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In this short survey paper, we shall discuss certain recent results in classical grav-
ity. Our main attention will be restricted to two topics in which we have been
involved; the positive mass conjecture and its extensions to the case with horizons,
including the Penrose conjectuf®art ), and the interaction of gravity with other
force fields and quantum-mechanical partiolPart 1l). © 2000 American Insti-

tute of Physics[S0022-2488)0)00606-X

I. POSITIVE MASS CONJECTURE AND RELATED TOPICS

One of the most difficult problems in classical relativity is to understand how and when
singularities form. In the 1960’s, Hawking and Penrose proved that the existence of a closed
trapped surface in an asymptotically flat spacelike hypersurface gives rise to a singularity in
space—time. However, no proof based on pure partial differential equation arguments was found,
and many questions remain unanswered.

Given an initial data setg(; ,p;;) on a three-dimensional manifold so thgf is asymptoti-
cally Euclidean angb;; (the induced second fundamental form in an embeddaits off asymp-
totically, it is interesting to ask the following questions:

(1) When will such an initial data set contain a closed trapped surface? If so, how to locate it?

(2) If the initial data contains no closed trapped surface, how to tell whether such a surface will
appear at a later time under the evolution of Einstein’s equations?

(3) If we assume that the trace pf; is zero, will a singularity occur without the existence of a
closed trapped surface?

(4) If a singularity does occur, what is the structure of the null geodesics in a neighborhood of the
singularity, and what is the structure of the curvature tensor in this neighborhood? What is the
criterium on the initial data set for the curvature to blow up at the singularity?

(5) Can one define physically relevant lodal quasilocal quantities such as mass and angular
momentum to describe regions in a strongly gravitationally interacting space—time? For ex-
ample, when two bodies interact, what is the binding energy and what is the mass of the
resulting configuration? How can one estimate the gravitational radiation for strongly inter-
acting bodies? How can one justify the linearized theory of gravitational radiation?

For all the above questions related to singularity formation, one usually studies only generic initial
data. However, it has been a difficult problem in nonlinear partial differential equations to under-
stand how to perturb away the singularity.

For all these questions, it would be good if the known class of spherically symmetric solutions
of the Einstein equations were rich. Except for the Schwarzschild case, such solutions cannot be
vacuum solutions. Hence to consider these questions, one is forced to couple gravity to other
matter fields. For the case of a massless scalar field, Christodofitms studied the question of
the formation of singularities quite extensively. If a singularity exists, it is located at the origin.
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While much is known in this case, the details of how the singularity forms is still poorly under-
stood.(When naked singularities form, one would like to know the behavior of null geodesics.
Based on numerical studies, Chopfuitas found the new phenomena that, for a one-parameter
family of initial data, the mass function exhibits some critical phenomena similar to those which
occur in statistical mechanics, at the time when a black hole forms. However, a detailed theoretical
study is lacking. An interesting consequence of the above study is that after gravitational radiation,
the space—time is either time-asymptotic to the flat space—time or to the Schwarzschild space—
time. This raises an interesting question when we couple gravity to a Yang—Mills field or to Dirac
spinors; What is the possible asymptotic state of spherically symmetric initial data? Would those
stable coupled solutions found by (¢$. Sec. Il below be the only possible states? When we want

to extend the spherically symmetric case to an axisymmetric geometry, the space-time is far more
complicated. While it is clear that angular momentum may be used to make many configurations
stable, the number of degrees of freedom is large and it is difficult to find solutions of gravity
coupled to other fields(For stationary black holes with a vacuum background, it has to be the
Kerr solution) It is still not known whether one can find multiblack holes which can be stabilized

by the addition of angular momentum.

Beyond axisymmetric solutions, Bartfiikproposed a class of initial data sets which can be
foliated by round spheres. Using this ansatz, he was able to parametrize a large set of initial data
having zero or nonnegative scalar curvatyfeor the initial data set, if it is a maximal slice, the
scalar curvature is always non-negatjv&ccording to his numerical study, this ansatz has been
very useful in understanding radiation from a single black hole. Perhaps the theoretical study for
critical data in this class would be interesting.

Let us now turn to general space—time with no spherical symmetry. We restrict ourselves to
asymptotically flat space—times. In this case, we have asymptotic space—time Lorentzian symme-
try. Based on this asymptotic symmetry, it is well known that one can define the concept of mass
and linear momentum associated to each initial datdvaieich is invariant under the Lorentzian
symmetry at asymptotic infinify. About 20 years ago, Schoen—Yasubsequenth? and others
proved the positive mass conjecture which says that the totaks, linear momentunis a
nonspacelike four-vector. The total mass is therefore always non-negative. It is zero only when the
space—time is flat.

The positivity of the mass says that the trivial space—time is stdb& dynamic stability
among a class of reasonable initial data has recently been demonstrated by Christodoulou and
Klainermart!). However, the nonlinear stability of the Schwarzschild solution is still unknown.
Based on the “Cosmic Censorship conjecture,” Penrose proposed an inequality relating the total
mass of the black hole to the area of the outermost horizon. It says that among all initial data sets
with fixed mass, the time-symmetric Schwarzschild solution initial data set has the largest area for
its outermost apparent horizon.

In general, if the initial data set is a maximal slice for the space—time, the scalar curvature of
the three-dimensional manifold is non-negative. In such a case, the conjecture of Penrose was
recently settled by Huisken and limankpbtaining the optimal result only under the assumption
that the outermost black hole is connected. It was based on an idea of Geroch that the Hawking
(quasilocal mass is monotonic along an evolution of a surfagsvhich starts from the hole to the
sphere at infinity. The evolution is governed by the requirement that it moves the surfaces along
the normal direction and with magnitude minus the inverse of mean curvature. Geroch noticed that
for the sphere at infinity, the Hawking mass is simply the total mass of the initial data set, while
at the black hole, the Hawking mass is, up to a universal constant, the square root of the area of
the black hole. Hence if the flow of the surfake exists, the Penrose conjecture would then be
proved. Huisken and limanen developed the mathematical framework in which these ideas could
be made precise. However, the flow exhibits jump phenomena and much care is needed to assure
that the inequality jumps in the right manner. Much more recently, Brags been able to
improve the result in the case of a nonconnected outermost horizon by a new method, partly
relying on the ideas of Schoen—Y%and certain curvature estimatés.

