r» O(PI -PI(r». 
k .. rl I I 

(3.8) 

In terms of Eq. (3.6), Eqs. (2.12)-(2.14) become 

(3.9) 

Xx {_a lnw} 
aXI 

x[x,p, g ... ] = Xp -- {_a lnw} 
api 

(3.10) 

x, {og~(k) lnw} 

and 

(3.11) 

where (" )==iL(). Using a property of the 6-function re­
sults in 

(
• ("» -1 -1 x., u W =m PI • (3.12) 

Since the momentum density gl is a conserved variable, 
g ... (k, r) 0:: k. Define 

g ... (k, r);: ik. n1(k) . (3.13) 

Substituting Eqs. (3.12) and (3.13) into (3.11) yields 

(3.14) 

The expression for R, Eq. (2.15), may now be evalu­
ated: 

(3.15) 

Let us write PI (r) as the sum of two terms: 

• a 
Pi(r)= - ax. (U, + Vi) , 

where U, involves only monomer coordinates, and UI is 

I 

the polymer-solvent interaction. Thus, 

a ( a ) -11 61 = - - UI + - UI , S W a;.A axl ax. 
or 6 1 is determined by the polymer-solvent interaction. 
6 1 is analogous to the fluctuating force which appears in 
the theory of Brownian motion. 

As discussed earlier, the approximate form of the 
kinetic tensor involves a Markov assumption and re­
quires that [oloa. QA] be small. 24 The former relies 
on the assertion that collisional time scales within the 
solvent, and those of the solvent with monomers, are 
much shorter than the time scales characterizing 
{x, p, gl}' The latter, however, requires that we dis­
cuss the contributions of x, p, and gl to L separately. 

From Eq. (3.15), we see that the x component of R 
is zero. Therefore, only p and gJ. contribute to L. Sec­
ondly, note that gJ.(k, r)=ik. n1 (k)$O(1/Z>. The only 
length scales entering into the calculation of L[a,a' It] 
are solvent correlation lengths {As}. Therefore, the 
condition A/I «1 should be sufficient to guarantee the 
smallness of il' 

Previous theories of Brownian motion have utilized 
an expansion of the kinetic tensor into powers of 
E: = (m s lm)i/2, where ms is the mass of a solvent parti­
cle. 29 Yamakawa et al. point out, however, that in a 
polymer solution E: - 1.9 In order to justify this expan­
sion, therefore, note that each monomer is coupled to 
its neighbors through strong bonding potentials. Clear­
ly, the energy associated with bonding is much larger 
than that associated with polymer-solvent interactions. 
Let UI [defined by Eq. (3.16)] be replaced by AUI , where 
A measures the relative strength of the polymer-solvent 
interaction as compared to bonding. The contribution of 
PI to the expansion for the kinetic tensor will appear as 
QPI = O(A) which may be taken to lowest order provided 
that A« 1. 

In terms of Eqs. (2.23) and (3.15), L[a] is given by 

[

{O} 

== {a} 

{a} 

{a} 

{L IJ} 

{L,j(k)} 

{a} ] 
(u(t)6, R,S) 

(U(t)R" R,S) 

(3.16a) 

{a} ] 
{LI,(k)} . 

{L,.,(k, k')} 

(3.16b) 

Substituting Eqs. (3.8)-(3.10), (3.14)-(3.16) into Eq. 
(2.25) results in the following equation for S[x,P,glltj: 

! g[x,p,gllt]+{~[ m-
1
Pi' a!1 -(P.,S)w-

l. ~J+ fdk 6g~(k)' [ik. (nl(k),S)w-l]_~ ~I • LOW-I. (~J +XPJ) 

-f dk ~ [~I . LI,(k) w-
1 

• (6g~(k) + X,(k») + 6g~(k) . L,. (k) w-
1 

• (~I + Xpl)] 
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-J dkdk' og~(k)' Ln (k,k')w-1. (Og~~kl) +x,(k,))}g[x,p,g~lt] 

= -~ ~l • ~l(t) S[x, p, g~]-J dk Og~(k)' R,(k, t) S[x, p, g~] + t1 aPI~pj : S[x, p, g~] [t dr U(t - r) QPI :/j(r) 

+ ~ J dk ~i Og~(k) : S[x, P, g~] [I dr u(t - r) Q[:/l(r) g~(k) +pIR,(k, r)] 

Two additional assumptions will now be introduced. 
We expect that the only parameters needed to describe 
dissipation in a polymer solution are the solvent viscosity 
and a friction coefficient per monomer. This situation 
may be achieved in Eq. (3.17) by supposing that L[a] w-1 

is quite insensitive to changes in a and that cross effects 
are unimportant. Therefore, L[a] w- 1 will be replaced 
by its average and the cross effects neglected: 

L[x, p, g~] w-1 
"" f dxdp D[g~] w[x, p, g~](LW-l) 

= [<> dt(R(t), R) 

{a} {a} {a} 

{a} 

{a} {a} { .r dt (R,(k, n, RK(k')} 

From symmetry consideration one has 

(3.19 ) 

and 

i~ dt (R,(k, t), R .. (k') = (21do(k +k') ~(k) S(k) k27)(k) 13-1 
, 

o 
(3.20) 

where ~ and 7)(k) are chosen to have dimensions of a 
friction coefficient and viscosity, respectively. For 
simplicity we shall also approximate 7)(k) "" 7)(0) = 17. 

