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Bounds for the bulk heat transport in Rayleigh—Benard convection for an infinite
Prandtl number fluid are derived from the primitive equations. The enhancement of
heat transport beyond the minimal conduction valtihe Nusselt number Nus
bounded in terms of the nondimensional temperature difference across the layer
(the Rayleigh number Raaccording to NescR&®, wherec<1 is an absolute
constant. This rigorous upper limit is uniform in the rotation rate when a Coriolis
force, corresponding to the rotating convection problem, is included.20@1
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[. INTRODUCTION

Rayleigh—Benard convection, where a fluid layer heated from below produces an instability
leading to convective fluid motions, has played a central role in both the experimental and theo-
retical development of the modern sciences of nonlinear dynamics and physical pattern formation.
Driven far beyond the instability, thermal convection becomes turbulent. Heat transport by con-
vective turbulence is an important component of a wide variety of problems in applied physics
ranging from stellar structure in astrophystc$p mantle convection and plate tectonics in
geophysicé, to transport in physical oceanography and atmospheric scfeBoe of the funda-
mental quantities of interest in these systems is the total heat transport across the layer, usually
expressed in terms of the nondimensional Nusselt number Nu, the enhancement of heat flux
beyond the minimal conductive value. This flux is a function of the buoyancy force across the
layer, usually measured in units set by the layer geometry and material dissipation parameters as
the Rayleigh number Ra. There are at least two other parameters in these systems: The Prandtl
number Pr, a material parameter, is the ratio of diffusivities of momentum and temperature. And
the aspect ratiod, the ratio of the cross-sectional length s¢sll¢o the layer depth, is a geometric
parameter characterizing the convection domain.

A major goal of both theory and experiment is to elucidate the Nu—Ra relationship, which is
expected to take the form of a scaling law

Nu~ Rét, (1.0

in the high Rayleigh number limit of fully developed convective turbulence. It is generally as-
sumed that the high Ra scaling law will be independent of the aspect ratio, and independent of the
Prandtl number for finite values of Pr. Great interest centers on the asymi®ta— =) value

of the scaling exponen.

For many applications there is a relatively uncontroversial model of the phenomena, the
so-called Boussinesq equations. This model consists of the heat advection-diffusion equation for
the local temperature coupled to the incompressible Navier—Stokes equations via a buoyancy
force proportional to the local temperature. There have been many theoretical predictions—as well
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as more than a fewa posterioriexplanations—for the numerical value of the scaling expoment
based in part on this modélAnd while a number of laboratory experiments over the last two
decade¥ ® have produced data yielding clear scaling over many orders of magnitude variation in
Ra, experiments have not yet produced unambiguous measuremeats(directly observed
values ofa have varied between roughly 1/4 and 1/3.

One of the early high-Rayleigh number theotfepredicted, for finite Pr, an “ultimate”
regime as Ra»» with Nu~ (Pr Ra)’> (modulo logarithmic modifications This scaling is distin-
guished in that the physical heat flux is then independent of the material transport coeflicients,
and additionally in that this Rayleigh number dependence is in accord with the most general
rigorous upper bounds on the heat transport derived from the Boussinesq edtiatitmat most
mild statistical assumptiori$.In particular the best high Ra rigorous bounds to date are of the
form Nu<cRa"'? uniform in the Prandtl number forOPr<. Several recent experimental in-
vestigations have suggested some indication of the eventual realization aftHi& limit,% but
others have concluded that this regime may not be achféVed.

In this paper we focus on a specific version of the problem modeled by the infinite Prandtl
number limit of the Boussinesq equations. Then the inertial terms in the momentum equations are
neglected and the velocity vector field is linearly slaved to the temperature field. The infinite
Prandtl number limit is the standard model for mantle convection sttittiésrrestrial geophysics
where Pr=10%4 and it is often taken as a reasonable description of high Prandtl number convec-
tion at moderate Rayleigh numbers. The Reynolds number is always small for infinite Prandtl
number, and the expectation for the high Rayleigh number scaling of the Nusselt number is
modified accordingly. The scaling NutRa® was predicted on the basis of marginally stable
boundary layer argument&!#and this value ofr is distinguished in that it yields a finite heat flux
into a semi-infinite layer. This 1/3 scaling is also predicted as an upper limit of the infinite Prandtl
number limit of the Boussinesq equations on the basis of an approximate treatment of an upper
bound analysis utilizing mild statistical hypothe$isviore recently, the suggestive high Rayleigh
number bound N&cRa’3(log Ray’® was proven directly from the equations of motitn.

