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In this short survey paper, we shall discuss certain recent results in classical grav-
ity. Our main attention will be restricted to two topics in which we have been
involved; the positive mass conjecture and its extensions to the case with horizons,
including the Penrose conjecture~Part I!, and the interaction of gravity with other
force fields and quantum-mechanical particles~Part II!. © 2000 American Insti-
tute of Physics.@S0022-2488~00!00606-X#

I. POSITIVE MASS CONJECTURE AND RELATED TOPICS

One of the most difficult problems in classical relativity is to understand how and w
singularities form. In the 1960’s, Hawking and Penrose proved that the existence of a c
trapped surface in an asymptotically flat spacelike hypersurface gives rise to a singula
space–time. However, no proof based on pure partial differential equation arguments was
and many questions remain unanswered.

Given an initial data set (gi j ,pi j ) on a three-dimensional manifold so thatgi j is asymptoti-
cally Euclidean andpi j ~the induced second fundamental form in an embedding! falls off asymp-
totically, it is interesting to ask the following questions:

~1! When will such an initial data set contain a closed trapped surface? If so, how to locat
~2! If the initial data contains no closed trapped surface, how to tell whether such a surfac

appear at a later time under the evolution of Einstein’s equations?
~3! If we assume that the trace ofpi j is zero, will a singularity occur without the existence of

closed trapped surface?
~4! If a singularity does occur, what is the structure of the null geodesics in a neighborhood

singularity, and what is the structure of the curvature tensor in this neighborhood? What
criterium on the initial data set for the curvature to blow up at the singularity?

~5! Can one define physically relevant local~or quasilocal! quantities such as mass and angu
momentum to describe regions in a strongly gravitationally interacting space–time? F
ample, when two bodies interact, what is the binding energy and what is the mass
resulting configuration? How can one estimate the gravitational radiation for strongly
acting bodies? How can one justify the linearized theory of gravitational radiation?

For all the above questions related to singularity formation, one usually studies only generic
data. However, it has been a difficult problem in nonlinear partial differential equations to u
stand how to perturb away the singularity.

For all these questions, it would be good if the known class of spherically symmetric solu
of the Einstein equations were rich. Except for the Schwarzschild case, such solutions can
vacuum solutions. Hence to consider these questions, one is forced to couple gravity to
matter fields. For the case of a massless scalar field, Christodoulou1–4 has studied the question o
the formation of singularities quite extensively. If a singularity exists, it is located at the or
39430022-2488/2000/41(6)/3943/21/$17.00 © 2000 American Institute of Physics
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While much is known in this case, the details of how the singularity forms is still poorly un
stood.~When naked singularities form, one would like to know the behavior of null geodes!
Based on numerical studies, Choptuik5 has found the new phenomena that, for a one-param
family of initial data, the mass function exhibits some critical phenomena similar to those w
occur in statistical mechanics, at the time when a black hole forms. However, a detailed theo
study is lacking. An interesting consequence of the above study is that after gravitational rad
the space–time is either time-asymptotic to the flat space–time or to the Schwarzschild s
time. This raises an interesting question when we couple gravity to a Yang–Mills field or to
spinors; What is the possible asymptotic state of spherically symmetric initial data? Would
stable coupled solutions found by us~cf. Sec. II below! be the only possible states? When we wa
to extend the spherically symmetric case to an axisymmetric geometry, the space-time is fa
complicated. While it is clear that angular momentum may be used to make many configur
stable, the number of degrees of freedom is large and it is difficult to find solutions of gr
coupled to other fields.~For stationary black holes with a vacuum background, it has to be
Kerr solution.! It is still not known whether one can find multiblack holes which can be stabili
by the addition of angular momentum.

Beyond axisymmetric solutions, Bartnik6,7 proposed a class of initial data sets which can
foliated by round spheres. Using this ansatz, he was able to parametrize a large set of init
having zero or nonnegative scalar curvature.~For the initial data set, if it is a maximal slice, th
scalar curvature is always non-negative.! According to his numerical study, this ansatz has be
very useful in understanding radiation from a single black hole. Perhaps the theoretical stu
critical data in this class would be interesting.

Let us now turn to general space–time with no spherical symmetry. We restrict oursel
asymptotically flat space–times. In this case, we have asymptotic space–time Lorentzian s
try. Based on this asymptotic symmetry, it is well known that one can define the concept of
and linear momentum associated to each initial data set~which is invariant under the Lorentzia
symmetry at asymptotic infinity8!. About 20 years ago, Schoen–Yau9 ~subsequently10 and others!
proved the positive mass conjecture which says that the total~mass, linear momentum! is a
nonspacelike four-vector. The total mass is therefore always non-negative. It is zero only wh
space–time is flat.

The positivity of the mass says that the trivial space–time is stable~the dynamic stability
among a class of reasonable initial data has recently been demonstrated by Christodou
Klainerman11!. However, the nonlinear stability of the Schwarzschild solution is still unkno
Based on the ‘‘Cosmic Censorship conjecture,’’ Penrose proposed an inequality relating th
mass of the black hole to the area of the outermost horizon. It says that among all initial da
with fixed mass, the time-symmetric Schwarzschild solution initial data set has the largest a
its outermost apparent horizon.