Equation (3.17) will still be rather complicated due to 
terms like w[x, p, g~], (PI ,g) w-1 and (rr~, S) w-1

• These 
terms will, however, be amenable to a set of simple ap­
proximations which retain the basic physics of the prob­
lem (i. e., hydrodynamic coupling). 

Note that w[x, p, g~] may be expressed as the product 
of two terms: 

w[x,p,gJ=fo(x,p) f dr801p(r8ollx,p)o{u-g~(r8ol))' 
(3.21 ) 

where 

u(k) = g~(k) - L: Pi e lk
' XI • S(k) ~(k) (3.22) 

I 

is the realization of the sol vent momentum density. 
r.ol refers to the collection of solvent phase coordi­
nates, and p(r.ollx, p) is the distribution of the solvent 

(3.17) 

conditional to a set of fixed monomer coordinates. 
fo(x, p) is the polymer equilibrium distribution: 

fo(x, p) ex: exp( - 13 ~ Pi/2m) exp[ - 13 U(x)] , (3.23) 

where U(x) consists of Up plus the average effect of the 
solvent on a set of fixed monomers. 

Since a dilute system is being considered, the coupling 
of p(rsollx, p) to monomer coordinates may be ignored 
to zeroth order in the polymer concentration. Thus, the 
conditional average in Eq. (3.21) may be replaced by an 
average over the pure solvent distribution, p(rSol )' 
Secondly, the restriction placed on the wave vector k, 
Eq. (3.4), and the fact that g~(r.OI) consists of a large 
number of contributions allows one to approximate the 
remaining average by 

f drSol p(rSol ) o(u - g~ (rSol )) 

",exp( - ~~J (::)3 u(k). U(-k))=<I>[U] (3.24) 

as a consequence of the central limit theorem. The ap­
propriate normalization for <I> may be absorbed into the 
measure D[g~]. Equation (3.24) is not surprising, since 
for a structureless medium one would expect the distri­
bution of U to depend only on the kinetic energy of the 
solvent. 

The thermodynamic forces, Xp,~, X" are computed 
using Eqs. (3.10), (3.21)-(3.24). As a result, one ob­
tains 

a a 
X = - - Inw = 13 - U= - J3Fj 

Xj ax
j 

8X
j 

, 
(3.25 ) 

(3.26) 

and 

X ,(k) = - Og~(k) Inw = (2:?C u(k) (3.27) 

The factorization, W"" fo<l>, where <I> is Gaussian, sug­
gests a convenient method to approximate the streaming 
terms, (p,g) w- 1 and ik. (rr~(k),g) w-1

• This method in­
volves an expansion in terms of the Hermite functional 
polynomials, {J~n[u Ikn]}. 22 These polynomials satisfy the 
completeness relation 

<I>[U]-lO(U -u') =1 + t f dkndk:J~n [ul kn] 

(3.28) 
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where 

J.J.n=(J.J.t, •• ·, J.J.n), kn=(kt. ••• ,k,.) 

dently of one another. One must require that each trun­
cation preserves the stationarity of w = foiP •. 

and 
The lowest order nonvanishing approximation of the 

streaming terms involves Jo[u] = 1: 

K ~n~n(knl k~) = (J~n [ul k n], J~n[u I k~]) , (3.29 ) 

n 

= II.6.(kl)s"I~I(~)o(kl-k:) . 
= L: elk ·xl [ik . PI PI m-1 + Fl] • S(k) .6.(k) , 

I 

(3.30) 

1=1 

Expansions for the terms (PI ,g) w-1 and ik. (IIl(k),g)w-1 

are obtained by replacing iP[U]-lO(U - gl(r.o1 )) by Eq. 
(3.28). 30 Truncation of this expansion at some finite or­
der is consistent with the idea that there is a weak sta­
tistical coupling of U to monomer coordinates. How­
ever, the resulting series cannot be truncated indepen-

where Eqs. (3.25) and (3.13) have been used. It should 
be noted that this approximation is equivalent to assum­
ing a weak dependence of the streaming terms on u, 
thereby allowing the streaming terms to be replaced by 
their averages with respect to iP(u]. 