For the proof of the Penrose conjecture, one still must answer the question as to when the
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initial data set is not maximal. It would also be nice to see the corresponding inequality for the
Bondi masgtotal mass after radiation

Besides the total mass and linear momentum, an important conserved quantity is angular
momentum. This was studied extensively by AshtéRaDne needs to study the relation between
angular momentum and other conserved quantities such as the total mass and linear momentum. It
seems reasonable to believe that the total mass should dominate the square of the angular mo-
mentum if the initial data set is nonsingular.

To better understand angular momentum, Huisken and®@efined the concept of center of
mass of an initial data set. It is Lorentz invariant and, remarkably, under the evolution of Ein-
stein’s equations, the velocity of the center of gravity is the linear momentum dividedrby 2
wherem is the total mass of the initial data set.

One hopes to study all possible naturally conserved quantities and the relations among these
conserved quantities, when the initial data set is nonsingular. It is always interesting to know how
radiation effects all those quantities. For an isolated gravitational system, what would be its
asymptotic state after radiation? We conjecture that the time-asymptotic state is just the superpo-
sition of several known stationary solutions including the charged Kerr black holes and the static
coupled solutions found above.g., when we are coupling the Einstein equations to the Yang—
Mills, Dirac particles, or a real scalar figld

The global behavior of the Einstein system is difficult to study, partially because we do not
have(quasijlocal quantities which behave well under time evolution. The Hawking mass is one
such example. It is monotonic in some directions. Unfortunately, it is not positive in general. For
certain important closed surfaces, which are obtained by minimizing area under a volume con-
straint, Christodoulou and Yau were able to prove the positivity of the Hawking thakswever,
they assumed that the scalar curvature is non-negative. It would be nice to remove this assump-
tion.

If one considers sufficient conditions for the formation of black holes in a general setting, the
best theorem is due to Schoen—Y&This says that, by suitably defining the diamedéf)) of a
region(), then if the matter density in the regiéhis greater thaml~2 up to a universal constant,

a closed trapped surface can be found. This implies that a black-hole type singularity exists. In this
theorem, the existence of black holes results from the condensation only of matter. It would be
desirable to include the contribution of gravitation effects. Namely, it is interesting that in the
argument by Schoen-Yau, only the lower bound of the first eigenvalue of the operator

+ 1R is used. In the time symmetric caee., with pi;j=0), IR is the local matter density. It

would be nice to see if this method can be extended to the general case, in the sense that the
spectrum of some operator can be used to yield a condition for the formation of black holes.

II. THE INTERACTION OF GRAVITY WITH OTHER FORCE FIELDS AND DIRAC
PARTICLES

According to Einstein’'s Theory of General Relativity, gravity is described geometrically
through Einstein’s equations. The understanding of gravity has been driven by the discovery of
special solutions of these equations. The most important examples are the Schwarzschild solution,
the Kerr—Newman solution, and the Friedmann—Robertson—Walker soldtRarticularly inter-
esting effects are obtained when one couples gravity, as expressed through Einstein’s equations, to
other fundamental force fields. The simplest such example is the Reissner—Nuordsitgion
resulting from the coupling of gravity to electromagneti@taxwell’s equations This solution,
like the Schwarzschild solution, has an essential singularity at the origin. The generalization to
non-Abelian Yang—Mills fields led to the discovery of Bartnik and McKinrBM) (Ref. 20 (see
also Refs. 21 and 22f everywhere regular solutions. This came as a surprise because several
results for related systems led to the conjecture that such solutions cannot exist. Indeed, neither the
vacuum Einstein equations, nor the pure Yang/Mills equations have nontrivial static, globally
defined, regular solutiorf$:** The existence of these solutions depends on the coupling of the
different force fields, whereby the attractive gravitational force is balanced by the YM repulsive
force. But this balance is rather delicate; for example, the BM solutions are unstable with respect
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to small perturbation$> Other interesting solutions of Einstein’s equations result from coupling
gravity to quantum mechanical matter fields. The case of a complex scalar field was considered by
Lee et al,?® who found solitonlike solutions modelin@posonid stars; see too, Christodoufou
who studied the gravitational collapse of a real massless scalar field.

We report here on recent wortkee Refs. 27—-30 for detallsf a different type of coupling;
namely, gravity coupled to both quantum mechanical particles with (§mac particle$, and to
an electromagnetic field. We first study the resulting Einstein—Dirac—Max&EIM) equations
for a static, spherically symmetric system of two fermions in a singlet spinor state. We find stable
solitonlike solutions, and we discuss their properties for different values of the electromagnetic
coupling constant. We note too that the inclusion of gravity has a regularizing effect on solutions,
in the sense that our solutions are more regular than one would expect from a naive analysis of the
Feynman diagrams; see Ref. 31. We then study black-hole solutions for these eqsatioRefs.
21 and 32, and we find, surprisingly, that under rather weak regularity conditions on the form of
the event horizon, the only black-hole solutions of the EDM equations are the Reissner—
Nordstran (RN) solutions. That is, the spinors must vanish identically. Applying this to the
gravitational collapse of a “cloud” of relativistic spig-particles to a black hole, our result
indicates that the Dirac particles must eventually disappear inside the event horizon. We also show
that the Dirac equation has no normalizable, time-periodic solutions in a RN black-hole back-
ground. The physical interpretation of this result is that the Dirac particles cannot remain on a
periodic orbit around the black hole. This result has recently been extended to an axisymmetric
black hole geometry®

In our study of the coupled EDM equations, we employ a special ansatz for the spinors. In this
ansatz, we do not assume that the Dirac particles are in a spherically symmetric state; indeed they
are allowed to have angular momentum. However, we arrange {2 of these particles in such
a way that the total system is static and spherically symmétri¢he language of atomic physics,
we consider the completely filled shell of states with angular momerjtu@lassically, this
multiparticle system can be thought of as several Dirac particles rotating around a common center
such that their angular momentum adds up to ze8mce the system of fermions is spherically
symmetric, we obtain a consistent set of equations if we also assume spherical symmetry for the
gravitational and electric fields. We can thus separate out the angular dependence, and the problem
then reduces to a system of nonlinear ODEs.