The effect of rotation on convective heat transport is an important issue in astrophysical and
geophysical applications, and it has also been the subject of recent laboratory Stibestion
is modeled by the addition of a Coriolis force to the momentum balance in the Boussinesg model,
and introduces another nondimensional variable into the system, the Taylor number Ta, which is
proportional to the square of the rotation rate. Rotation modifies the transition from conduction to
convectiont®*®and generally rotation is observed to suppress convective heat transport in accord
with the Taylor—Proudman theorem. The mathematical analysis of the effect of rotation in terms
of its effect on rigorous bounds for convective heat transport is only partially successful, however,
because to a great extent the existing bounding techniques utilize energy balances. The Coriolis
force does no work, so it drops out of the analysis. Indeed, the ®R&'’> bound for arbitrary
Prandtl number convection in Refs. 11 and 12 are uniform Ta. To date there are no rigorous
estimates of the suppression of convection by rotation for arbitrary Prandtl number fluids.

There has been considerably more success for the analysis of the effect of rotation on infinite
Prandtl number convection. When the Coriolis force is introduced directly into the linear slaving
of the velocity field to the temperature field, it remains effective when the full momentum
equation—and not just the energy balance—is utilized as a constraint in the analysis. A bound on
Nu with the proper qualitative dependence on rotation was recently estabifsHéd,
<c, R&/\/Ta for no-slip boundaries. The Rayleigh number dependence of this estimate is overly
pessimistic for moderate rotations; in Ref. 21 it is shown that for moderate rotdtibes
<c Ra’¥(log Ray®] an estimate of the form NacRa*(log Ray’® is valid.

The new results in this paper are to derive another rigorous upper bound for the Nusselt
number in the infinite Prandtl number model which is effective for a range of Rayleigh and Taylor
numbers. We will prove that

Nu<cR&"®, (1.2
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where the prefactar is an absolute constant uniform in Ta. This is a qualitative improvement over
the only other known uniform bound Ra*’?, and depending on the specific values of Ra and Ta
it can be a quantitative improvement of the estimates in Refs. 20 and 21. We will estabfish
two ways, one in the absence of rotation with the prefactei0.2545--, and another in the
presence of rotatidh with a slightly larger prefactoc=0.6635- .

The rest of this paper is organized as follows. In the next section we present a full description
of the Boussinesq model of fluid convection along with the precise definitions of the dependent
and independent variables, some basic identities, and a little preliminary analysis. Section Il
contains the upper bound computation, all the relevant estimates, and two proofs of the 2/5 bound,
without and with rotation.

Il. FORMULATION OF THE PROBLEM

We begin with the Boussinesq model of fluid convection in a rotating reference frame. A layer
of fluid is confined between horizontal rigid planes separated by vertical distantiee bottom
plate az=0 is held at constant temperaturg,,m, and the top one a&=h is held at temperature
Tiop: both plates are no-slip as regards the fluid motion. Zlais is the vertical direction, the
direction in which gravity acts and the direction of the axis of rotation. The unit vectors ix, the
y, andz directions are, respectively, j, k, and the velocity field isi(x,t)=iu+jv+kw. The
temperature field iF(x,t). Neglecting compressibility everywhere except in the buoyancy force,
and scaling the density to one, the velocity field, the pressure giglt), and temperature field
are governed by the Boussinesq equations

Ju
E+u-Vu+Vp+ZQk><u=vAu+gakT, (2.1
V-u=0, (2.2
JT
E'FU-VT:KAT. (2.3

In the above() is the rotation ratey is the kinematic viscosityy is the acceleration of gravity,
«a is the thermal expansion coefficient, ands the thermal diffusion coefficient. Incompressibility
together with the no-slip boundary conditions lead to the supplementary boundary condition

aW—O =0h 2.4
T at z=0h. (2.4

In this work we restrict attention to periodic boundary conditions on all dependent variables in the
horizontal directions with periods, andL, .