Applying these approximations to Eq. (3.17) results in 

~ g[x, p, gll t] + {L: [m-1pj . ...!. +Fj • _a_] + Jdk" o(k)' L: elk
,
xj (ik. pjpjm-1 +Fj) 

at j axj Bpj ugl j 

-~ a;j .(3-1~ (a;j + (3[m-1pj _c-1U(Xj )])_ J dk Og~(k)' k2
(27T)3 ~C%(o_k) + (2!)3

C 
U(k))} 9 [x, p, gll t] 

= -~ a;l • ~l(t) g[x, p, gi] - J dk o~(k)' R .. (k, t) g[x, p, gl] + f.1 aPI~pj : g[x, p, gl] 

(3.31a) 

(3.31b) 

In order to check the stationarity of w = foiP with respect to;m:, it will be sufficient to look at the effect of the stream­
ing operator alone. The action of the nonstreamingcontribution to ;m: on w vanishes by construction: 

L:rm-1pl • ...!. +Fl • ~]foiP = - foiP L: [m-1pl • ...!. +Fl • ...!.]!.J (dk)3@.U(k)'U(_k) 
I L axl apl I axl apl 2 27T c 

= foiP~ ~ f (::)9 [ik. PIPlm-1 +FI] e lk
'

XI • u(-k) = - f dk~ elk
'

XI [ik. PIPlm-1 +Fl]. Og~(k) foiP 

Some physical understanding of the terms appearing in Eq. (3.31) may be gained by observing the moments of this 
equation with respect to xi> Pi> u(k) and gi(k). Taking moments with respect to the first three variables results in 

:tXI(r, t) =m-1pl(r, t) , (3.32) 

a 
at Pl(r, t) =Fl(x(r, t)) - Hm-1pl(r, t) -C-1u(xl(r, t), r, t)] +~l(t) , 

:t u(k, r, t) = - ~TJ u(k, r,th ~ exp[ik.:!tt(r,t)] .6.(k)S(k)~ 

x [m-1pl(r, t) - c-1u(xj(r, t), r, t)] +R .. (k, t) - L: .6.(k) S(k). 61(t) e lk ' XI 
I 

(3.33) 

(3.34) 

These equations have a structure similar to the starting equations of the Freed-Edwards theory.6 However, they 
differ due to the presence of a non-Stokes frictional force, ~[m-lpj -c-1u(xJ)], and the absence of the no-slip bound­
ary condition at the polymer-solvent interface. The latter condition would result from averaging Eqs. (3.32)­
(3.34) with respect to an appropriately constrained momentum distribution. The non-I'tokes term would then vanish, 
and the average of 6'(t) would play the role of the Lagrange multiplier which enters the Freed-Edwards theory. 

Furthermore, note that only incompressible modes of the solvent are being treated since 
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ik. u(k, r, t) = 0 , 

ik. R .. (k, t) = 0 , 

(3.35) 

(3.36) 

which follows from Eqs. (3.2), (3.3), (3.13), (3.15), and (3.22). 

The gJ.(k) moment of Eq. (3.31) results in 

:t gJ.(k, r, t) = - ~7j u(k, r, t)+ ~ exp[ik. xJ(r, t)][ik. p/r, t)PJ(r, t) m-1 +FJ(x(r, t»]. A(k)S(kh R .. (k, t) 

indicating a clear separation between polymer and solvent contributions to the solution viscosity. 

(3.37) 

IV. RELATION TO PREVIOUS THEORIES 

In this section, tne approximate Fokker-Planck description, Eq. (3.31), will be used to discuss two aspects of 
polymer dynamics: the Kirkwood-Riseman equation and the correlation function expression for the specific viscos­
ity. Hydrodynamic interactions enter into these equations through the Oseen tensor: 

(4.1 ) 

Kapral et al. have shown that T may be accounted for in the dynamic structure factor for a chain by considering a 
bilinear coupling of the local monomer density to the momentum density of the solution. 12 A similar type of coupling 
will enter into the full configurational dynamics of a chain. This is seen by noting the equivalence of the entropic 
force appearing in the Kirkwood-Riseman theory to a consideration of bilinear couplings of the monomer momenta 
and solvent fluid velocity to the polymer configuration space distribution. 

The derivations to be presented are formulated in terms of correlation functions. According to the discussion in 
Sec. II, a convenient starting point for the calculation of correlation functions is the equation for the conditional 
mean, 

The operator A corresponding to Eq. (3.31) is given by 

where Eqs. (2.29) and (2.30) have been used. 