A. The EDM equations

The general Einstein—Dirac—Maxwell equations are

1 ) ) ) —
Rj—5R&=—87T|, (G-m¥,=0, VkFJk=47-reZa V.G, (1)

whereT' is the sum of the energy-momentum tensor of the Dirac particles and the Maxwell
stress- energy tensor. TI& are the Dirac matrices which are related to the Lorentzian metric via
the anticommutation relations,

g (0)1= G (x),G x)}=H GG+ G*G)) ().

F/k denotes the electromagnetic field tensor, dhgare the wave functions of fermions of mass
m and charge. The Dirac operator is denoted I8 and it depends on both the gravitational and
electromagnetic field; for details see Refs. 27 and 28.

We now specialize to the case of static, spherically symmetric solutions of the EDM system
(2). In polar coordinate$t, r, 9, ¢), we write the metric in the form

dt?

R LA

r2—r?(d9?+sir? 9de?) 2
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with positive functionsT and A. Depending on whether we consider particlelike solutions or
black-hole solutions, the region of space—time which we consider-i8, or r>1>0, respec-
tively; in the latter case, we assume thatr is the event horizon. We always consider solutions
for which the metric(2) is asymptotically Minkowskian,

lim A(r)=1=lim T(r), ©)

r—o r—ow

and has finitgf ADM) mass; i.e.,
oor

|Im§(1—A(I’))=p<30. (4)
r—o

—

In the static case, the fermions only generate an electric field, and thus we may assume that the
electromagnetic potentiad has the form4=(— ¢,0), where¢= ¢(r) is the Coulomb potential.
The Dirac operatofs can be written as

G=iGi(x)§J—+B(x)

i i T J d
i 4 —1)— — JA— P SR
.Jﬂm+r(@ 1) 2\/K +Iy(9ﬁ+lyé)¢, (5)

=iTy° +9' T

J
——ie
ot ¢
wherey!, ", y?, andy¥ are they-matrices in polar coordinates, in Minkowski space namely,
t 0

Y=Y

¥ =7y cosd+ y?sind cosp+ y3sind sine,

0 1 1 i 2 3 ;
0% =?(—y sing+ y“ cosd cose + y° cosd sine),

oo (—y?sing+ y° cose)
Y Ysino' 7 ey @)

O(10 i(oai)_123
7_0 _11 Y= _O_i 0!|_1|!

and o' denote the Pauli matrices.

In analogy with the central force problem in Minkowski spatehis Dirac operator com-
mutes with(a) the time translation operatd#,, (b) the total angular momentum operatl, (c)
the z component of the total angular momentdg and(d) with the operator°P, whereP is the
parity. Since these operators also commute with each other, any solution of the Dirac equation can
be written as a linear combination of solutions which are simultaneous eigenstates of these op-
erators. We use this “eigenvector basis” to separate out both the angular and time dependence,
and to calculate the total current and energy momentum tensor of the Dirac particles. Using the
ansatz in Refs. 27, 28, 29, we can describe the Dirac spinors using two real funetiBnsve
arrive at the following system of ordinary differential equations for the five real functioss A,
T, and ¢:

where

2i+1
VAa' === a—((0—eh)T+m), (6)
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2j+1
VAR = (- ed) T-m)as—~B, Y
A’ =1—-A-2(2]+1)(w—ed)T?(a?+ B2 —r?AT?|¢'|?, (8

’ 2 2
2rAT?=A—1—2(2j +1)(w—e¢)T2(a2+Bz)i2¥TC¥B
+2(2j+1)mT(a?— B2)+r2AT?| ¢’ |?, 9
T 2

r2Ag"=—(2j+1)e(a’+p%) —| 2rA+T’ A=+ S A" ¢, (10

Equations(6) and(7) are the Dirac equationghe = signs correspond to the two possible eigen-
values ofy°P); (8) and(9) are the Einstein equations, while Maxwell’s equations reduce to the
single equatior{10). Herej=1%,3,..., theconstantw enters via the plane wave dependence of the
spinors; namely, exp{iwt), and as for the general equatiofi3, m and e denote the mass and
charge, respectively, of the fermions. We also require that, in additi¢®)t¢4), the electromag-

netic potential vanishes at infinity,
lim ¢(r)=0. (11
r—o
Since Eqs(6)—(10) are invariant under the gauge transformations,
d(r)—o(r)+x, w—owtek, kek, (12
we see thatll) can be fulfilled by a suitable gauge transformation, provided ¢hiaas a limit at
infinity.
In Secs. Il A-11D, we shall be concerned with two different types of solutions of Hjs.
(10); namely,particlelike solutiongsmooth solutions defined for al=0), andblack hole solu-

tions(solutions defined for al>r>0, whereA(r)=0 andA(r)>0 for allr>r;r=r is the event
horizon. In the first case, we require the following normalization condition on the spinors:

oc T
24+ %) —dr=1 (particlelike), 13
fo (a”+ B°) A (p ) (13
while in the second case we require that forrgtr,
0<fw(a2+,82)ldr<oc (black holes. (14)
"o \/K

These conditions are necessary in order that the Dirac spinors define physically meaningful wave
functions.

B. Particlelike solutions

In this section we shall describe our numerical construction of particlelike solutions for Egs.
(6)—(10). For simplicity we shall restrict ourselves to the cqsel/2. We shall also discuss the
stability and properties of the ground state solutions for different values of the electromagnetic
coupling constanté/m)2. We shall show that solutions exist even when the em coupling is so
strong that the total interaction is repulsive in the nonrelativistic limit. In addition, for small em
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coupling, €/m)2<1, we shall show thastableparticlelike solutions exist for small values of
and using certain topological techniques, we show that this stable solution becomes unstable as
increases.
The construction of particlelike solutions is obtained via a rescaling argu(eeatRefs. 27
and 28. The idea is to weaken the conditio(®, (11), and(13) to

0¢fw(a2+ﬁ2)Ldr<w 0% lim T(r)<o, lim ¢(r)<o (15)
0 JA ’ ' '

r—oo r—oo
and instead set
T(0)=1, ¢(0)=0, m=1. (16)

This enables us to use a Taylor expansion araua@, and we obtain the following expansions
nearr=0:

a(r)=a;r+0(r?), p(r)=0o(r?,
A(r)=1+0(r?), Tr)=1+0(r?), ¢(r)=0(r?).