In general, if the initial data set is a maximal slice for the space–time, the scalar curvat
the three-dimensional manifold is non-negative. In such a case, the conjecture of Penro
recently settled by Huisken and Ilmanen,12 obtaining the optimal result only under the assumpt
that the outermost black hole is connected. It was based on an idea of Geroch that the H
~quasilocal! mass is monotonic along an evolution of a surfaceS t which starts from the hole to the
sphere at infinity. The evolution is governed by the requirement that it moves the surfaces
the normal direction and with magnitude minus the inverse of mean curvature. Geroch notice
for the sphere at infinity, the Hawking mass is simply the total mass of the initial data set,
at the black hole, the Hawking mass is, up to a universal constant, the square root of the
the black hole. Hence if the flow of the surfaceS t exists, the Penrose conjecture would then
proved. Huisken and Ilmanen developed the mathematical framework in which these ideas
be made precise. However, the flow exhibits jump phenomena and much care is needed to
that the inequality jumps in the right manner. Much more recently, Bray13 has been able to
improve the result in the case of a nonconnected outermost horizon by a new method,
relying on the ideas of Schoen–Yau9 and certain curvature estimates.14

For the proof of the Penrose conjecture, one still must answer the question as to wh
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initial data set is not maximal. It would also be nice to see the corresponding inequality fo
Bondi mass~total mass after radiation!.

Besides the total mass and linear momentum, an important conserved quantity is a
momentum. This was studied extensively by Ashtekar.15 One needs to study the relation betwe
angular momentum and other conserved quantities such as the total mass and linear mome
seems reasonable to believe that the total mass should dominate the square of the angu
mentum if the initial data set is nonsingular.

To better understand angular momentum, Huisken and Yau16 defined the concept of center o
mass of an initial data set. It is Lorentz invariant and, remarkably, under the evolution of
stein’s equations, the velocity of the center of gravity is the linear momentum divided bym,
wherem is the total mass of the initial data set.

One hopes to study all possible naturally conserved quantities and the relations amon
conserved quantities, when the initial data set is nonsingular. It is always interesting to know
radiation effects all those quantities. For an isolated gravitational system, what would
asymptotic state after radiation? We conjecture that the time-asymptotic state is just the su
sition of several known stationary solutions including the charged Kerr black holes and the
coupled solutions found above~e.g., when we are coupling the Einstein equations to the Ya
Mills, Dirac particles, or a real scalar field!.

The global behavior of the Einstein system is difficult to study, partially because we d
have~quasi-!local quantities which behave well under time evolution. The Hawking mass is
such example. It is monotonic in some directions. Unfortunately, it is not positive in genera
certain important closed surfaces, which are obtained by minimizing area under a volum
straint, Christodoulou and Yau were able to prove the positivity of the Hawking mass.17 However,
they assumed that the scalar curvature is non-negative. It would be nice to remove this a
tion.

If one considers sufficient conditions for the formation of black holes in a general setting
best theorem is due to Schoen–Yau.18 This says that, by suitably defining the diameterd(V) of a
regionV, then if the matter density in the regionV is greater thand22 up to a universal constant
a closed trapped surface can be found. This implies that a black-hole type singularity exists.
theorem, the existence of black holes results from the condensation only of matter. It wo
desirable to include the contribution of gravitation effects. Namely, it is interesting that in
argument by Schoen–Yau, only the lower bound of the first eigenvalue of the operato2D
1 1

6R is used. In the time symmetric case~i.e., with pi j [0), 1
2R is the local matter density. I

would be nice to see if this method can be extended to the general case, in the sense
spectrum of some operator can be used to yield a condition for the formation of black hole

II. THE INTERACTION OF GRAVITY WITH OTHER FORCE FIELDS AND DIRAC
PARTICLES

According to Einstein’s Theory of General Relativity, gravity is described geometric
through Einstein’s equations. The understanding of gravity has been driven by the discov
special solutions of these equations. The most important examples are the Schwarzschild s
the Kerr–Newman solution, and the Friedmann–Robertson–Walker solution.19 Particularly inter-
esting effects are obtained when one couples gravity, as expressed through Einstein’s equa
other fundamental force fields. The simplest such example is the Reissner–Nordstro¨m solution
resulting from the coupling of gravity to electromagnetism~Maxwell’s equations!. This solution,
like the Schwarzschild solution, has an essential singularity at the origin. The generalizat
non-Abelian Yang–Mills fields led to the discovery of Bartnik and McKinnon~BM! ~Ref. 20! ~see
also Refs. 21 and 22! of everywhere regular solutions. This came as a surprise because s
results for related systems led to the conjecture that such solutions cannot exist. Indeed, nei
vacuum Einstein equations, nor the pure Yang/Mills equations have nontrivial static, glo
defined, regular solutions.23,24 The existence of these solutions depends on the coupling o
different force fields, whereby the attractive gravitational force is balanced by the YM repu
force. But this balance is rather delicate; for example, the BM solutions are unstable with re
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to small perturbations.25 Other interesting solutions of Einstein’s equations result from coup
gravity to quantum mechanical matter fields. The case of a complex scalar field was conside
Lee et al.,26 who found solitonlike solutions modeling~bosonic! stars; see too, Christodoulou2