The configurational dynamics of polymers may be dis­
cussed in terms of the joint distribution function, l/J(Y, 
y',O, for the initial state y' and the state y at time t. 
l/J may be expressed as the two-time correlation function 
of a variable 

h(y):;;o(y-x) 

according to the relation 

l/J(y, y', t) =(h(y, t), h(y'» 

(4.3) 

(4.4) 

The solution viscosity, on the other hand, may be ob­
tained by observing the equation for the transverse mo­
mentum density autocorrelation function: 

(4.5) 

C(k, t) will be shown to satisfy an equation of the form 

(4.6) 

(2.32) 

(4.2) 

where 

c* '" c +Nrrm (4.7) 

The specific viscosity is then obtained from the relation 

(4.8) 

These considerations suggest that two variables of in­
terest are h(y) and gJ.(k). The projection operators onto 
these variables are easily constructed. As a result, 
one finds 

(J>h{ }= f dy({ }, h(y»h(Y)/f(Y) (4.9) 

and 

(4.10) 

f(y) is the equilibriuni distribution in configuration 
space. 
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(4.11) 

As discussed earlier, hydrodynamic interactions can 
be related to bilinear couplings of the form {PJh(y)} and 
{u(k)h(y)}. However, due to the nonorthogonality of 
these variables to g~(k), it will be convenient to intro­
duce 

and 

(4.13) 

<PI> is the projection operator onto the set {JJ(Y)}' Its 
form will be given below. 

Let us define 

; q;Jk(Y' y') == (,,(y), Jk(y'» 

= ; [OJkO(Y - y')lf(y) - ;;: f(y)f(y')S(YJ - y~)], 

(4.14) 
where 

(4.15) 

The inverse of q;Jk is defined by the relation 

By direct substitution into (4.16), one can verify 

q;ji(y', y") = [OJJO(y' _y")f(y')-l + ;;S(Y;-y~')] • 

(4.17) 

The projection operator onto the set {$J(y)} is then given 
by 

<PI>{ }== ! ~ f dy dy' ({ }, J/y». q;j~(y, y'). Jk(y'). (4.18) 

Applying Eqs. (4.17) and (4.18) to the definition of Ju, 
Eq. (4.13), yields 

Ju(k,y)=u(k)(h(y)-f(y» • (4.19) 

The corresponding projection operator onto Ju is 

<pu{ }== ~ J(;:)SdY({ },Ju(-k,y».~(k,Y)/f(Y). (4.20) 

Equations for the joint distribution function I/i(y, y', t) 
and C(k, t) may be obtained from the generalized Langevin 
equation for the correlation matrix of 

[ 

{h(y)} 1 
T== ~(y)} • 

~(k,y)} 

{g.,(k)} 

(4.21) 

Such an equation is obtained by applying the Mori­
Zwanzig formalism to the equation for the conditional 
mean of T (Ref. 31): 

:t T"'(t)=AT"(t) • 

The projection operator onto T, <P r , is given by 

(4.22) 

where {<pI>,<Pu,<Ph'<P,} are given by Eqs. (4.18), (4.20), 
(4.9), and (4.10), respectively. Therefore, the corre­
lation matrix satisfies 

a It at (T(t), T) - {l. (T(t), T) - 0 dr qJ{ or) • (T(t - T), T) = 0 , 

where 

qJ(t) • T == <PrAq(t) , 

q(t)==exp[t(1-<Pr )Aj(1-<Pr )AT 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

Equations (4.24)-(4.26) are in a different form than usu­
ally presented due to the nonexistence of (T, T)"l. The 
evaluation of {l. T, q and qJ' T requires a knowledge of 
AT. For the purpose bf obtaining AT, however, it will 
be sufficient to look at the following quantities: 

(4.27) 

Ag~(k) = - ~17 u(k) + I:>lk'XJ[m-l ik. PJPj +FJ]. S(k),:~(k) , 
J 

(4.28) 

+FJ(Y)h(Y)-~(!;-~U(yj»)h(Y) , (4.29) 

Au(k) h( y) = - L m-l ~. p, u(k) h(y) _ lf17 u(k) h(y) 
,ay, c 

The components of {l. T are calculated in Appendix A 
with the aid of Eq. (4.27)-(4.30) and the defining rela­
tions for the components of T, Eqs. (4.3), (4.12), and 
(4.19). 