Solutions to our equations now depend on the three real paraneetersand «4. For a given
value of these parameters, we can construct initial date=dl, and using the standard Math-
ematica ODE solver, we “shoot” for numerical solutions of the modified syst@m(10), (16).
By varying w (for fixed e and «;), we can arrange that the spindeg B) tend to the origin for
larger, and the condition$4) and(15) also hold.

Given a solution(a, B, A, T, ¢) of this modified system, we consider the scaled functions

- T ~ T
a(r)= \[Xa(hr),ﬁ(rh \[XB(M),

A(r)=A(Nr), T(r)=71T(\r), &(r)=7p(\r).

By direct computation, these functions satisfy the original E§s-(10) and Eqgs.(3), (4), and
(13), provided that the physical parameters are transformed according to

m=\m, “W=\7w, E=\e, (17)

where the scale factors and = are given by

1/2
>\=<4wf'(a2+ﬁz)lAdr) . 7r=1lim T(r).
0

V r—om

Finally, condition(11) can be fulfilled by a suitable gauge transformation. Notice that the param-
eter @/M)?=e? is invariant under the above scaling. It is thus convenient to ché@$e)t (and
not@?) as the parameter used to describe the strength oértheoupling. We point out that the
above scaling technique is used only to simplify the numerics; for the physical interpretation,
however, we must always work with the scaléttie) solutions. Since the transformation from the
un-tilde to the tilde variables is one-to-one, our scaling method yields all the solutions of the
original system. From now on, we shall only consider the scaled solutions, and for simplicity in
notation, we shall omit the tilde.
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FIG. 1. Solution of the EDM equations for parameter valugsn)2=0.7162m=0.7639» =0.6807p=1.15416 @' (0)
=0.05361).

C. Properties of the particlelike solutions

We have found solutions having different rotation numbers0, 1, 2,... of the vectofa, ).
In the nonrelativistic limit,n is the number of zeros of the corresponding Sdimger wave
functions, and thua=0 corresponds to the ground states 1 to the first excited state, and so on.
However due to the nonlinearity of our equationsjo longer has this simple interpretation. For
simplicity in what follows, we shall only discuss time=0 solutions. The graphs of a typical such
solution is shown in Fig. 1. For each solution, the spin@rsB) decay exponentially to zero at
infinity. We interpret this to mean that the fermions have a high probability to be confined to a
neighborhood of the origin. In view of this rapid decay of the spinors, our solutions asymptotically
go over into the spherically symmetric RN solutions of the Einstein—Maxwell equdficass:
—oo, That is, for larger,

20 (20

AN=T2(N)~1- "=+

In other words, our solution, for large looks like the gravitational and electrostatic field gener-
ated by a point particle at the origin with massand charge 8. Note that in contrast to the RN
solution, however, our solutions have no event horizon or singularities. One can understand this
from the fact that we consider here quantum mechanical particles, rather than point particles.
Therefore the wave functions are delocalized according to the Heisenberg Uncertainty Principle,
and so the distributions of matter and charge are also delocalized, thereby preventing the metric
from forming singularities. In general, we can parametrize solutions by the restrmasel the
energyw of the fermions. In Fig. 2, we plot the binding enengy- » vs m for different values of

the parametereg/m)?, and we see thah— w is always positive, indicating that the fermions are

in a bound state. For weakncoupling, €/m)2<1, the curve is a spiral which starts at the origin.

The binding energy decreases for fixedand increasingd/m)?, since theemrepulsion weakens

the binding. The mass energy spectrum whehm)2<1 becomes similar to the case of the
Einstein—Dirac equationgwithout the em interaction); see Ref. 27. We can use linearization
techniques to show numerically that for smail if (e/m)?<1, the solutions are stable with
respect to spherically symmetric perturbations. For larger values, afie can investigate the
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FIG. 2. Binding energyn— w of the Fermions for ¢/m)?=0 (A), 0.7162(B), 0.9748(C), 1 (D), and 1.0313E).

stability using Conley index theoifgee Ref. 35 wheremis taken to be the bifurcation parameter.

This technique shows that the stability/instability of a solution remains unchangedsif/aried

continuously and no bifurcations occur. Moreover, at bifurcation points, the Conley index theory

provides a powerful technigue to analyze changes of stability. Using this, we find that all solutions

on the “lower branch” of the spiral curves A and B of Fig.(2e., on the curve from the origin

up to the maximal value ai), are stable, and all solutions on the “upper branch” are unstable.
From Fig. 2, we see that this form of the mass energy spectrum changes e/h®A~ 1, the

regime where, in the classical limit, the electrostatic and gravitational forces balance each other.

To better understand this situation, we take the nonrelativistic limit in our EDM equations. To do

this, we fix (e/m)?, and assume thaandm are small. In this limit, the coupling of the spinors

to both the gravitational andm forces becomes weal§, T~1 and ¢~0. The Dirac equations

imply that w~m and a> 8. Thus the EDM equations go over to the Salinger equation with

the Newtonian and Coulomb potentials; namely,

1
~5-Atep+tmV|¥=EV, (18

—AV=—-8mm|¥|?, —A¢p=8me|V|? (19

whereE=w—m, ¥(r)=a(r)/r, V(r)=1—T(r), andA is the radial Laplacian oR*. From(19)

we see that the Newtonian and Coulomb potentials are multiples of each other; namely,
=—mle¢. Thus if (e/m)2=1, the total interaction is repulsive so that the Sdimger equation
(18) has no bound states. It follows that in the limit of small the EDM equations have no
particlelike solutions, if ¢m)2=1. This means that the mass-energy curves in Fig. 2 can only
start atm=0 if (e/m)<1. This is confirmed by the numeri¢Eig. 2, curves C, D, and)EFor
(e/m)?=1, the curve tends tm—w=0 asm—x.

If (e/m)2>1, Fig. 2 shows that the EDM equations admit solutions only i sufficiently
large, and smaller than some threshold value where the binding energy of the fermions goes to
zero.

We can also consider the total binding enepgy2m, wherep is defined in(4). In Fig. 3, we
plot p—2m vs m, for various values ofd/m)2. If (e/m)?<1, p—2m is negative for the stable
solutions, whilep—2m>0 if (e/m)?>1. This indicates that ifé/m)2>1, such solutions should
be unstable because energy is gained by breaking up the binding.