The standard nondimensional formulation of the problem is realized by measuring lengths in
units of the layer depth, time in units of the thermal diffusion timie?/ «, velocity in terms of
«/h, and temperature on a scale whég,=0 andTy,um= 1. The equations of motion are then
transformed to

1/(0u

ﬁ’(E_FU.VU +Takxu+Vp=Au+RaKkT, (2.9
oT
—o U VT=AT, (2.7)

with boundary conditions
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U[,—0=0=Ul,=1, T|;=0=1, T|,-1=0. (2.8

All the parameters of the system are thus absorbed into four pure numbers. The natural control
parameter is the Rayleigh number

Re ga(Tpottom— Troph® , (2.9
VK

a ratio of the overall buoyancy force to the damping coefficients. The rotation is measured by the
Taylor number

2

; (2.10

20h?
v

Ta=

which is sometimes expressed in terms of the Ekman numberTgk 2. The Prandtl number
1%

Pr=—, (2.11
K

is a material parameter. In the remainder of this paper we shall be concerned with the infinite
Prandtl number model where the inertial terms in the momentum equdfidnsare dropped so
that the velocity field is linearly slaved to the temperature field

JTakxu+Vp=Au+RakT. (2.12

The fourth pure number characterizing the model is the aspect ratio of the system, which we define
to be the nondimensional area on the layer

L.L
A:%. (2.13

The infinite Prandtl number model leads to direct linear relationships among the temperature,
the vertical velocityw, and the vertical vorticity

B Jduv du 21

(= oy (2.14

Indeed, eliminating the pressure frq2.12) it is straightforward to see that

af
A2w— JﬁE= —RaA,T, (2.15
whereA, denotes the horizontal Laplaciaj+d;, and
ow

—A{—\/T—agzo. (2.16

In view of the incompressibility and no-slip conditions anthe boundary conditions accompa-
nying (2.15 and(2.16) are

oW
0z

ow

z=0

(2.17

W|Z:0:O:W|Z:1!

z=1

and
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§|z:O:0:§|z:1- (2.18
A. Heat transport

The total heat transport is the space—time average of the vertical component of the heat
currentk-J, whereJ is proportional touT—VT. The standard nondimensional measure of the
convective heat transport is the enhancement of the heat flux due to fluid motion, the Nusselt
number Nu. The Nusselt number is defined as the ratio of the total vertical heat flux to the
conductive heat flux(Tpoom— Tiop)/h-

The convection rate is a time averaged bulk property in the turbulent case, so it is helpful in
defining it to introduce the notation

Ly/h Ly/h 1
de=J de dyf dz, (2.19
v 0 0 0

(wherex, y, andz are the nondimensional coordingtésr the volume integration

1/2
Irl-| [ avitoxyar| 2.20

for the L, norm on the domain, and
1 [t
(f)=|im—f f(t")dt’, (2.21
t—»wt 0

for the long time average df In the event the limit above does not exist is not unambiguously
unique, we may interpret the definition in terms of the limit supremum as regards the upper
bounds to be derived here.

Straightforward manipulation of the equations of motion yield a variety of expressions for the
Nusselt number in terms of solutions .7), (2.15, and(2.16

1

Nu—1+z<fvdv WT> (2.22
_! VT|? 2.2
= vT?) (223
_ 11 2
= a2Vl (224

The goal of the analysis is to produeepriori bounds for the function NiRa, Ta4). We will
derive bounds that are uniform in the rotation rate and the aspect ratio, so for convenience we will
refer to the Nusselt number as simply (Ra).