who studied the gravitational collapse of a real massless scalar field.
We report here on recent work~see Refs. 27–30 for details! of a different type of coupling;

namely, gravity coupled to both quantum mechanical particles with spin~Dirac particles!, and to
an electromagnetic field. We first study the resulting Einstein–Dirac–Maxwell~EDM! equations
for a static, spherically symmetric system of two fermions in a singlet spinor state. We find s
solitonlike solutions, and we discuss their properties for different values of the electroma
coupling constant. We note too that the inclusion of gravity has a regularizing effect on solu
in the sense that our solutions are more regular than one would expect from a naive analysi
Feynman diagrams; see Ref. 31. We then study black-hole solutions for these equations~see Refs.
21 and 32!, and we find, surprisingly, that under rather weak regularity conditions on the for
the event horizon, the only black-hole solutions of the EDM equations are the Reis
Nordström ~RN! solutions. That is, the spinors must vanish identically. Applying this to
gravitational collapse of a ‘‘cloud’’ of relativistic spin-1

2-particles to a black hole, our resu
indicates that the Dirac particles must eventually disappear inside the event horizon. We als
that the Dirac equation has no normalizable, time-periodic solutions in a RN black-hole
ground. The physical interpretation of this result is that the Dirac particles cannot remain
periodic orbit around the black hole. This result has recently been extended to an axisym
black hole geometry.33

In our study of the coupled EDM equations, we employ a special ansatz for the spinors.
ansatz, we do not assume that the Dirac particles are in a spherically symmetric state; inde
are allowed to have angular momentum. However, we arrange (2j 11) of these particles in such
a way that the total system is static and spherically symmetric.~In the language of atomic physics
we consider the completely filled shell of states with angular momentumj. Classically, this
multiparticle system can be thought of as several Dirac particles rotating around a common
such that their angular momentum adds up to zero.! Since the system of fermions is spherica
symmetric, we obtain a consistent set of equations if we also assume spherical symmetry
gravitational and electric fields. We can thus separate out the angular dependence, and the
then reduces to a system of nonlinear ODEs.

A. The EDM equations

The general Einstein–Dirac–Maxwell equations are

Rj
i 2

1

2
Rd j

i 528pTj
i , ~G2m!Ca50, ¹kF

jk54pe(
a

CaGjCa , ~1!

where Tj
i is the sum of the energy-momentum tensor of the Dirac particles and the Ma

stress-energy tensor. TheGj are the Dirac matrices which are related to the Lorentzian metric
the anticommutation relations,

gjk~x!15 1
2$G

j~x!,Gk~x!%[ 1
2~GjGk1GkGj !~x!.

F jk denotes the electromagnetic field tensor, andCa are the wave functions of fermions of ma
m and chargee. The Dirac operator is denoted byG, and it depends on both the gravitational a
electromagnetic field; for details see Refs. 27 and 28.

We now specialize to the case of static, spherically symmetric solutions of the EDM sy
~1!. In polar coordinates~t, r, q, w!, we write the metric in the form

ds25
dt2

T~r !22
1

A~r !
dr22r 2~dq21sin2 qdw2! ~2!
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with positive functionsT and A. Depending on whether we consider particlelike solutions
black-hole solutions, the region of space–time which we consider isr .0, or r . r̄ .0, respec-
tively; in the latter case, we assume thatr 5 r̄ is the event horizon. We always consider solutio
for which the metric~2! is asymptotically Minkowskian,

lim
r→`

A~r !515 lim
r→`

T~r !, ~3!

and has finite~ADM ! mass; i.e.,

lim
r→`

r

2
~12A~r !!5r,`. ~4!

In the static case, the fermions only generate an electric field, and thus we may assume
electromagnetic potentialA has the formA5(2f,0), wheref5f(r ) is the Coulomb potential.

The Dirac operatorG can be written as

G5 iG j~x!
]

]xj 1B~x!

5 iTg0S ]

]t
2 ief D1g r S iAA

]

]r
1

i

r
~AA21!2

i

2
AA

T8

T D1 igq
]

]q
1 igw

]

]w
, ~5!

whereg t, g r , gq, andgw are theg-matrices in polar coordinates, in Minkowski space namel

g t5g0,

g r5g1 cosq1g2 sinq cosw1g3 sinq sinw,

gq5
1

r
~2g1 sinq1g2 cosq cosw1g3 cosq sinw!,

gw5
1

r sinq
~2g2 sinw1g3 cosw!,

where

g05S 1 0

0 21D , g i5S 0 s i

2s i 0 D , i 51,2,3,

ands i denote the Pauli matrices.
In analogy with the central force problem in Minkowski space,34 this Dirac operator com-

mutes with~a! the time translation operatori ] t , ~b! the total angular momentum operatorJ2, ~c!
thez component of the total angular momentumJz , and~d! with the operatorg0P, whereP is the
parity. Since these operators also commute with each other, any solution of the Dirac equat
be written as a linear combination of solutions which are simultaneous eigenstates of the
erators. We use this ‘‘eigenvector basis’’ to separate out both the angular and time depen
and to calculate the total current and energy momentum tensor of the Dirac particles. Usi
ansatz in Refs. 27, 28, 29, we can describe the Dirac spinors using two real functionsa, b. We
arrive at the following system of ordinary differential equations for the five real functionsa, b, A,
T, andf:

AAa856
2 j 11

2r
a2~~v2ef!T1m!b, ~6!
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AAb85~~v2ef!T2m!a7
2 j 11

2r
b, ~7!

rA8512A22~2 j 11!~v2ef!T2~a21b2!2r 2AT2uf8u2, ~8!

