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Bounds for the bulk heat transport in Rayleigh–Benard convection for an infinite
Prandtl number fluid are derived from the primitive equations. The enhancement of
heat transport beyond the minimal conduction value~the Nusselt number Nu! is
bounded in terms of the nondimensional temperature difference across the layer
~the Rayleigh number Ra! according to Nu<cRa2/5, wherec,1 is an absolute
constant. This rigorous upper limit is uniform in the rotation rate when a Coriolis
force, corresponding to the rotating convection problem, is included. ©2001
American Institute of Physics.@DOI: 10.1063/1.1336157#

I. INTRODUCTION

Rayleigh–Benard convection, where a fluid layer heated from below produces an inst
leading to convective fluid motions, has played a central role in both the experimental and
retical development of the modern sciences of nonlinear dynamics and physical pattern form
Driven far beyond the instability, thermal convection becomes turbulent. Heat transport by
vective turbulence is an important component of a wide variety of problems in applied ph
ranging from stellar structure in astrophysics,1 to mantle convection and plate tectonics
geophysics,2 to transport in physical oceanography and atmospheric science.3 One of the funda-
mental quantities of interest in these systems is the total heat transport across the layer,
expressed in terms of the nondimensional Nusselt number Nu, the enhancement of he
beyond the minimal conductive value. This flux is a function of the buoyancy force acros
layer, usually measured in units set by the layer geometry and material dissipation parame
the Rayleigh number Ra. There are at least two other parameters in these systems: The
number Pr, a material parameter, is the ratio of diffusivities of momentum and temperature
the aspect ratioA, the ratio of the cross-sectional length scale~s! to the layer depth, is a geometri
parameter characterizing the convection domain.

A major goal of both theory and experiment is to elucidate the Nu–Ra relationship, wh
expected to take the form of a scaling law

Nu;Raa, ~1.1!

in the high Rayleigh number limit of fully developed convective turbulence. It is generally
sumed that the high Ra scaling law will be independent of the aspect ratio, and independen
Prandtl number for finite values of Pr. Great interest centers on the asymptotic~as Ra→`! value
of the scaling exponenta.

For many applications there is a relatively uncontroversial model of the phenomena
so-called Boussinesq equations. This model consists of the heat advection-diffusion equa
the local temperature coupled to the incompressible Navier–Stokes equations via a bu
force proportional to the local temperature. There have been many theoretical predictions—

a!Electronic mail: const@math.uchicago.edu
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as more than a fewa posterioriexplanations—for the numerical value of the scaling exponena
based in part on this model.4 And while a number of laboratory experiments over the last t
decades5–9 have produced data yielding clear scaling over many orders of magnitude variat
Ra, experiments have not yet produced unambiguous measurements ofa. ~Directly observed
values ofa have varied between roughly 1/4 and 1/3.!

One of the early high-Rayleigh number theories10 predicted, for finite Pr, an ‘‘ultimate’’
regime as Ra→` with Nu;(Pr Ra)1/2 ~modulo logarithmic modifications!. This scaling is distin-
guished in that the physical heat flux is then independent of the material transport coeffic1

and additionally in that this Rayleigh number dependence is in accord with the most ge
rigorous upper bounds on the heat transport derived from the Boussinesq equations11 with at most
mild statistical assumptions.12 In particular the best high Ra rigorous bounds to date are of
form Nu<cRa1/2 uniform in the Prandtl number for 0,Pr<`. Several recent experimental in
vestigations have suggested some indication of the eventual realization of thisa51/2 limit,6,7 but
others have concluded that this regime may not be achieved.8,9

In this paper we focus on a specific version of the problem modeled by the infinite Pr
number limit of the Boussinesq equations. Then the inertial terms in the momentum equatio
neglected and the velocity vector field is linearly slaved to the temperature field. The in
Prandtl number limit is the standard model for mantle convection studies2 in terrestrial geophysics
where Pr'1024, and it is often taken as a reasonable description of high Prandtl number co
tion at moderate Rayleigh numbers. The Reynolds number is always small for infinite P
number, and the expectation for the high Rayleigh number scaling of the Nusselt num
modified accordingly. The scaling Nu;Ra1/3 was predicted on the basis of marginally stab
boundary layer arguments,13,14and this value ofa is distinguished in that it yields a finite heat flu
into a semi-infinite layer. This 1/3 scaling is also predicted as an upper limit of the infinite Pr
number limit of the Boussinesq equations on the basis of an approximate treatment of an
bound analysis utilizing mild statistical hypothesis.15 More recently, the suggestive high Rayleig
number bound Nu<cRa1/3(log Ra)2/3 was proven directly from the equations of motion.16