In what follows, a restriction to times t »m/ ~ will be 
considered. The importance of the memory matrix qJ 

will, therefore, be determined by the characteristic 
time scaleS that are introduced into the equation for 
(T(t), T) for times t»m/~. It will first be necessary 
to consider the form of q(t), Eq. (4.26). Observe 
that the only term in Eqs. (4.27)-(4.30) which do 
not involve components of Tare - ~, m -1 (a/ BY,) 
• p,PJh(y) and -~,m-l(a/ay,.p,u(k)h(Y». These terms 
give rise to nonvanishing contributions to q: 
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{a} 

{-~[m-I :,' (P,PJ-I;I5 J1) h(y) + c:f(Y)p" :J S(YJ-X,).P,]} 

{-L m-I ~. P, U(k)h(Y)} 
, ay, 

(4.31 ) 

{~elk'X' ik . p,p, m-I
• S(k) ~(k) } 

where the results of Appendix A have been used. Furthermore, there are only two independent contributions to 
q(O), {[P,Pk -15'k 1 (m/{:l)]h(y)} and {Pi u(k)h(y)} since 

S(k). e lk
'
XJ p,p,' ik = ~ 15" S(k). J dw e lk

'
w

, {PiP' -115" ;}. h(w)ik 

Thus, the contribution of the memory terms are determined by the evolution of {(P,Pk -15'k I(m/{:l))h(y)} and 
{u(k) P, h(y)} with respect to the modified evolution operator exp[t(l - IPT)i\]. One such contribution will be 

1= ! [~fr,' m-2 
f(Z)-1 (exp[t(l - <PT)i\] a;, . [p,p, -15" 1 ; ]h(Y), -k. ~"Pk -15" k 1 ; ]h(Z») . 

Note that 

(l-<PT)i\[PIP, -151J1 m]h(y)=-(l-<PT)Lm-l_a_'PrPIp,h(y) 
{:l r aYr 

- ~(2m-I(PIPJ -I5 IJ 1 ;) -c-I(u(y,)p, +p, U(YJ))) h(Y) 

where Eq. (4.2) has been used. In the last equation, it may be argued that 

~m-I a;r'PrPIp,h(y)_m-I~-1 nPIPJh(Y) , 

where t:. is - bond length. 32 The streaming term has been neglected on the basis that 

(~2 {:l~)-I« ~/m . 

(4.32) 

(4.33) 

(4.34) 

In other words, the collision frequency is much larger than the frequency associated with the hopping of individual 
chain segments. For the purpose of estimating I, only diagonal terms will be retained in (4.33): 

The other contributions to rp, having a similar structure to I, will contribute to roughly the same order. The effect 
of the memory matrix may, therefore, be neglected in Eq. (4.23) provided that we assume the validity of Eq. (4.34) 
and 

({:l~)-I«T//C . 

As a result, Eq. (4.23) is approximated by 

a 
at (T(t), T) - o· (T(t), T) = 0 . 

(4.35) 

A second simplification that occurs is the neglect of time derivatives like (a/ at) (";(y, t), T), (a/at) (.1..(k, y, t), T) as 
compared to terms - ~/m. These considerations lead to the following approximate description: 

a~ (h(y, t), T) = - L m-I aya • (I-,(y, t), T) - L 1* (g~(y" t), T) • aya f(y) , 
" , c , 

(4.36) 
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- ~ [ m-1 1; f dz j (Y) r/>j!(Y, z). (Jk(z, t), T) - c-1 (J,.(YJ' y, t), T)] 

+ ~j(y) ~rc* L fdZ S(YJ -Zk)' (JII(z, t), T) -(gJ.(Yi' t), T)] , 
c* 8.Y i lc Il 

(4.38) 

0"", - IT/ (Ju(q, y, t), T) + ~ LS(q) a(q)fdZ e1q
' Zi (5(y - z) - j(y)) 

c J 

x {m-1 ~ J dW r/>j~(Z, w) j(z). <ik(w, 0, T) - c-1 
(ju{Zi' z, t), T)} (4.39) 

Equations (4.37)-(4.39) may be used to solve for <i/y,t), T). This is done in Appendix B. According to Eq. (B5), 
<~(y,t), T) is given by 

<Ji (y,t),T)=-m1;f dZDJII(y,Z). (a:
k 

_j3FIl (Z») (h(z,t),T) , (4.40) 

where 

(4.41) 

and 

(4.42) 

T!"(Z, w) is a modified Oseen tensor in which the coarse-graining parameter I appears explicitly. In the process 
of obtaining Eq. (4.40), terms like (m/~)(a/at)(gJ.(k, t), T) and (1/T/l)(a/at)(gJ.(k,t), T) were ignored on the basis that 
only times t» (m/ ~)- (T/l)-l are being considered. 

We are now in a position to obtain equations for l/i(y, y', t) and C(k, t) defined by Eqs. (4.4) and (4.5). With the aid 
of Eqs. (4.36), (4.37), and (4.40)-(4.42) the following equation is obtained for I/I(Y, y', t): 

; l/i(y, y', t) = ~ a;i • (D,15 Jk +j3-1Tik(l_ 5ill»· (a;1I -J3FII) I/I(y, y', t) , 

where 

Ti"=Tfk(y,y) . 