2rA
T8

T
5A2122~2 j 11!~v2ef!T2~a21b2!62

~2 j 11!2

r
Tab

12~2 j 11!mT~a22b2!1r 2AT2uf8u2, ~9!

r 2Af952~2 j 11!e~a21b2!2S 2rA1r 2A
T8

T
1

r 2

2
A8Df8. ~10!

Equations~6! and~7! are the Dirac equations~the 6 signs correspond to the two possible eige
values ofg0P); ~8! and ~9! are the Einstein equations, while Maxwell’s equations reduce to
single equation~10!. Here j 5 1

2,
3
2,..., theconstantv enters via the plane wave dependence of

spinors; namely, exp(2ivt), and as for the general equations~1!, m and e denote the mass an
charge, respectively, of the fermions. We also require that, in addition to~3!, ~4!, the electromag-
netic potential vanishes at infinity,

lim
r→`

f~r !50. ~11!

Since Eqs.~6!–~10! are invariant under the gauge transformations,

f~r !→f~r !1k, v→v1ek, kPR, ~12!

we see that~11! can be fulfilled by a suitable gauge transformation, provided thatf has a limit at
infinity.

In Secs. II A–II D, we shall be concerned with two different types of solutions of Eqs.~6!–
~10!; namely,particlelike solutions~smooth solutions defined for allr>0), andblack hole solu-
tions~solutions defined for allr . r̄ .0, whereA( r̄ )50 andA(r ).0 for all r . r̄ ;r 5 r̄ is the event
horizon!. In the first case, we require the following normalization condition on the spinors:

E
0

`

~a21b2!
T

AA
dr51 ~particlelike!, ~13!

while in the second case we require that for allr 0. r̄ ,

0,E
r 0

`

~a21b2!
T

AA
dr,` ~black holes!. ~14!

These conditions are necessary in order that the Dirac spinors define physically meaningfu
functions.

B. Particlelike solutions

In this section we shall describe our numerical construction of particlelike solutions for
~6!–~10!. For simplicity we shall restrict ourselves to the casej 51/2. We shall also discuss th
stability and properties of the ground state solutions for different values of the electroma
coupling constant (e/m)2. We shall show that solutions exist even when the em coupling i
strong that the total interaction is repulsive in the nonrelativistic limit. In addition, for small
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coupling, (e/m)2,1, we shall show thatstableparticlelike solutions exist for small values ofm,
and using certain topological techniques, we show that this stable solution becomes unstabm
increases.

The construction of particlelike solutions is obtained via a rescaling argument~see Refs. 27
and 28!. The idea is to weaken the conditions~2!, ~11!, and~13! to

0ÞE
0

`

~a21b2!
T

AA
dr,`, 0Þ lim

r→`

T~r !,`, lim
r→`

f~r !,`, ~15!

and instead set

T~0!51, f~0!50, m51. ~16!

This enables us to use a Taylor expansion aroundr 50, and we obtain the following expansion
nearr 50:

a~r !5a1r 1O~r 2!, b~r !5O~r 2!,

A~r !511O~r 2!, T~r !511O~r 2!, f~r !5O~r 2!.

Solutions to our equations now depend on the three real parameterse, v, anda1 . For a given
value of these parameters, we can construct initial data atr 50, and using the standard Math
ematica ODE solver, we ‘‘shoot’’ for numerical solutions of the modified system~6!–~10!, ~16!.
By varying v ~for fixed e anda1), we can arrange that the spinors~a, b! tend to the origin for
large r, and the conditions~4! and ~15! also hold.

Given a solution~a, b, A, T, f! of this modified system, we consider the scaled function

ã~r !5At

l
a~lr !,b̃~r !5At

l
b~lr !,

Ã~r !5A~lr !, T̃~r !5t21T~lr !, f̃~r !5tf~lr !.

By direct computation, these functions satisfy the original Eqs.~6!–~10! and Eqs.~3!, ~4!, and
~13!, provided that the physical parameters are transformed according to

m̃5lm, ṽ5ltv, ẽ5le, ~17!

where the scale factorsl andt are given by

l5S 4pE
0

`

~a21b2!
T

AA
dr D 1/2

, t5 lim
r→`

T~r !.