B. A useful decomposition

A device that we shall use throughout is the decomposition of the temperature field into a
steady “background profile” and a time-dependent fluctuation field

T(x,t)=7(2)+ 0(x,t). (2.2H

The background profile(z) is, for the moment, arbitrary except that it satisfies the boundary
conditions onT(x,t). That is
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7(0)=1 and 7(1)=0. (2.2
Thus the fluctuatiord satisfies homogeneous boundary conditions
0l2=0=0=0],-1, (2.27)

together with periodicity in the horizontal. A particular background profile will be chosen later for
convenience in the analysis.
We introduce the decompositid2.25 into (2.7) to obtain

a6
E-I—U'VGZAG—T,W-FT”, (2.28

where 7’ (z) and 7"(z) are the first and second derivatives of tH&). The evolution of the.,

norm (squared of the fluctuation field is obtained by dottirjgnto Eq.(2.28 and integrating over

the volume. Then upon performing some integrations by parts and invoking the boundary condi-
tions we obtain

d 1 2 2 ’ ’ 70
Salor==IvoP- [ avr@wo- [ avr @ 2. (2.29
Now consider thé_, norm (squaredl of the decomposition of the gradient of the temperature field

1 96
||VT||2=AJO dZT’(Z)Z—I—ZJVdVT’(Z)E—I—HV [ (2.30

Adding 2X(2.29) to(2.30), taking the long time average and recallifg23, we find the funda-
mental(for what follows relation for the heat transport:

Nu= J:dZT'(Z)Z—%<deV(|V0|2+27"(Z)Wt9) : (2.3)

Ill. UPPER BOUNDS

The derivation of upper bounds on the convective heat transport is based on the basic decom-
position in (2.31). From this starting point we follow two distinct paths to producing effective
rigorous estimates for NRa). One approach is to choose the background prefig to assure
non-negativity of the quadratic form

Q{e}:deV(|V9|2+2r'(z)wa), (3.1)

defined for functionsf(x,y,z) satisfying the fluctuation’s boundary conditions with(x,y,z)
given in terms off according to(2.15—noting thatAyT=A,6#—and (2.16. Then the Nusselt
number is bounded explicitly bﬁédZT’(Z)Z. The other approach is to derive arpriori upper
bound on|(fydV7'(z)w#)| in terms of Ra and the functional form ef followed by an appro-
priate adjustment of to balance this estimate witfﬁdZT’(z)z. We will see that while the first
approach can be carried out to derive a bourlda’® in the absence of rotation, i.e., for ¥8,
the second approach produces a similarly scaling bound uniform in Ta feratt Ta<c, albeit
with a slightly larger prefactor.

In both approaches the background profile is chosen so that the suppdfzbfis concen-
trated near the boundaries wheveand 6 are forced to vanish due to the boundary conditions. In
particular we take
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z
1-— for 0sz<$

26
(z)={ 3 for o<z<1-6 (3.2
1-z

— —o=sz<
55 for 1-o<z=<1

where the adjustable parame®(0< §<32) is referred to as the “boundary layer” thickness of

the profile. Thenr’(z) vanishes in the bulk, and is the constantl/25 within distances of the
isothermal boundaries. With this choice of background profile, both approaches rely on detailed
local estimates fop andw in the boundary layers near=0 andz=1.

A. The 2/5 bound without rotation
First we treat the case of no rotation, i.e., =& Then the vertical velocity satisfies
A?w=—RaAy#, (3.3

together with the boundary conditions {2.17). The procedure is now to show that we may
choose the background profile’'s boundary layer thicknesmall enoughldepending on Rato
ensure that the quadratic for@ in (3.1) is non-negative. Then the bound will be §u/26.

We go over to the Fourier series representation to derive sufficient conditions for the non-
negativity ofQ. Decomposing) mode by mode in the translation invariant horizontal directions,
we observe that it will be non-negative when for each horizontal wave nuknber

1
Qo= f [|D 6|2+ K 6|+ 7/ (Wys i+ w0 ) 1dz, (3.9
0
is non-negative. In the abové,(z) is a complex valued function satisfyirdy ,(z) = 6,(z)* and
homogeneous Dirichlet boundary conditions
6(0)=0=6,(1), (3.9

the z derivative is denoted bp, and the complex valued functiom(z) is the linear functional
of 6, defined by

(—D?+k?)?w,=Rak?6,, (3.6)
with both homogeneous Dirichlet and Neumann boundary conditions:
Wk(O):OZWk(l) and DWk(O):OZDWk(l) (37)

Note thatw, also satisfiesv_,(z) =w,(z)*. In this subsection we will also ugle|| to denote the
L, norm and|-||.. to denote the..,. norm[0,1], i.e.,

1
NI 8

Ifll..=sup [f(2)]. (3.9

O=z=1

and

Consider first the temperature fluctuation comporgiiz). We estimate the growth d,(z)
in the boundary layer according to
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z 1/2
|9k(Z)I=UOD0k(Z')dZ’ <\/E\/JO ID6(2")]dZ, (3.10

for 0=<z=3. Of course a similar estimate holds for the growth away from the boundazy at
=1.