Tik approaches the conventional Oseen tensor, Eq. (4.1), when the limit 1- 0 is taken. 

(4.43) 

(4.44) 

(4.45) 

Two points are worth noting. The Kirkwood-Riseman equation follows naturally from the approximate Fokker­
Planck equation, Eq. (3.31), and does not require postulating a thermodynamic force (Le., a force proportional to 
the gradient of the logarithm of the distribution function). The treatment of the solvent as a structureless continuum 
manifests itself in the presence of a coarse -graining parameter I in the hydrodynamic interaction tensor. 

One may apply similar considerations in obtaining an equation for C(k, t): 

a 11- j3 it 
at 

C(k, t)= - -£l- C(k, t) - *V dTfdYdZj(Z) L S(k)a(k) 
ceo JII' 

xe1k'YJ • [I 5JII o(y - z) - ~T/ j3 DJII(y, Z)l FII{z) exp[ - (t - T):e.] Fl(z) e-n ·./ . C(k, t) , 

where the operator £. is defined by the following relations: 

£. = Lf dw _a_ . DJk(Z, w) • (_a __ J3Fk(W») , 
JII (lZj 8W~ 

j(z) £ .. = £,J(z) . 

Comparing Eqs. (4.45) and (4.6) enables one to identify [T/(k, t»), Eq. (4.8): 

[T/(k,t») = (T/nNrri)-l 2Jv S (k): ~ f dyj(y)e1k'YJFJ(y) 

(4.46) 

(4.47) 

(4.48) 

x exp(t£y)e-tt 'YII FII(y) - (T/nNm)-l 2f3T/
V 

S(k): L dy dz j(z)e lk •7J DJII(y, z). Fk(z) exp(t£.)e-tt ,. , F'(z). (4.49) 
C Jill 
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Equation (4.49) expresses the specific viscosity as the 
sum of two terms. The first (f. t. ) is written as an auto­
correlation function of the mechanical contribution to the 
polymer momentum flux tensor: 

I>lt'YJ FJ(y) . 
J 

The time evolution of polymer variables is determined 
by :Cy in which hydrodynamic interactions enter through 
the modified Oseen tensor, T:k(y,Z). In the limit of 
infinite dilution and small k, f. t. approaches the form 
postulated by Stockmayer et al. 14,33 

Physically, f. t. represents that part of the viscosity 
which is due to mechanical forces acting on individual 
chain segments. The second term (s. t. ) is of a very 
different nature. For the purpose of understanding the 
presence of this term, consider an infinitely dilute sys­
tem. Let us introduce the following notation: 

1jJ(y, t) = one chain distribution function, 

VI(y, t) = average velocity of monomer i, 

u(k, t) = average solvent momentum denSity with 
wave-vector k, 

g~(k,t)=average momentum density of the solution. 

Recall that the solvent contribution to the equation for 
gl(k, t) [1. e., Eq. (3.37)] enters through a term like 
(k27)/c)u(k, t). u(k, t) may be expressed in terms of gl 
and the polymer contribution to the momentum density: 

II 

u(k, t) =gl(k, t) -mnV {; J dy S(k)A(k) e lt
' YI . VI(y, t)1jJ(y, t). 

(4.50) 
Equation (4.50) is obtained from the following consider­
ations: 

(i) 1~'1 S(k)A(k). me lt 'YI Vj(Y, t) = transverse and 
coarse-grained momentum density for one chain given 
the configuration y at time t. 

(ii) Now average (i) with respect to 1jJ(y, t) and multiply 
the result by the total number of polymers, n V. 

The diffusion approximation corresponds to setting 
II 

VI(y,t)1jJ(y,t)~-~DIJ'(a;J -(3FJ)1jJ(y,t), (4.51) 

where, according to Eqs. (4.43)-(4.45), 

DIJ =D/I(iIJ+(1-6Ij)TlJ. 

Substituting Eq. (4.52) in (4.51) and noting (a/ 'OYI) . DiJ = 0 
yields 

7)~ lI(k, t) '" 7)~ g.l(k, t) - 7)~ ({3nm V) t S(k)A(k) 
c C C IJ=l 

. f dy e lt ' Yj DIJ . Ei 1jJ(y, t) • (4.52) 

A term similar to Eq. (4.52) appears in Eq. (4.46). 
Thus, we see that s. t. arises by accounting for the dif­
fusion flow of chain segments in the equation for the 
momentum density. 