Finally, condition~11! can be fulfilled by a suitable gauge transformation. Notice that the pa
eter (ẽ/m̃)25e2 is invariant under the above scaling. It is thus convenient to choose (ẽ/m̃)2 ~and
not ẽ2) as the parameter used to describe the strength of theemcoupling. We point out that the
above scaling technique is used only to simplify the numerics; for the physical interpret
however, we must always work with the scaled~tilde! solutions. Since the transformation from th
un-tilde to the tilde variables is one-to-one, our scaling method yields all the solutions o
original system. From now on, we shall only consider the scaled solutions, and for simplic
notation, we shall omit the tilde.
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C. Properties of the particlelike solutions

We have found solutions having different rotation numbersn50, 1, 2,... of the vector~a, b!.
In the nonrelativistic limit,n is the number of zeros of the corresponding Schro¨dinger wave
functions, and thusn50 corresponds to the ground state,n51 to the first excited state, and so o
However due to the nonlinearity of our equations,n no longer has this simple interpretation. F
simplicity in what follows, we shall only discuss then50 solutions. The graphs of a typical suc
solution is shown in Fig. 1. For each solution, the spinors~a, b! decay exponentially to zero a
infinity. We interpret this to mean that the fermions have a high probability to be confined
neighborhood of the origin. In view of this rapid decay of the spinors, our solutions asymptot
go over into the spherically symmetric RN solutions of the Einstein–Maxwell equations,19 as r
→`. That is, for larger,

A~r !'T22~r !'12
2r

r
1

~2e!2

r 2 .

In other words, our solution, for larger, looks like the gravitational and electrostatic field gen
ated by a point particle at the origin with massm and charge 2e. Note that in contrast to the RN
solution, however, our solutions have no event horizon or singularities. One can understa
from the fact that we consider here quantum mechanical particles, rather than point pa
Therefore the wave functions are delocalized according to the Heisenberg Uncertainty Pri
and so the distributions of matter and charge are also delocalized, thereby preventing the
from forming singularities. In general, we can parametrize solutions by the rest massm, and the
energyv of the fermions. In Fig. 2, we plot the binding energym2v vs m for different values of
the parameter (e/m)2, and we see thatm2v is always positive, indicating that the fermions a
in a bound state. For weakemcoupling, (e/m)2,1, the curve is a spiral which starts at the orig
The binding energy decreases for fixedm and increasing (e/m)2, since theemrepulsion weakens
the binding. The mass energy spectrum when (e/m)2!1 becomes similar to the case of th
Einstein–Dirac equations~without the em interaction!; see Ref. 27. We can use linearizatio
techniques to show numerically that for smallm, if ( e/m)2,1, the solutions are stable wit
respect to spherically symmetric perturbations. For larger values ofm, we can investigate the

FIG. 1. Solution of the EDM equations for parameter values (e/m)250.7162,m50.7639,v50.6807,r51.15416 (a8(0)
50.05361).
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stability using Conley index theory~see Ref. 35!, wherem is taken to be the bifurcation paramete
This technique shows that the stability/instability of a solution remains unchanged ifm is varied
continuously and no bifurcations occur. Moreover, at bifurcation points, the Conley index th
provides a powerful technique to analyze changes of stability. Using this, we find that all solu
on the ‘‘lower branch’’ of the spiral curves A and B of Fig. 2~i.e., on the curve from the origin
up to the maximal value ofm!, are stable, and all solutions on the ‘‘upper branch’’ are unsta

From Fig. 2, we see that this form of the mass energy spectrum changes when (e/m)2'1, the
regime where, in the classical limit, the electrostatic and gravitational forces balance each
To better understand this situation, we take the nonrelativistic limit in our EDM equations. T
this, we fix (e/m)2, and assume thate andm are small. In this limit, the coupling of the spinor
to both the gravitational andem forces becomes weak;A, T'1 andf'0. The Dirac equations
imply that v'm anda@b. Thus the EDM equations go over to the Schro¨dinger equation with
the Newtonian and Coulomb potentials; namely,

S 2
1

2m
D1ef1mVDC5EC, ~18!

2DV528pmuCu2, 2Df58peuCu2, ~19!

whereE5v2m, C(r )5a(r )/r , V(r )512T(r ), andD is the radial Laplacian onR3. From~19!
we see that the Newtonian and Coulomb potentials are multiples of each other; namV
52m/ef. Thus if (e/m)2>1, the total interaction is repulsive so that the Schro¨dinger equation
~18! has no bound states. It follows that in the limit of smallm, the EDM equations have no
particlelike solutions, if (e/m)2>1. This means that the mass-energy curves in Fig. 2 can
start atm50 if (e/m),1. This is confirmed by the numerics~Fig. 2, curves C, D, and E!. For
(e/m)251, the curve tends tom2v50 asm→`.

If ( e/m)2.1, Fig. 2 shows that the EDM equations admit solutions only ifm is sufficiently
large, and smaller than some threshold value where the binding energy of the fermions g
zero.

We can also consider the total binding energyr22m, wherer is defined in~4!. In Fig. 3, we
plot r22m vs m, for various values of (e/m)2. If ( e/m)2,1, r22m is negative for the stable
solutions, whiler22m.0 if (e/m)2.1. This indicates that if (e/m)2.1, such solutions should
be unstable because energy is gained by breaking up the binding.