We may obtain control of higher derivatives wf,(z) in terms of theL, norm of 6, which
will result in the growth ofw,(z) away from the boundaries being bounded by a higher power of
the distance to the wall. Squariiig.6) and integrating from 0 to 1, and integrating by parts where
the boundary conditions permit, we have

1
R&k?| 6, ]|>= | D*w,|?— 2k? fo [ D*wy D2w, + D*w, D?w} ]dz
+ 6k¥|D2w, || 2+ 4K5| Dwy|? + K&||wyl|2. (3.1

The indefinite term above may be estimated by its neighboring terms. Faaafy

4

1 4k
‘2k2fo (D D2wict DAwi D2 Jdz =allDwi2+ - D22 (3.12

Choosinga= 3 (1/41-5)~0.7016, then, we see that
Ra’k*|| 6, %= CL[[D*w | >+ k*[D2wy|], (3.13

whereC=}(7— \41)~0.2984. This will be enough to give Ws, control of D?w in light of the
following:

Lemma:Let f(z) be a smoothsay, D3f is continuous real valued function satisfying both
homogeneous Dirichlet and Neumann boundary conditiondn. Then

ID?f|l..=< V2[D*]D]. 3.14

We note that this lemma is not true unless both sets of boundary conditions are satisfied. Coun-
terexamples are the functiori§z) = 2z3— 3z2+z and f(z) = 2z3—3z°+ 1 which satisfy, respec-
tively, homogeneous Dirichlet and homogeneous Neumann boundary conditip@dprEach of
these functions haD?f||..=6 although||D*f|=0.

To prove the lemma, first note that because of the homogeneous Dirichlet conditions,
féDf(z)dz= 0, soDf must have a zero inside the inter@l1). That is, there exists a poiaj,
€(0,1) so that Df(zy)=0. Then because of the homogeneous Neumann conditions,
JD?f(z)dz=0 and f%ODZf(z)dz=0 so there exist pointg; e (0,z5) and z,e(zo,1) so that
D2%f(z,)=0=D?f(z,).

So with 0<z;<z,<1 being distinct zeros o?f, we use the fundamental theorem of
calculus to write

z

(D2f(z))2=2f dz’D?f(z’)D%f(z’), (3.15
21

and, for any poinZ e (0,1)

D3f(z')=D3%(2)+ Jf,dz”D“f(z”). (3.16

Inserting(3.16) into (3.15 we have
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(sz(z))2=2D3f(~z)fzdz’D2f(z’)+Zfzdz’sz(z’)ﬁZ,dz”D“f(z”). (3.1

z

Integrating(3.17) with respect t& from z; to z, and noting that the first term on the right hand
side vanishes, we deduce

(22—zl)(sz(z))zzZJZZZd”zJ:dz’DZf(z’)LZ,dz”D“f(z”). (3.18

The Schwarz inequalityapplied twicg then implies
(22— 21)(D?(2))?<2(z,—21)||D*f | D*f], (3.19

which proves the lemma.
Returning attention tev,(z) =u(z) +iv(z) with u andv real (and each satisfying the bound-
ary conditions in the lemmeaand recalling(3.13), we have

|D2w,(2)|?=(D?%u(2))?+ (D?v(2))?
<2|D?ul/|D*ul+2|D%]|||D*||

1 1
<K?D2u*+ 5 [ID*u[*+ kD% [+ ;7 [D%|?
1
=K*[D?wi|*+ iz [D*wi*

R&

Hence the growth ofv, from the boundary az=0 is limited by

z ’
|wk(z)|=fodz’ foz dZ'D?w,(Z")

1
= >2|D%w.