D. Nonexistence of black hole solutions

As we have noted in the last section, particlelike solutions of the EDM equations in a given
state(e.g., the ground stateease to exist if the rest massof the fermions exceeds a certain
threshold valueng. The most natural physical interpretation of this statement is thatifm,,



3952 J. Math. Phys., Vol. 41, No. 6, June 2000 Finster, Smoller, and Yau

~0.05

FIG. 3. Total binding energy—2m for (e/m)?>=0 (A), 0.7162(B), 0.9748(C), 1 (D), and 1.0313E).

the gravitational interaction becomes so strong that a black hole would form. This suggests that
there should be black hole solutions of the EDM equations for large fermion masses. In this
section, we shall show that this intuitive picture of black hole formation is incorrect. In fact, we
prove that under weak regularity conditions on the form of the horizon, any black hole solution of
the EDM equations must either be the RN soluti@am which case the Dirac wave function is
identically zerg, or the event horizon has the same general form as the extreme RN metric. In the
latter case, we show numerically that the Dirac wave functions cannot be normalized. It follows
that the EDM system doesot admit black hole solutions. Thus the study of black holes in the
presence of Dirac spinors leads to unexpected physical effects. If we apply this result to the
gravitational collapse of a “cloud” of Dirac particles, our result indicates that the Dirac particles
must eventually disappear inside the event horizon.

In order to establish these results, we first recall what is meant by black hole solutions of the
EDM equations. These are solutions of E(®~(10) defined in the regiom>T>0, which are
asymptotically flatso that(3) holdg, and have finitd ADM) mass(so that(4) holdg, and satisfy
the normalization condition(14). In addition, we assume tha#&(r)>0 for r>T, and
lim, 7A(r)=0, while T(r)>0 and lim 7 T(r)=ce.

We make the following three assumptions on the regularity of the funcBpisand¢ on the
form of the event horizom=r:

() The volume element/|detg; [=r?A"*T~! is smooth and nonzero on the horizon; i.e.,

T2A L T?AcC([r,)).

() The electromagnetic field tensorfg = 9;A;— 9;A; ; we assume that the strength of the em
field tensorF;;F" = —2|¢'|?AT? is bounded near the horizon. In view @, this means
that we assume

|¢'(n]<cy, T<r<r+e
for some positive constants ,e>0.
(1) The functionA(r) obeys a power law, i.e.,
AN=c(r=n*+O((r=r)**Y), r>1 (20)
for some positive constantsands.

A brief discussion of these assumptions is in order. Thusl)ibr (Il) were violated, then an
observer freely falling into a black hole would feel strong forces when crossing the horizon.
Assumption(lll) is a technical condition which seems sufficiently general to include all physically
relevant horizons; for example=1 corresponds to the Schwarzschild horizon, as® corre-
sponds to the extreme RN horizon. Howewgh,) does not seem to be essential for our nonex-
istence results, and with more mathematical effort, we believe that it could be weakened or even
omitted completely.

Here is the main result in this section.

Theorem 4.1: Any black hole solution of the EDM equations 46)0) which satisfies the
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regularity conditions (13-(111) either is a nonextreme RN solution with(r)=0=3(r), or s=2
and the following expansions are valid near the event horizem:r

AT = Aol —F2+ O(1=1)°), (21
T()=To(r =1+ 0((r=1°), (22
BN =2 + (=T +O((r=T12), 23
(1) = (1= +O((r =), (24
B(D) = Bolr =P+ O((r=1)"*1), (29

with positive constants A T, and real parameterg,, ag, and By. The exponenk satisfies the
constraint

1 - 2j+1\2
§<K=A01\/m2—ez¢%Tg+( o ) , (26)
and the spinor coefficients, and B, are related by
2j+1
ao| VAgk* 5 |~ — Bo(M—edgTo), 27

where =" refers to the two choices of the signs in{6)0).

We shall now outline a proof of this result; we first consider the case that the exp®nent
<2 in (20).

Lemma 4.2: Assume that® and that(« B,A, T, ¢) is a black-hole solution whergy, 8) #0.
Then there are constants£>0 satisfying

1
csa(r)2+ﬁ(r)2s5, T<r<r+e. (29

Proof: According to(6) and(7), we have

+2j+1 m
d o T 2r a (2J+1)2 1/2
(2 2y — = 2, 7 T 2 2
Adr(ae + B%) 2(3) o 241 (ﬂ)\<4m+ 2 ) (a+ B9).
T or

(29

The uniqueness theorem for ODEs implies thaf £ 82)(r)>0 for all r, T<r<Tr+e¢, for any
&>0. Dividing (29) by VA(«?+ %) and integrating fronr >T to T+ ¢ gives

e i 2\ 112
||09((a2+,3"1)(r_+8))—|09((0z2+,6’2)(r))|$fr A_l/z(t)(4m2+(2—1t+z£) dt. (30

Sinces<2, (20) implies thatA~'2 is integrable or<r=<Tr+e¢, so that the integral irf30) is
majorized by

(2J+l)2 1/2
t2

T+e
ﬁ A~1A(t)| 4mP+
r
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and this yields28). [ |

We can now dispose of the case8<2; namely, we have

Proposition 4.3: If0<s<2, then the only black hole solutions of the systems((8)) are the
nonextreme ReissneXordstran solutions

Proof: We assume that we have a solution such tha](r)==0, and show that this gives a
contradiction.

The last lemma implies that the spinors are bounded near From (8) and(9), we find

2j+1)?
G J:rl) TaB+2(2j +1)mT(a®~ B?).