D. Nonexistence of black hole solutions

As we have noted in the last section, particlelike solutions of the EDM equations in a
state~e.g., the ground state! cease to exist if the rest massm of the fermions exceeds a certa
threshold valuems . The most natural physical interpretation of this statement is that ifm.ms ,

FIG. 2. Binding energym2v of the Fermions for (e/m)250 ~A!, 0.7162~B!, 0.9748~C!, 1 ~D!, and 1.0313~E!.
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the gravitational interaction becomes so strong that a black hole would form. This sugges
there should be black hole solutions of the EDM equations for large fermion masses. I
section, we shall show that this intuitive picture of black hole formation is incorrect. In fact
prove that under weak regularity conditions on the form of the horizon, any black hole soluti
the EDM equations must either be the RN solution~in which case the Dirac wave function i
identically zero!, or the event horizon has the same general form as the extreme RN metric.
latter case, we show numerically that the Dirac wave functions cannot be normalized. It fo
that the EDM system doesnot admit black hole solutions. Thus the study of black holes in
presence of Dirac spinors leads to unexpected physical effects. If we apply this result
gravitational collapse of a ‘‘cloud’’ of Dirac particles, our result indicates that the Dirac part
must eventually disappear inside the event horizon.

In order to establish these results, we first recall what is meant by black hole solutions
EDM equations. These are solutions of Eqs.~6!–~10! defined in the regionr . r̄ .0, which are
asymptotically flat~so that~3! holds!, and have finite~ADM ! mass~so that~4! holds!, and satisfy
the normalization condition~14!. In addition, we assume thatA(r ).0 for r . r̄ , and
limr↘ r̄ A(r )50, while T(r ).0 and limr↘ r̄ T(r )5`.

We make the following three assumptions on the regularity of the functionsA, T, andf on the
form of the event horizonr 5 r̄ :
~I! The volume elementAudetgij u5r2A21/2T21 is smooth and nonzero on the horizon; i.e.,

T22A21,T2APC`~@r̄,`!!.
~II ! The electromagnetic field tensor isFi j 5] iAj2] jAi ; we assume that the strength of the e

field tensorFi j F
i j 522uf8u2AT2 is bounded near the horizon. In view of~I!, this means

that we assume
uf8~r!u,c1, r̄,r,r̄1«

for some positive constantsc1 ,«.0.
~III ! The functionA(r ) obeys a power law, i.e.,

A~r!5c~r2r̄!s1O~~r 2 r̄ !s11!, r . r̄ ~20!

for some positive constantsc ands.

A brief discussion of these assumptions is in order. Thus, if~I! or ~II ! were violated, then an
observer freely falling into a black hole would feel strong forces when crossing the hor
Assumption~III ! is a technical condition which seems sufficiently general to include all physic
relevant horizons; for example,s51 corresponds to the Schwarzschild horizon, ands52 corre-
sponds to the extreme RN horizon. However,~III ! does not seem to be essential for our non
istence results, and with more mathematical effort, we believe that it could be weakened o
omitted completely.

Here is the main result in this section.
Theorem 4.1: Any black hole solution of the EDM equations (6)–(10) which satisfies the

FIG. 3. Total binding energyr22m for (e/m)250 ~A!, 0.7162~B!, 0.9748~C!, 1 ~D!, and 1.0313~E!.
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regularity conditions (I)–(III) either is a nonextreme RN solution witha(r )[0[b(r ), or s52
and the following expansions are valid near the event horizon r5 r̄ :

A~r !5A0~r 2 r̄ !21O~~r 2 r̄ !3!, ~21!

T~r !5T0~r 2 r̄ !211O~~r 2 r̄ !0!, ~22!

f~r !5
v

e
1f0~r 2 r̄ !1O~~r 2 r̄ !2!, ~23!

a~r !5a0~r 2 r̄ !k1O~~r 2 r̄ !k11!, ~24!

b~r !5b0~r 2 r̄ !k1O~~r 2 r̄ !k11!, ~25!

with positive constants A0 , T0 , and real parametersf0 , a0 , andb0 . The exponentk satisfies the
constraint

1

2
,k5A0

21Am22e2f0
2T0

21S 2 j 11

2r̄ D 2

, ~26!

and the spinor coefficientsa0 and b0 are related by

a0SAA0k6
2 j 11

2r̄ D52b0~m2ef0T0!, ~27!

where‘‘ 6’’ refers to the two choices of the signs in (6)–(10).
We shall now outline a proof of this result; we first consider the case that the expons

,2 in ~20!.
Lemma 4.2: Assume that s,2 and that~a b,A,T, f! is a black-hole solution where(a,b)Ó0.

Then there are constants c,«.0 satisfying

c<a~r !21b~r !2<
1

c
, r̄ ,r , r̄ 1«. ~28!

Proof: According to~6! and ~7!, we have

AA
d

dr
~a21b2!52S a

b D S 6
2 j 11

2r
2m

2m 7
2 j 11

2r

D S a
b D<S 4m21

~2 j 11!2

r 2 D 1/2

~a21b2!.