The effect of rotation on convective heat transport is an important issue in astrophysic
geophysical applications, and it has also been the subject of recent laboratory studies.17 Rotation
is modeled by the addition of a Coriolis force to the momentum balance in the Boussinesq m
and introduces another nondimensional variable into the system, the Taylor number Ta, w
proportional to the square of the rotation rate. Rotation modifies the transition from conduct
convection,18,19 and generally rotation is observed to suppress convective heat transport in a
with the Taylor–Proudman theorem. The mathematical analysis of the effect of rotation in
of its effect on rigorous bounds for convective heat transport is only partially successful, how
because to a great extent the existing bounding techniques utilize energy balances. The
force does no work, so it drops out of the analysis. Indeed, the Nu<cRa1/2 bound for arbitrary
Prandtl number convection in Refs. 11 and 12 are uniform Ta. To date there are no rig
estimates of the suppression of convection by rotation for arbitrary Prandtl number fluids.

There has been considerably more success for the analysis of the effect of rotation on
Prandtl number convection. When the Coriolis force is introduced directly into the linear sla
of the velocity field to the temperature field, it remains effective when the full momen
equation—and not just the energy balance—is utilized as a constraint in the analysis. A bou
Nu with the proper qualitative dependence on rotation was recently established,20 Nu
<c1 Ra2/ATa for no-slip boundaries. The Rayleigh number dependence of this estimate is o
pessimistic for moderate rotations; in Ref. 21 it is shown that for moderate rotations@Ta
<c Ra1/3(log Ra)5/3# an estimate of the form Nu<cRa1/3(log Ra)2/3 is valid.

The new results in this paper are to derive another rigorous upper bound for the N
number in the infinite Prandtl number model which is effective for a range of Rayleigh and T
numbers. We will prove that

Nu<cRa2/5, ~1.2!
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where the prefactorc is an absolute constant uniform in Ta. This is a qualitative improvement
the only other known uniform bound;Ra1/2, and depending on the specific values of Ra and
it can be a quantitative improvement of the estimates in Refs. 20 and 21. We will establish~1.2!
two ways, one in the absence of rotation with the prefactorc50.2545̄ , and another in the
presence of rotation22 with a slightly larger prefactorc50.6635̄ .

The rest of this paper is organized as follows. In the next section we present a full desc
of the Boussinesq model of fluid convection along with the precise definitions of the depe
and independent variables, some basic identities, and a little preliminary analysis. Sect
contains the upper bound computation, all the relevant estimates, and two proofs of the 2/5
without and with rotation.

II. FORMULATION OF THE PROBLEM

We begin with the Boussinesq model of fluid convection in a rotating reference frame. A
of fluid is confined between horizontal rigid planes separated by vertical distanceh. The bottom
plate atz50 is held at constant temperatureTbottom, and the top one atz5h is held at temperature
Ttop; both plates are no-slip as regards the fluid motion. Thez axis is the vertical direction, the
direction in which gravity acts and the direction of the axis of rotation. The unit vectors in thx,
y, andz directions are, respectively,i, j , k, and the velocity field isu(x,t)5 iu1 jv1kw. The
temperature field isT(x,t). Neglecting compressibility everywhere except in the buoyancy fo
and scaling the density to one, the velocity field, the pressure fieldp(x,t), and temperature field
are governed by the Boussinesq equations

]u

]t
1u•¹u1¹p12Vk3u5vDu1gakT, ~2.1!

¹•u50, ~2.2!

]T

]t
1u•¹T5kDT. ~2.3!

In the above,V is the rotation rate,v is the kinematic viscosity,g is the acceleration of gravity
a is the thermal expansion coefficient, andk is the thermal diffusion coefficient. Incompressibilit
together with the no-slip boundary conditions lead to the supplementary boundary conditio

]w

]z
50 at z50,h. ~2.4!

In this work we restrict attention to periodic boundary conditions on all dependent variables
horizontal directions with periodsLx andLy .

The standard nondimensional formulation of the problem is realized by measuring leng
units of the layer depthh, time in units of the thermal diffusion timeh2/k, velocity in terms of
k/h, and temperature on a scale whereTtop50 andTbottom51. The equations of motion are the
transformed to

1

PrS ]u

]t
1u•¹uD1ATa k3u1¹p5Du1Ra kT, ~2.5!