(31

r%(ATZ)z —42j+1)(w—ed)TH a?+B%)£2

Assumption (I) implies that the left-hand side df31) is regular so the same is true of the
right-hand side. Sinc&—c asr\r, we conclude that

_Iim_(w—e¢(r))=0. (32

r<r—r

From Maxwell's equation

pr=—BIDC gy L 2Ry (39
A rf r2JAT ’

we see thafl) implies that the coefficient op’ is smooth. Ifs=1, A~ 1 is not integrable af, so

that|¢'| is unbounded at, thereby contradictingll). Thuss<1, and integrating33) twice and

using (32) gives near =T the following expansions:

¢ (N=cy(r =11 T4 et O(r=T)>*2),

and

B(r)=Cy(r =) 2401 =)+ = +O((r =179,

Using these in8), and noting tha\ andr?AT?|¢'|? are bounded near=T, and that v —ed¢)

=0O(r-T), andT?(a?+ B?)~(r —T) S, s<1, we see that the rhs ) is bounded near=T. On

the other hand, the lhs dB) diverges near =T sincerA’(r)=(r—7) "1 this contradiction

completes the proof. |
In the cases=2, we first prove the following two fact&f. Ref. 29:

lim(r=1) "2 (a?+p%=0 (34
NI
and
lim|¢'(r)|=7"*lim A~ 2T"1>0, (35)
N NI

From (35), we find that
(w—ed)(r)=c+d(r=r)+o(r—r),

whered=e/rlim, vA"2T"1>0. Thus @—e¢)T diverges monotonically. Fror6) and (7),
this implies that lim in,f\y(a2+,82)>0, thereby contradicting34). Thus if s>2, there are no
solutions of(6)—(10).
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Proof of Theorem 4.1¥We must only consider the case tlsat2 and(21), (22) hold. From
(34) we see that Iim\,—a2+ B?=0, and we can show thats—e¢)T cannot diverge monotoni-
cally nearr =r (see Ref. 30 But (35) shows that  —e¢) has a Taylor expansion neasTr with
a nonzero linear term. Thu85) holds, the constant term in the Taylor expansion @f(e¢)
vanishes, and lim [(w—eg)T=\, where from(35), [\|=T"tlim, A~ MT71>0. As in Ref.
30, we may write the Dirac equations in the variable

u(ry=—r—rin(r—r)

and apply the stable manifold theorem to conclude thahd 3 satisfy the power law§24), (25),
and (34) yields thatk > 3. Using (21)—(25) into (6) and(7) gives

2i+1
VAgKkag= i?aoﬁL(e(ﬁoTo_m)ﬂm

2j+1
Aok Bo=—(edoTo+t M) g™ —5— Bo,

which are equivalent t626) and (27). This completes the proof of Theorem 4.1. |

Notice that in the case of nonzero spinoss=), Theorem 4.1 places severe constraints on
the behavior of black hole solutions near the event horizon, in the sense thatksingethe
spinors decay so fast at=r, that both the metric and themfield behave like the extreme RN
solution on the event horizon. Physically speaking, this restriction to the extremal case means that
the electric charge of the black hole is so large that the electric repulsion balances the gravitational
attraction, and prevents the Dirac particles from “falling into” the black hole. Of course, this is
not the physical situation that one expects in the gravitational collapse of, say, a star. However,
extreme RN black holes are physically important since they have zero tempéfaancan be
considered to be the asymptotic states of black holes emitting Hawking radiation. It is thus
interesting to see if the expansio®1)—(25) yield global black hole solutions of the EDM
equations.

This question is especially interesting since in the next section we shall show that for an
extreme RN background field, spinors satisfying the expangi#)s (25) cannot be normalized.
The question thus becomes whether the influence of the spinors on the gravitational and em field
can yield black hole solutions with normalized spinors. This is a very difficult question because
one must analyze the global behavior of these solutions of the EDM equations. Our numerical
investigations show that the answer to the above question is negative; namely solutions either
develop a singularity for some>T, or the spinorga, B) are not normalizable. We thus conclude
that the expansion@1)—(25) do not give normalizable solutions of the EDM equations.

E. Dirac particles in a Reissner—Nordstro “m background

In this section, we shall consider solutions of the EDM equations where we fix the background
metric andemfield to be a RN solution. Near a collapsing black hole one might guess that Dirac
particles can get into a static or time periodic state. However, we shall show that in contrast to the
classical situation, the Dirac equations do not admit any normalizable time-periodic solutions; in
particular, they admit no normalizable static solutions. We do not assume any spatial symmetry on
the wave functions. This result can be physically interpreted as saying that Dirac particles can
either disappear into the black hole of escape to infinity, but they cannot remain on a periodic orbit
around the black hole. We note that it is essential for our arguments that the particles have spin.
In fact, in the case where the particles do not have spin, the Dirac equation must be replaced by the
Klein—Gordon equation, and our arguments fail; cf., Ref. 26.

The RN metric can be written in polar coordinates as
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2\ -1

2
P ) dre—r2(do2+si 9de?), (36)

2p 97\,
d52—<1—7+r—2)dt— 1-—+3

wherep is the (ADM) mass of the black hole, arglits charge. Thempotential is of the form
(— ¢, 0) with Coulomb potential

o(n="1. (37

In the “nonextremal” case < p), the metric coefficient (+ (2p/r)+(g?/r?)) vanishes twice,

and thus there are two horizons<@,<r. If g=p, the metric is called an extreme Reissner—

Nordstran (ERN) metric and has a single horizonrat p. If g>p, the above metric coefficient

is nonvanishing, and so the metric does not describe a black hole; this case will not be considered.
We consider time-periodic solutions, noting that static solutions are a special case. Since the

phase of the Dirac wave functioh has no physical significance, we defiffeto be periodic with

period T if for some real(},

P(t+T,r,9,¢)=e TV (t,r,9,¢). (39

Our main theorem in this section is the following:

Theorem 5.1:(i) In a nonextreme RN background, there are no normalizable, time-periodic
solutions of the Dirac equation. (ii) In an ERN background, every normalizable, time-periodic
solution of the Dirac equation is identically zero in the region gp.

We shall begin by deriving conditions which relate the wave functiban both sides of the
event horizon. We first consider the case of a nonextreme RN background, and analyze the
behavior of W near the event horizon. For this, we begin by studying the behavitk @i a
Schwarzchild background metric, and we shall also consider the Dirac equation in different co-
ordinate systems. This is done with the aim of passing to Kruskal coordinates, in order to remove
the “Schwarzschild singularity.”