Finally, it should be noted that in the zero k limit, 
s. t. vanishes. This follows from the fact that 

for small values of k and, therefore, s.t. _k2
• 

V. SUMMARY 

This work has primarily dealt with the development of 
dynamical equations for a polymer solution from a mi­
croscopic point of view. The nonlinear formalism de­
veloped by Zwanzig and Mori has been used to derive a 
Fokker-Planck equation for the distribution of monomer 
phase space coordinates and the coarse-grained trans­
verse momentum density, S[x, p, gilt). Several simpti­
fying approximations are introduced into the equation 
for g[x, p, RL It]. The resulting approximate description 
is somewhat analogous to the starting equations of the 
Freed-Edwards theory. There is, however, one im­
portant difference due to the presence of a non-Stokes 
frictional force. The former occurs when monomers are 
allowed to have velocity fluctuations relative to the sol­
vent fluid velocity. Therefore, the present theory al­
lows for slip, whereas the Freed-Edwards theory em­
ploys a no-slip boundary condition at the polymer- sol­
vent interface. 

The approximate Fokker-Planck description was then 
used to discuss the Kirkwood-Riseman equation and the 
correlation function formulation of the specific viscos­
ity. This involved obtaining equations for the two-time 
configuration space distribution function, 1jJ(y, y' ,0, and 
the momentum density autocorrelation function, C(k, t). 
The former was seen to obey an equation similar to the 
Kirkwood-Riseman equation in which hydrodynamic in­
teractions are present in the form of a coarse-grained 
Oseen tensor, T/k. The coarse-graining parameter 1 
appears as a minimum length over which the solvent 
may be treated as a structureless continuum. It was 
demonstrated that T:" is related to nonlinear couplings 
of the polymer distribution function to the monomer mo­
menta and the coarse-grained, transverse momentum 
density. 

The equation for C(k, t) enabled one to identify the 
specific viscosity. This was expressed as the sum of 
two terms. The first term involved an autocorrelation 
function of the polymer momentum flux tensor. In the 
limit of infinite dilution and small wave vectors, this 
term reduces to the correlation function expression for 
the intrinsic viscosity proposed by Stockmayer et al. 
The second term could be rel~ted to the diffusion flow of 
chain segments. Its effect vanishes in the small k Limit. 
It should be noted that the operator governing the time 
evolution of polymer variables in the expression for the 
specific viscosity approaches the Kirkwood-Riseman 
operator only in the limit of infinite dilution . 
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APPENDIX A: EVALUATION OF n· T 

The first component of (}. Tis CPT Ah(y). This is easily evaluated by recalling the expression for /k(y), Eq. 
(4.12): 

~(y) ;Pj h(Y) - ;;: f(y) g.L(Yj) • 

Therefore, 

Now consider 

CPTAgJ.(k); f dy (AgJ.(k), h(y» f(yt 1 h(y) + :. f (:;3 (Ag.L(k), g.L(-k'» .g.L(k') 

2861 

(A1) 

+ ! ~ f dydy' (Ag.L(k),lj(y», t/>j~(y, y') ·Ik(y') + ~ f (:;3 dY(Ag.L(k),lk(-k', y». f(yt 1 /u(k', y). (A2) 

The last term in (A2) vanishes. Note that 

(Ag.L(k), h(y»; L S(k) ~(k) Fj(y)e1k' Yj f(y) , 
j 

(Ag.L(k), gJ.(-k'» = - ~1] (~)(21T)31)(k -k') ~(k)S(k) , 

(Ag.L(k),lj(y» = - k
2

1] (u(k),IJ(y»;::; ~*1] ': elk'''j f(y) S(k) ~(k) . 
c c ,., 

Substitution of (A3)-(A5) into (A2) yields 

CPTAgJ.(k); - 11-1] g.L(k) + ~1]LS(k) ~(k). fdY elk'''J liy) + L S(k) a(k). fdYFJ(y)elt'.,j h(y) • 
C C j J 

The CPTAIJ contribution is given as 

CPTAJJ(y); f dz (Aliy), h(z» f(Z)"l h(z)+ :. f (':!)3 (Alj(y), gJ.(-k» • gJ.(k) 

(A3) 

(A4) 

(A5) 

(A6) 

+ l. L f dz dz' (AJj(y), I, (z» • t/>;!(z, z') ·lk(Z') + [i f (2
dk

)3 dz (AJJ(y),Ju(- k, z» • f(zt 1 lu(k, z). (A 7) 
m '.k C 1T 

The static correlation functions in (A 7) are given as follows: 

where Eq. (4.14) has been used: 

and 

(Aliy), g.L(-k»;::; - k:1] (J/Y), u(k» = ~*1]; e-l toYJ f(y)S(k) ~(k) , 

(AI/y), J,(z»; - Hh(Y)(PJ m -1 _c-1 u(Yj», I, (z» - :;:. f (::'3 e-lk'''J f(y) (AgJ.(k), I,(z» 