¹•u50, ~2.6!

]T

]t
1u•¹T5DT, ~2.7!

with boundary conditions
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uuz50505uuz51 , Tuz5051, Tuz5150. ~2.8!

All the parameters of the system are thus absorbed into four pure numbers. The natural
parameter is the Rayleigh number

Ra5
ga~Tbottom2Ttop!h

3

vk
, ~2.9!

a ratio of the overall buoyancy force to the damping coefficients. The rotation is measured
Taylor number

Ta5F2Vh2

v G2

, ~2.10!

which is sometimes expressed in terms of the Ekman number Ek5Ta21/2. The Prandtl number

Pr5
v
k

, ~2.11!

is a material parameter. In the remainder of this paper we shall be concerned with the i
Prandtl number model where the inertial terms in the momentum equations~2.5! are dropped so
that the velocity field is linearly slaved to the temperature field

ATa k3u1¹p5Du1Ra kT. ~2.12!

The fourth pure number characterizing the model is the aspect ratio of the system, which we
to be the nondimensional area on the layer

A5
LxLy

h2 . ~2.13!

The infinite Prandtl number model leads to direct linear relationships among the tempe
the vertical velocityw, and the vertical vorticity

z5
]v
]x

2
]u

]y
. ~2.14!

Indeed, eliminating the pressure from~2.12! it is straightforward to see that

D2w2ATa
]z

]z
52Ra DHT, ~2.15!

whereDH denotes the horizontal Laplacian]x
21]y

2 , and

2Dz2ATa
]w

]z
50. ~2.16!

In view of the incompressibility and no-slip conditions onu, the boundary conditions accompa
nying ~2.15! and ~2.16! are

wuz50505wuz51 ,
]w

]z U
z50

505
]w

]zU
z51

~2.17!

and
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zuz50505zuz51 . ~2.18!

A. Heat transport

The total heat transport is the space–time average of the vertical component of th
currentk•J, whereJ is proportional touT2¹T. The standard nondimensional measure of
convective heat transport is the enhancement of the heat flux due to fluid motion, the N
number Nu. The Nusselt number is defined as the ratio of the total vertical heat flux t
conductive heat fluxk(Tbottom2Ttop)/h.

The convection rate is a time averaged bulk property in the turbulent case, so it is help
defining it to introduce the notation

E
V
dV5E

0

Lx /h

dxE
0

Ly /h

dyE
0

1

dz, ~2.19!

~wherex, y, andz are the nondimensional coordinates! for the volume integration

i f i5S E
V
dVu f ~x,y,z!u2D 1/2

, ~2.20!

for the L2 norm on the domain, and

^ f &5 lim
t→`

1

t E0

t

f ~ t8!dt8, ~2.21!

for the long time average off . In the event the limit above does not exist~or is not unambiguously
unique!, we may interpret the definition in terms of the limit supremum as regards the u
bounds to be derived here.

Straightforward manipulation of the equations of motion yield a variety of expressions fo
Nusselt number in terms of solutions to~2.7!, ~2.15!, and~2.16!

Nu511
1

A K E
V
dV wTL ~2.22!

5
1

A ^i¹Ti2& ~2.23!

5
1

Ra

1

A ^i¹ui2&. ~2.24!

The goal of the analysis is to producea priori bounds for the function Nu~Ra, Ta,A!. We will
derive bounds that are uniform in the rotation rate and the aspect ratio, so for convenience w
refer to the Nusselt number as simply Nu~Ra!.

B. A useful decomposition

A device that we shall use throughout is the decomposition of the temperature field
steady ‘‘background profile’’ and a time-dependent fluctuation field

T~x,t !5t~z!1u~x,t !. ~2.25!

The background profilet(z) is, for the moment, arbitrary except that it satisfies the bound
conditions onT(x,t). That is
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t~0!51 and t~1!50. ~2.26!

Thus the fluctuationu satisfies homogeneous boundary conditions

uuz50505uuz51 , ~2.27!

together with periodicity in the horizontal. A particular background profile will be chosen late
convenience in the analysis.

We introduce the decomposition~2.25! into ~2.7! to obtain

]u

]t
1u•¹u5Du2t8w1t9, ~2.28!

wheret8(z) andt9(z) are the first and second derivatives of thet(z). The evolution of theL2

norm~squared! of the fluctuation field is obtained by dottingu into Eq.~2.28! and integrating over
the volume. Then upon performing some integrations by parts and invoking the boundary
tions we obtain

d

dt

1

2
iui252i¹ui22E

V
dV t8~z! w u2E

V
dV t8~z!