The Schwarzschild metric is

2 2p\ 1t
ds?= 1—Tp)dt2—(1—7’3) dr2—r2(d 92+ si? 9de?),

wherep is the(ADM) mass, and the event horizon israt 2p. Some straightforward calculations
(see Ref. 30 shows that outside the horizon p), the Dirac operator can be written as

Goum eyt ylisZr Lis— 1)t L | 4igt L piye (39)
Out_Syﬁt Yl ar r( ) 2 Iy I Iy (9()0!
where
2 1/2
S(r)=‘1—Tp

The normalization integral is considered over the hypersurfaaenst; i.e.,

(W)= ﬁp?’\ (W W) (t,)S 13, (40)

!

whereB,,, denotes the ball of radiuspZabout the origin, an = ¥ is the adjoint spinor. In
the regionr <2p, the Dirac operator is given by
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G—fia | t'Sa+iS+iS’+'f"a+'¢’a
n=Ylsa r) Y\"ar T2 Y T Y G
with corresponding normalization integral
(«P|~p)}n:=J (W' W)(t,x)S 1. (42)
2p

Our description of spinors in this coordinate system poses certain difficulties. Namely, since
thet variable is spacelike inside the horizon, the normalization integBlis not definite since
the integrand is not positive. Thus we can no longer interpret the integrand as a probability
density. Moreover, the Dirac equations corresponding to the oper@ipand G, describe the
wave functions inside and outside the horizon, respectively. But it is not evident how to match the
wave functions on the horizon. To handle these issues, we remove the singularity? atby
going over to Kruskal coordinates. Rec&dlee Ref. 19 that Kruskal coordinates andv are

defined by
V2p 4p

u= ; (42
/ r
— — M%) ginH — | for r<2
1 2pe smr<4p) p
r t
\/=—— 1) sin)—(—) for r>2p
2p 4p
(43

[ .
r t
— —glti4p) — | for 7<2
\/1 2pe cosi‘( 4p) p

The horizonr =2p maps to the origii=0=uv, and the singularity =0 maps to the hyperbola
v?—u’=1, v>0. In Kruskal coordinates, the metri86) becomes

ds2=f2(dv?—du?) — r2(d 92+ sir? 9d¢?),

wheref ~2=(32p%r)el""?) Takingv andu as time and space variables, respectively, and noting
that the metric is regular at the origin, we can extend the Dirac operator smoothly across the
origin. A straightforward computation gives the Dirac operator in Kruskal coordinates as

-i-)/r 5

9
fi %Jrr(f(&ur)—l)—

PR i
G=y| fio-+ (0,1~ 5,1 auf | +iy?ay+iyed,.
(44)

Observe that the Dirac operator is smooth across the event horizon. Moreover, the normalization
integrals(40) and (41) on the surface=0 become

(\1f|q>)=fH\Fqu>vde,

where
H={u=0,0<v<1}U{v=0u>0},
v is the normal toH pointing into the regioru>0, v>0, andG/ are the Dirac matrices

G'=f9y!, GY=fy", GV=9" G¥=y*.
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FIG. 4. Kruskal coordinates.

We remark that for smooth solutions of the Dirac equation, one can use current conservation
VUGIW=0. (45)

to continuously deform the hypersurfatékeeping fixed the value of the normalization integral.

For example, one can deforf to 7 as depicted in Fig. 4, thereby avoiding integrating across the
horizon. On the other hand, one must exercise extreme care whenever a solution of the Dirac
equation is singular near the origin.

As shown in Ref. 30, the Dirac operator in Kruskal coordinates can be written as

G:UGoutlJ71:UGinU711 (46)

whereU is the time-dependent matrix,

t t
_ ; tor
uU(t) cos}‘( 8p 1+S|nr( SP) vy, (47)
and the Dirac operatoiG,; andG;, in Kruskal coordinates are

J
de’

iS—1+iS’ ’+'ﬁa+"f’
r( ) 5SS |y iy tiy

i J i J
Gout=m(u7t+vyr)%+ R(UV”'UVF)%*'

d

i t r J i t r J i i 1At i r i ﬂa i n/P
Giﬁm(vj"“uv)%“‘m(uﬁ’*‘vy)%— PSSy iy g iy

r

It follows that the Dirac operatorG,,; andG;, can be identified with the Dirac operatGrin the
region,

’R={u+v>0,vz—u2< 1}.
We next see how solutions of the Dirac equation inside and outside the horizon match on the
horizon,u=0=v. To do this, we first study the behavior of these solutions on the horizon. Let us

first considerstatic solutions of the Dirac equation, so

P(t,r,9,0)=e W (r,9,0¢).
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We assume tha? is a solution of the Dirac equation&(,—m)=0 and G,,—m)=0, and that
V¥ is smooth on both sides of the horizor:2p andr>2p. Using (46) and (47), we have

P(u,v,9,¢0)=U(t)e "W (r,J,¢),

wherer andt are determined implicitly fronu andv in the usual waysee Ref. 18 This implies

thatW is only defined iR, and solves there the Dirac equatidd{ m)W¥ =0. Since we are only
considering black holes, we demand thatvanishes in the half-plane+v<0; thus we must
analyze solutional of the form

U(t)e '"“"W(r,d,¢) for u+v>0u#v
(v, 9,¢)= 0 for u+v<0 '

Such a wave function might be singular along the lines+ v, in which casel must satisfy the
Dirac equation in a generalized sense. An analysis carried out in Ref. 30 showsnagt satisfy
the two matching conditions

lim (y'+ ") |e| Y (t,2p+&,9,¢)=0, (48)

e—0
le| YW (t,20+e,0,0)—¥(t,20—&,9,0))=0(1+|e|V¥(t,20+¢,9,0)) as e—0. (49

Note that since these only depend on the local behavio¥ afear the horizon, they are also
applicable when we are in the case of a nonextreme RN background having event honizon at
=2p.

We now consider Dirac particles in a RN background. Since the gravitational and EM back-
ground fields are spherically symmetric and time independent, we can separate out the angular and
time dependence of the wave functions via spherical harmonics and plane waves in the usual
manner and, as shown in Ref. 30, we obtain the following two component Dirac equations: In
regions where thévariable is timelike,

d . 0 -1 1 (1 0)\2j+1 (0 1 .
JE— - = — — + _— 0
SarPike=[l1 o (@75l _1)72r |1 o)™ Pike: 50
and in the regions whereis spacelike,
qu)t_ 0 - 1+,0 1\ 2j+1 (1 O o 51
ar®ie=|l1 o J@TePgEN o)z o —1)™Pike: G
In these equations,
2|12
S<r>=‘1—7”+?—2 , (52

j=%32 .., k=—j,—j+1,..j, and the* signs correspond as before to the two eigenvalues of the

operatory’P (cf. Sec. I). Here we have chosen for the Dirac wave functions the two ansatz’

N :e—ia)t 81/2( X}(k—l/zq)ﬁ(wl(r) ) (53)
ke r X 1P kea(r))
] 871/2 k O r
\I;j—kw:e—lwt -Xjk+1/2q)15wl( ) , 54
roVix- 12Pjkea(r)

with 2-spinors<Djikw, and)(}‘ﬂ,2 are defined by
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itk .1 i—k 0
Ao\ 2 ol v ) 5
j+1-k .. [1 jt1+Kk 0
Xf+12= \ 2j—+2Y}(* 113 0)~ V3 12 YR 1) (56)

WhereYl‘ are the usual spherical harmonits;0,1,2,..k=—1,... .