~29!

The uniqueness theorem for ODEs implies that (a21b2)(r ).0 for all r, r̄ ,r , r̄ 1«, for any
«.0. Dividing ~29! by AA(a21b2) and integrating fromr . r̄ to r̄ 1« gives

u log~~a21b2!~ r̄ 1«!!2 log~~a21b2!~r !!u<E
r

r̄ 1«

A21/2~ t !S 4m21
~2 j 11!2

t2 D 1/2

dt. ~30!

Sinces,2, ~20! implies thatA21/2 is integrable onr̄<r< r̄ 1«, so that the integral in~30! is
majorized by

E
r̄

r̄ 1«
A2~1/2!~ t !S 4m21

~2 j 11!2

t2 D 1/2

dt,
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and this yields~28!. j

We can now dispose of the case 0,s,2; namely, we have
Proposition 4.3: If0,s,2, then the only black hole solutions of the systems (6)–(10) are the

nonextreme Reissner–Nordström solutions.
Proof: We assume that we have a solution such that (a,b)(r )Ó0, and show that this gives

contradiction.
The last lemma implies that the spinors are bounded nearr 5 r̄ . From ~8! and ~9!, we find

r
d

dr
~AT2!524~2 j 11!~v2ef!T4~a21b2!62

~2 j 11!2

r
T3ab12~2 j 11!mT3~a22b2!.

~31!

Assumption ~I! implies that the left-hand side of~31! is regular so the same is true of th
right-hand side. SinceT→` as r↘ r̄ , we conclude that

lim
r̄ ,r→ r̄

~v2ef~r !!50. ~32!

From Maxwell’s equation

f952
1

A

~2 j 11!e

r 2 ~a21b2!2
1

r 2AAT
@r 2AAT#8f8, ~33!

we see that~I! implies that the coefficient off8 is smooth. Ifs>1, A21 is not integrable atr̄ , so
that uf8u is unbounded atr̄ , thereby contradicting~II !. Thuss,1, and integrating~33! twice and
using ~32! gives nearr 5 r̄ the following expansions:

f8~r !5c1~r 2 r̄ !2s111c21O~~r 2 r̄ !2s12!,

and

f~r !5c1~r 2 r̄ !2s121c2~r 2 r̄ !1
v

e
1O~~r 2 r̄ !2s13!.

Using these in~8!, and noting thatA and r 2AT2uf8u2 are bounded nearr 5 r̄ , and that (v2ef)
5O(r 2 r̄ ), andT2(a21b2);(r 2 r̄ )2s, s,1, we see that the rhs of~8! is bounded nearr 5 r̄ . On
the other hand, the lhs of~8! diverges nearr 5 r̄ since rA8(r )5(r 2 r̄ )2s11; this contradiction
completes the proof. j

In the cases>2, we first prove the following two facts~cf. Ref. 29!:

lim
r↘ r̄

~r 2 r̄ !2~s/2!~a21b2!50 ~34!

and

lim
r↘ r̄

uf8~r !u5 r̄ 21 lim
r↘ r̄

A2~1/2!T21.0. ~35!

From ~35!, we find that

~w2ef!~r !5c1d~r 2 r̄ !1o~r 2 r̄ !,

whered5e/ r̄ limr↘ r̄ A21/2T21.0. Thus (v2ef)T diverges monotonically. From~6! and ~7!,
this implies that lim infr↘ r̄(a

21b2).0, thereby contradicting~34!. Thus if s.2, there are no
solutions of~6!–~10!.
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Proof of Theorem 4.1:We must only consider the case thats52 and~21!, ~22! hold. From
~34! we see that limr↘ r̄a

21b250, and we can show that (v2ef)T cannot diverge monotoni
cally nearr 5 r̄ ~see Ref. 30!. But ~35! shows that (v2ef) has a Taylor expansion nearr 5 r̄ with
a nonzero linear term. Thus~35! holds, the constant term in the Taylor expansion of (v2ef)
vanishes, and limr↘ r̄(v2ef)T5l, where from~35!, ulu5 r̄ 21 limr↘ r̄ A2(1/2)T21.0. As in Ref.
30, we may write the Dirac equations in the variable

u~r !52r 2 r̄ ln~r 2 r̄ !

and apply the stable manifold theorem to conclude thata andb satisfy the power laws~24!, ~25!,
and ~34! yields thatK. 1

2. Using ~21!–~25! into ~6! and ~7! gives

AA0ka056
2 j 11

2r̄
a01~ef0T02m!b0 ,

AA0kb052~ef0T01m!a07
2 j 11

2r̄
b0 ,

which are equivalent to~26! and ~27!. This completes the proof of Theorem 4.1. j

Notice that in the case of nonzero spinors (s52), Theorem 4.1 places severe constraints
the behavior of black hole solutions near the event horizon, in the sense that sincek. 1

2, the
spinors decay so fast atr 5 r̄ , that both the metric and theemfield behave like the extreme RN
solution on the event horizon. Physically speaking, this restriction to the extremal case mea
the electric charge of the black hole is so large that the electric repulsion balances the gravit
attraction, and prevents the Dirac particles from ‘‘falling into’’ the black hole. Of course, th
not the physical situation that one expects in the gravitational collapse of, say, a star. Ho
extreme RN black holes are physically important since they have zero temperature,36 and can be
considered to be the asymptotic states of black holes emitting Hawking radiation. It is
interesting to see if the expansions~21!–~25! yield global black hole solutions of the EDM
equations.