]u

]z
. ~2.29!

Now consider theL2 norm ~squared! of the decomposition of the gradient of the temperature fi

i¹Ti25AE
0

1

dzt8~z!212E
V
dV t8~z!

]u

]z
1i¹ui2. ~2.30!

Adding 23(2.29) to~2.30!, taking the long time average and recalling~2.23!, we find the funda-
mental~for what follows! relation for the heat transport:

Nu5E
0

1

dzt8~z!22
1

A K E
V
dV (u¹uu212t8~z!wu)L . ~2.31!

III. UPPER BOUNDS

The derivation of upper bounds on the convective heat transport is based on the basic d
position in ~2.31!. From this starting point we follow two distinct paths to producing effect
rigorous estimates for Nu~Ra!. One approach is to choose the background profilet(z) to assure
non-negativity of the quadratic form

Q$u%5E
V
dV ~ u¹uu212t8~z!wu!, ~3.1!

defined for functionsu(x,y,z) satisfying the fluctuation’s boundary conditions withw(x,y,z)
given in terms ofu according to~2.15!—noting thatDHT5DHu—and ~2.16!. Then the Nusselt
number is bounded explicitly by*0

1dzt8(z)2. The other approach is to derive ana priori upper
bound onu^*VdVt8(z)wu&u in terms of Ra and the functional form oft, followed by an appro-
priate adjustment oft to balance this estimate with*0

1dzt8(z)2. We will see that while the first
approach can be carried out to derive a bound;Ra2/5 in the absence of rotation, i.e., for Ta50,
the second approach produces a similarly scaling bound uniform in Ta for all2`,Ta,`, albeit
with a slightly larger prefactor.

In both approaches the background profile is chosen so that the support oft8(z) is concen-
trated near the boundaries wherew andu are forced to vanish due to the boundary conditions
particular we take
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t~z!55
12

z

2d
for 0<z<d

1
2 for d<z<12d

12z

2d
for 12d<z<1

, ~3.2!

where the adjustable parameterd (0<d< 1
2) is referred to as the ‘‘boundary layer’’ thickness

the profile. Thent8(z) vanishes in the bulk, and is the constant2 1/2d within distanced of the
isothermal boundaries. With this choice of background profile, both approaches rely on de
local estimates foru andw in the boundary layers nearz50 andz51.

A. The 2 Õ5 bound without rotation

First we treat the case of no rotation, i.e., Ta50. Then the vertical velocityw satisfies

D2w52Ra DHu, ~3.3!

together with the boundary conditions in~2.17!. The procedure is now to show that we ma
choose the background profile’s boundary layer thicknessd small enough~depending on Ra! to
ensure that the quadratic formQ in ~3.1! is non-negative. Then the bound will be Nu< 1/2d.

We go over to the Fourier series representation to derive sufficient conditions for the
negativity ofQ. DecomposingQ mode by mode in the translation invariant horizontal directio
we observe that it will be non-negative when for each horizontal wave numberk

Qk$uk%5E
0

1

@ uDuku21k2uuku21t8~wk* uk1wkuk* !#dz, ~3.4!

is non-negative. In the above,uk(z) is a complex valued function satisfyinguÀk(z)5uk(z)* and
homogeneous Dirichlet boundary conditions

uk~0!505uk~1!, ~3.5!

the z derivative is denoted byD, and the complex valued functionwk(z) is the linear functional
of uk defined by

~2D21k2!2wk5Ra k2uk , ~3.6!

with both homogeneous Dirichlet and Neumann boundary conditions:

wk~0!505wk~1! and Dwk~0!505Dwk~1!. ~3.7!

Note thatwk also satisfieswÀk(z)5wk(z)* . In this subsection we will also usei•i to denote the
L2 norm andi•i` to denote theL` norm @0,1#, i.e.,

i f i5AE
0

1

u f ~z!u2dz ~3.8!

and

i f i`5 sup
0<z<1

u f ~z!u. ~3.9!