Ra
2——=K| 6. (3.2

Jc

1
=—
2Z

An analogous pointwise bound holds near the boundamy=i.
The magnitude of the indefinite term @, is then bounded in terms of the positive definite
terms:
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1 1 (o 1 (1
[Cr o wapiae=s [wlo@loz 5 [* walo@la

0
1 (6 1 Ra 1/2
<= | dz=7%| —=K||# z\/f D6 (z')|?dZ’
< z(ﬁukn)f Tipa)]

R

1 ! E _ 22 a _ \/ ! |24
#5), gz el Iz || ooz

=2 2o [ paaz +/ [} jpaira
== — z VA z z
77 e 0 K wo K

1 Ral
<= 82— —(KY 6. %+]||D6,|?). 3.2
7 ﬁﬁ( [ 6ll*+ 1D 6i]|*) (3.22

HenceQ, is non-negative for alk when we choos& so that

1= 1 5?Ra. (3.23
7V2C
The heat transport is then bounded according to
Nu< 1 ﬁl R&/°=0.2545 --R&® (3.24
26 2(98C)¥® ' ' '

This proof does not go through when #8, however, because we cannot establish the highest
derivative control in(3.13.

B. The 2/5 bound with rotation

In the presence of rotation we adopt another strategy to derive the 2/5 scaling bound, albeit
with a slightly larger prefactor. When %0 we cannot use the tigl#? bound onw near the
boundary because we cannot produce an effective estimate for the fourth derivativie &f, .

We can, however, establishz&? growth. Then we do not require that the quadratic fapnbe
non-negative, but rather we find an priori estimate forQ and then adjust the background
boundary layer thicknes8to make the best of it.

Consider first the temperature field. Becalge,t) solves the advection-diffusion equation
(2.7), it satisfies a maximum principle. That is, if the initial daféx,0) is bounded pointwise
between the values at the boundaries, i.e.sTqx,0)=<1, then the solution subsequently sustains
those limits: 0<T(x,t)<1. The background profile i(8.2) is also bounded pointwise in magni-
tude between 0 and 1, so the fluctuati®also obeys the same limits. Hence

ITl.=ll..=1 and [6ll.<1. (3.29

We now establish growth limits omw near the boundaries as follows: The vertical components
of velocity and vorticity are slaved to the temperature fluctuations by

d
AZW—\/'ITa&—iz—RaAHH (3.26

and
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ow
—AL— \/T—aE=0. (3.27)
Multiplying (3.26 by w and(3.27) by ¢, integrating over the full domain, and integrating by parts
with the help of the boundary conditiort8.17) and (2.18
2

'l
z

072

2 2

R&
+HApw]2+ [V Z]12= Rafvdve(—AHw)s T||0||2+IIAHWIIZ,
(3.28

where, not unexpectedly y denotes the horizontal gradierft/ox) +j(d/dy). Then thanks to
(3.29, the second vertical derivative of the vertical velocity is bounded according to

> R& . R&
s lolF=—A (3.29

oW
+2 VHE

9*W
97°

Then in view ofw’s boundary conditions, for € z< 3

2 172 ]
s§ 232 f dz”(—z). (3.30

0 Jz

|W(xyz)|—U dzf dz”

A similar estimate holds near the top boundarygatl.
Combining(3.25), (3.29, and(3.30), the indefinite(last term on the right-hand side of

1 1 2
Nu= fo dzr'(2)°— Z<HV0”2>_ 71< deVT/(Z)W0> ' (33D

is seen to satisfy

1 (L/h  [Ly/h
f dV7' (z)wé=< — 55 dxf dyf dzlw(x,y,2)| 6|

1 (L,/h Ly/h
+55 de dyf dzlw(x,y,2)|] 8ll..
1 7 Pw
< —
26 prd
V2
Ve e
< 1583 RaA. (3.32
Hence
Nu< 1,22 PR 3.3
2—84-? a. ( . 3)

Now we minimize the right-hand side above with respecétoy choosing

2/5
o= 2—3/5 Ra" 215 (334)

to conclude that
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3/5

Nu< === R&®=0.6635--Ra". (3.39

This bound is independent of the rotation, i.e., uniform in Ta ferT&<, and valid so long as
the initial temperature data lie between the temperatures at the boundaries.
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