; _(3-1[ ~11)J1I)(y-z)f(Y) - ;) f(y)f(z) ~S(YJ -Z,)] , 

(Alj(y), III( - k, z» ;::; t S(k) ~(k) e-lk'''j [o(y - z) f(z) - f(y) f(z)] • 

Substituting Eqs. (A8)-(All) into (A7) yields 

CPTAlj(y) = _(3-1 f dZ~ t/>JI/ (y, z)f(Z)-l. (a!1I -(3FII(Z~h(Z) 

(A8) 

(A9) 

(A10) 

(All) 

- ~ [m-1 ~ f dzf(y) t/>jl(y,z)·II/(z) - c-1lu(Yj, y)] + f(y) ~~[C; ~ J dz S(YJ -ZI/) '11I(z) - g.L(YJ)] • 

(A12) 
Finally, we consider 
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<J>TAJ.u(k, y) =f dZ(A/J.u(k, y), h(z» f(zt 1h(z) + ~f (~:;3 (A/J.u(k, Y), gl(-k'». gl(k') 

+ ! ~ f dzdz ' (AJ.u(k, Y), J.,(z). ¢j~(z, z'). J.,,(z') + ~ f(::)~ dz (AJu(k, Y),lu( - k', z)f(zt1 J)k', z) . 

(A13) 
The first two terms in (A13) vanish. The second two are given by 

(A/u(k, Y), I/z» = ~ e lt,sJ S(k) 6.(k) [o(y - z) fey) - fey) fez)] , 

(A/u(k, Y), lu(- k', z» =: - k
2

rr (Ju(k, Y), Ju( - k/, z» - .i LS(k) 6.(k) 
C C j 

Therefore 

(A14) 

(A15) 

k
2 

{ 1 } <J>TA/u(k, y) =: - -f Ju(k, y) + ~~ S(k) 6.(k) J dz e lk
•zJ [o(y - z) - fey)] m-1 ~ f dZ' ¢ j~(Z, z ') f(z), Jk(Z) - c Ju(Zj' z) . 

APPENDIX B: (J. j(y,t),T) 

Equation (4.38) may be rewritten as 

~ [ m-1 ~ J dz f(Y)¢ik(Y, z). <lk(Z, tl, T) _c-1 (J.u<Y j , y, f), T)] 

= - {3-1 ( a;j - (3FJ(Y»)(h(Y, f), T) - ;: f(y) ~ f dz S(Yj - z,,). Fk(z) (h(z, f), T) + ;: f(y) f (;;)3 e-Iq'''j 

x{- ~rr S(q) 6.(q)~ f dze1q'Zk(/,,(z, f), T) + ~1'J (gl(q, f), T)} 

= - {3-1 (a;j - (3 FJ(y») (h(y, t), T) - :;; fey) :t (gl(YJ' f), T) , 

(A16) 

(B1) 

where Eqs. (4.14) and (4.37) have been used. Substituting (B1) into (4.39) and solving for (Iu(q, y, 0, T) yields 

(Ju(q, y, t), T) = - ~ ~ q-2 Seq) 6.(q) f dz elq'zj(o(y - Z) - f (y)) {{3_1( a!J - (3FJ(z») (h(z, f), T) - ;: f(Z) :t (gl(Zj, t), T)} . 

(B2) 
In view of Eqs. (B1) and (B2) we write 

(IJ(Y, n, T) = ~ f dz <PJk(Y, Z) f(z)-l. {~f dW fez) <p;~(z, w) (/I( W, f), T) - : (Ju(Z", z, t), T)} 

+ L m fdZ¢Jk(Y' z). <Ju(z", z, f), T) f(z)"l 
k C 

= - m z;. J dz <Pik(Y, z) f(zt
1 {(~{3-1 )(~" - (3F

k
(Z») <h(Z, f), T) + ~ fez) :t (gl(Z1" f), T)} 

-~: f dz dW<Pik(y, Z) f(z)"l. T~I(Z, w). [o(z - w) - f(zl1{{3-1(;1 - (3F I (W») (h(w ,f), T) + : few) ~ (gl(W/, t), T)} , 

(B3) 

where 

(B4) 

In Eq. (B3) the term - (alaf) (gl(k, f), T) will be neglected due to the restriction t »m/~. Here we also assume that 
~/m -1)l. Therefore, Eq. (B3) becomes 

(J,(y, t), T) "'" - m 1; f dz Dik(y, z). (~k -(3Fk(Z») (h(z, t), T) , 

with 

OJk(y, Z)=fdW L ¢JI(y, w)f(w)"l{olk o(w - Z)(/3~t1 + T:k( w, z)(o(w -Z) - f(w))} • 
I . / 
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