Consider first the temperature fluctuation componentuk(z). We estimate the growth ofuk(z)
in the boundary layer according to
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uuk~z!u5U E
0

z

Duk~z8!dz8U<AzAE
0

1/2

uDuk~z8!u2dz8, ~3.10!

for 0<z< 1
2. Of course a similar estimate holds for the growth away from the boundaryz

51.
We may obtain control of higher derivatives ofwk(z) in terms of theL2 norm of uk which

will result in the growth ofwk(z) away from the boundaries being bounded by a higher powe
the distance to the wall. Squaring~3.6! and integrating from 0 to 1, and integrating by parts wh
the boundary conditions permit, we have

Ra2k4iuki25iD4wki222k2E
0

1

@D4wk* D2wk1D4wkD
2wk* #dz

16k4iD2wki214k6iDwki21k8iwki2. ~3.11!

The indefinite term above may be estimated by its neighboring terms. For anya.0

U2k2E
0

1

@D4wk* D2wk1D4wkD
2wk* #dzU<aiD4wki21

4k4

a
iD2wki2. ~3.12!

Choosinga5 1
2 (A4125)'0.7016, then, we see that

Ra2k4iuki2>C@ iD4wki21k4iD2wki2#, ~3.13!

whereC5 1
2 (72A41)'0.2984. This will be enough to give usL` control ofD2wk in light of the

following:
Lemma:Let f (z) be a smooth~say,D3f is continuous! real valued function satisfying both

homogeneous Dirichlet and Neumann boundary conditions on@0,1#. Then

iD2f i`<A2iD4f iiD2f i . ~3.14!

We note that this lemma is not true unless both sets of boundary conditions are satisfied.
terexamples are the functionsf (z)52z323z21z and f (z)52z323z211 which satisfy, respec-
tively, homogeneous Dirichlet and homogeneous Neumann boundary conditions on@0,1#. Each of
these functions hasiD2f i`56 althoughiD4f i50.

To prove the lemma, first note that because of the homogeneous Dirichlet cond
*0

1D f (z)dz50, soD f must have a zero inside the interval~0,1!. That is, there exists a pointz0

P(0,1) so that D f (z0)50. Then because of the homogeneous Neumann condit
*0

z0D2f (z)dz50 and *z0

1 D2f (z)dz50 so there exist pointsz1P(0,z0) and z2P(z0,1) so that

D2f (z1)505D2f (z2).
So with 0,z1,z2,1 being distinct zeros onD2f , we use the fundamental theorem

calculus to write

~D2f ~z!!252E
z1

z

dz8D2f ~z8!D3f ~z8!, ~3.15!

and, for any pointz̃P(0,1)

D3f ~z8!5D3f ~ z̃!1E
z̃

z8
dz9D4f ~z9!. ~3.16!

Inserting~3.16! into ~3.15! we have
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~D2f ~z!!252D3f ~ z̃!E
z1

z

dz8D2f ~z8!12E
z1

z

dz8D2f ~z8!E
z̃

z8
dz9D4f ~z9!. ~3.17!

Integrating~3.17! with respect toz̃ from z1 to z2 and noting that the first term on the right han
side vanishes, we deduce

~z22z1!~D2f ~z!!252E
z1

z2
dz̃E

z1

z

dz8D2f ~z8!E
z̃

z8
dz9D4f ~z9!. ~3.18!

The Schwarz inequality~applied twice! then implies

~z22z1!~D2f ~z!!2<2~z22z1!iD2f i iD4f i , ~3.19!

which proves the lemma.
Returning attention towk(z)5u(z)1 iv(z) with u andv real ~and each satisfying the bound

ary conditions in the lemma! and recalling~3.13!, we have

uD2wk~z!u25~D2u~z!!21~D2v~z!!2

<2iD2uiiD4ui12iD2vi iD4vi

<k2iD2ui21
1

k2 iD4ui21k2iD2vi21
1

k2 iD4vi2

5k2iD2wki21
1

k2 iD4wki2

<
Ra2

C
k2iuki2. ~3.20!

Hence the growth ofwk from the boundary atz50 is limited by

uwk~z!u5U E
0

z

dz8E
0

z8
dz9D2wk~z9!U

<
1

2
z2iD2wki`

<
1

2
z2

Ra

AC
kiuki . ~3.21!