We shall show that the matching conditiofé8), (49) do not yield normalizable, time-
periodic solutions of the Dirac equation. This will be done by showing that, for every nonzero
solutions of Dirac’s equation, the normalization integral outside and away from the horizons

(11f|x1f)t=f3 VS~ 1g3y, (57)

\BZrl

is infinite for somet. Note that for a normalizable wave function, this integral is the probability
that the particle lies outside the ball of radius and thus cannot exceed 1. Sd5f) is infinite,
the wave function cannot be normalized.

Now assume thatV is a T-periodic solution of Dirac’s equation. Expanding the periodic
functione ' *W(t,r,9,¢) in a Fourier series, and using the ba&$), (52) yields

\I,(taryﬁa(P):n%S\I,jskm(n)(traﬁ!go)v (58)

wheres=*, andw(n)=Q+27n/T. Using the orthonormality of the spinoy%‘i 12, the integral
(55) becomes

(‘I’W)t:f 2 2 Wi Y W S

R3\By N0 j ks

In order to eliminate the oscillating time dependence of the integrand, we average over one period
(0, T) to get

1 (T
e S (P i)

For a normalizable wave function, this expression is finite, and hence all summands are finite. For
alls, j, k,n

(‘I’jskw(n)|‘1'jskw(n>)<°°- (59

We shall show that59) cannot hold for nontrivial solutions of the Dirac equation; for this we
begin with

Lemma 5.2: The functiohbjikw(r)|2 has finite boundary values on both horizons, and if it is
zero on one horizon, then it is identically zero

Proof: For simplicity, we omit the indicep k, andw. Chooses, 0< §<r, and notice that the
t-direction is timelike on the intervalss(r,) and (1,%°). In these regions, we can ugg0) to
obtain

sd d*|%(r)= sdcbfcbi cbisdqni
al |(r)_ a ) + !a
2j+1
r

=+

(|P1 2= |®3]%) —4mRe((P1)* P3),
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so that

d
—c|*P=S - |0*[2=c|o 2

where c=2m-+ (2j+1)/6. Dividing by |®*|? and integrating gives, fob<r<r'<rg,, orr,
<r<r’,

—cjr S‘lslog|<I>)—'|2|£'$cJr st (60)
r r

In the regionry<r<r4, (51) gives similarly

sd O=|2(r)= sdq)icpi <1>isdc1>i =0
gr| PN ={Sq @707 ) +{ &7, Sq-®™ ) =0,
since the square bracket (1) is an anti-Hermitian matrix. Thusb |2 is constant in this region,
so (60) trivially holds for ro<r<r’<r;. SinceS ! is integrable on the event horizon&0)
shows thaf®~|? has finite boundary values on each side of the horizon, and these are nonzero
unless if®* vanishes identically on the corresponding regiomw §), (ro,ry), or (r,).
We now use53) and(54) in the matching conditiort49) to get forj=0,1,

O (rj+e)—D*(rj—g)=0(1+|P"(rj+¢)]), £—0.

Since|®=(r)|? has 2-sided limits as;, we conclude that these limits must coincider gti.e.,

lim [®*(r;j+e)?= lim |[®*(r;—¢)|%
0<e—0 0<e—0

Using (60) again, we conclude that the wave function vanishes on the entire intéyval), if it is
zero onr;. This completes the proof sinagewas arbitrary. |
The final step is to use current conservatioh Ref. 27,

V,¥GIW=0 (61)

S

to study the decay obj,,,(r) at infinity, and to prove Pari) of Theorem 5.1.

Theorem 5.3(radial flux argument): Either\lfjskw vanishes identically, or the normalization
condition (59) is violated

Proof: For simplicity, we again omit the indices j, k and w. Suppose tha#’=0. Forr,
<r<R andT>0, letV be the annulus outside the horizongiven by V=(0,T) X (Byg\B,,).

Using (59), we find
0=J V,(WGIW)[g[d*x
\%
T — T .
_ 2 r _ 2 r
- atsin [ @y wien- | awsr [_@yner)

2R —
- [Tasss i) [ oy wanll.
2r S
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Since the integrand is static, the last term vanishes, and we conclude that the radial flux is
independent of the radius,

r28<r>f2<~177'~1f>(r>=R28(R>f2(~17yf~1f)<R>. (62
S S

Using (53) and(54), we have
i
—-i 0

rZS<r>LZ<%'~P)<r>=L;b*m )d><r>. (63

The matching conditioi48), expressed in terms @b gives

i 2 Jaso

ri<r—rg -1

Using this, we have fron(63),

_ 1 i
H 2 r _ H * _ 2
lim r S(r)fSZ(Wy T)(r)=lim LZ[CD (—i )CID | D }

r1<r~>r1 r1<r~>r1 1
= m . —
fy<r—ry <2 o —-1/\i -1
- f|q>|2¢o,
SZ

r<r—rq

since® is finite and nonzero on the horizon.
Now we consider the radial flux for large Since the flux is independent Bf we have from
the last inequality

0< lim

R—x

st(R)Lz(q_ryfqr)(R) = lim

R—ox

RS Y(R) Jsﬁytmm)’,

because the metric is asymptotically Minkowskian. Thus the integrand of our normalization inte-
gral

Wiy~ [ arRS AR [y R

converges to a positive number, so that the normalization integral is infinite. |

We have thus proven Paftt) of Theorem 5.1. For Parii), the case of an extreme RN
background field, we use a quite different method; cf. Ref. 30.

We remark that, using Chandrasekhar’s separation method, the results in this section can be
extended to the axisymmetric case. Namely, for a quite general class of axisymmetric black-hole
geometries, including the nonextreme Kerr—Newman solution, it is proven in Ref. 33 that the
Dirac equation admits no normalizable, time-periodic solutions.
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