An analogous pointwise bound holds near the boundary atz51.
The magnitude of the indefinite term inQk is then bounded in terms of the positive defin

terms:
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E
0

1

t8~wk* uk1wkuk* !dz<
1

d E0

d
uwk~z!iuk~z!udz1

1

d E12d

1

uwk~z!iuk~z!udz

<
1

d E0

d
dz

1

2
z2S Ra

AC
kiuki DAzAE

0

1/2

uDuk~z8!u2dz8

1
1

d E12d

1

dz
1

2
~12z!2S Ra

AC
kiuki D uuk~z!uA12zAE

1/2

1

uDuk~z8!u2dz8

<
1

7
d5/2

Ra

AC
kiuki SAE

0

1/2

uDuk~z8!u2dz81AE
1/2

1

uDuk~z8!u2dz8D
<

1

7
d5/2

Ra

AC

1

&
~k2iuki21iDuki2!. ~3.22!

HenceQk is non-negative for allk when we choosed so that

15
1

7A2C
d5/2Ra. ~3.23!

The heat transport is then bounded according to

Nu<
1

2d
5

1

2~98C!1/5Ra2/550.2545̄ Ra2/5. ~3.24!

This proof does not go through when TaÞ0, however, because we cannot establish the hig
derivative control in~3.13!.

B. The 2 Õ5 bound with rotation

In the presence of rotation we adopt another strategy to derive the 2/5 scaling bound,
with a slightly larger prefactor. When TaÞ0 we cannot use the tightz2 bound onw near the
boundary because we cannot produce an effective estimate for the fourth derivative ofw in L2 .
We can, however, establish az3/2 growth. Then we do not require that the quadratic formQ be
non-negative, but rather we find ana priori estimate forQ and then adjust the backgroun
boundary layer thicknessd to make the best of it.

Consider first the temperature field. BecauseT(x,t) solves the advection-diffusion equatio
~2.7!, it satisfies a maximum principle. That is, if the initial dataT(x,0) is bounded pointwise
between the values at the boundaries, i.e., if 0<T(x,0)<1, then the solution subsequently susta
those limits: 0<T(x,t)<1. The background profile in~3.2! is also bounded pointwise in magn
tude between 0 and 1, so the fluctuationu also obeys the same limits. Hence

iTi`5iti`51 and iui`<1. ~3.25!

We now establish growth limits onw near the boundaries as follows: The vertical compone
of velocity and vorticity are slaved to the temperature fluctuations by

D2w2ATa
]z

]z
52Ra DHu ~3.26!

and
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2Dz2ATa
]w

]z
50. ~3.27!

Multiplying ~3.26! by w and~3.27! by z, integrating over the full domain, and integrating by pa
with the help of the boundary conditions~2.17! and ~2.18!

I ]2w

]z2 I 2

12I¹H

]w

]z I
2

1iDHwi21i¹zi25RaE
V
dVu~2DHw!<

Ra2

4
iui21iDHwi2,

~3.28!

where, not unexpectedly,¹H denotes the horizontal gradienti(]/]x) 1 j (]/]y). Then thanks to
~3.25!, the second vertical derivative of the vertical velocity is bounded according to

I ]2w

]z2 I 2

<
Ra2

4
iui2<

Ra2

4
A. ~3.29!

Then in view ofw’s boundary conditions, for 0<z< 1
2

uw~x,y,z!u5U E
0

z

dz8E
0

z8
dz9

]2w

]z2U< 2

3
z3/2AE

0

1/2

dz9S ]2w

]z2 D 2

. ~3.30!

A similar estimate holds near the top boundary atz51.
Combining~3.25!, ~3.29!, and~3.30!, the indefinite~last! term on the right-hand side of

Nu5E
0

1

dzt8~z!22
1

A ^i¹ui2&2
2

A K E
V
dVt8~z!wuL , ~3.31!

is seen to satisfy

E
V
dVt8~z!wu<

1

2d E0

Lx /h

dxE
0

Ly /h

dyE
0

d
dzuw~x,y,z!uiui`

1
1

2d E0

Lx /h

dxE
0

Ly /h

dyE
12d

1

dzuw~x,y,z!uiui`

<
1

2d

2

3

2

5
d5/2A2AI ]2w

]z2 I
<
&

15
d3/2Ra_A. ~3.32!

Hence

Nu<
1

2d
1

2&

15
d3/2Ra. ~3.33!

Now we minimize the right-hand side above with respect tod by choosing

d5
52/5

23/5Ra22/5 ~3.34!

to conclude that
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Nu<
53/5

3322/5Ra2/550.6635̄ Ra2/5. ~3.35!

This bound is independent of the rotation, i.e., uniform in Ta for 0<Ta,`, and valid so long as
the initial temperature data lie between the temperatures at the boundaries.
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