This question is especially interesting since in the next section we shall show that f
extreme RN background field, spinors satisfying the expansions~24!, ~25! cannot be normalized
The question thus becomes whether the influence of the spinors on the gravitational and e
can yield black hole solutions with normalized spinors. This is a very difficult question bec
one must analyze the global behavior of these solutions of the EDM equations. Our num
investigations show that the answer to the above question is negative; namely solutions
develop a singularity for somer . r̄ , or the spinors~a, b! are not normalizable. We thus conclud
that the expansions~21!–~25! do not give normalizable solutions of the EDM equations.

E. Dirac particles in a Reissner–Nordstro ¨ m background

In this section, we shall consider solutions of the EDM equations where we fix the backg
metric andemfield to be a RN solution. Near a collapsing black hole one might guess that D
particles can get into a static or time periodic state. However, we shall show that in contrast
classical situation, the Dirac equations do not admit any normalizable time-periodic solutio
particular, they admit no normalizable static solutions. We do not assume any spatial symme
the wave functions. This result can be physically interpreted as saying that Dirac particle
either disappear into the black hole of escape to infinity, but they cannot remain on a periodi
around the black hole. We note that it is essential for our arguments that the particles hav
In fact, in the case where the particles do not have spin, the Dirac equation must be replaced
Klein–Gordon equation, and our arguments fail; cf., Ref. 26.

The RN metric can be written in polar coordinates as
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ds25S 12
2r

r
1

q2

r 2 Ddt22S 12
2r

r
1

q2

r 2 D 21

dr22r 2~dq21sin2 qdw2!, ~36!

wherer is the ~ADM ! mass of the black hole, andq its charge. Theempotential is of the form
~2f, 0! with Coulomb potential

f~r !5
q

r
. ~37!

In the ‘‘nonextremal’’ case (q,r), the metric coefficient (12(2r/r )1(q2/r 2)) vanishes twice,
and thus there are two horizons 0,r 0,r . If q5r, the metric is called an extreme Reissne
Nordström ~ERN! metric and has a single horizon atr 5r. If q.r, the above metric coefficien
is nonvanishing, and so the metric does not describe a black hole; this case will not be cons

We consider time-periodic solutions, noting that static solutions are a special case. Sin
phase of the Dirac wave functionC has no physical significance, we defineC to be periodic with
periodT if for some realV,

C~ t1T,r ,q,w!5e2 iVTC~ t,r ,q,w!. ~38!

Our main theorem in this section is the following:
Theorem 5.1: (i) In a nonextreme RN background, there are no normalizable, time-peri

solutions of the Dirac equation. (ii) In an ERN background, every normalizable, time-per
solution of the Dirac equation is identically zero in the region r.r.

We shall begin by deriving conditions which relate the wave functionC on both sides of the
event horizon. We first consider the case of a nonextreme RN background, and analy
behavior ofC near the event horizon. For this, we begin by studying the behavior ofC in a
Schwarzchild background metric, and we shall also consider the Dirac equation in differe
ordinate systems. This is done with the aim of passing to Kruskal coordinates, in order to re
the ‘‘Schwarzschild singularity.’’

The Schwarzschild metric is

ds25S 12
2r

r Ddt22S 12
2r

r D 21

dr22r 2~dq21sin2 qdw2!,

wherer is the~ADM ! mass, and the event horizon is atr 52r. Some straightforward calculation
~see Ref. 30!, shows that outside the horizon (r .r), the Dirac operator can be written as

Gout5
i

S
g t

]

]t
1g r S iS

]

]r
1

i

r
~S21!1

i

2
S8D1 igq

]

]q
1 igw

]

]w
, ~39!

where

S~r !5U12
2r

r U1/2

.

The normalization integral is considered over the hypersurfacet5const; i.e.,

~CuC!out
t
ªE

R3\B2r

~C̄g tC!~ t,x!S21d3x, ~40!

whereB2r denotes the ball of radius 2r about the origin, andC̄5C* g0 is the adjoint spinor. In
the regionr ,2r, the Dirac operator is given by
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Gin5g r S i

S

]

]t
2

i

r D2g tS iS
]

]r
1

i

r
S1

i

2
S8D1 igq

]

]q
1 igw

]

]w

with corresponding normalization integral

~CuC! in
t
ªE

B2r

~C̄g rC!~ t,x!S21d3x. ~41!

Our description of spinors in this coordinate system poses certain difficulties. Namely,
the t variable is spacelike inside the horizon, the normalization integral~41! is not definite since
the integrand is not positive. Thus we can no longer interpret the integrand as a prob
density. Moreover, the Dirac equations corresponding to the operatorsGin andGout describe the
wave functions inside and outside the horizon, respectively. But it is not evident how to matc
wave functions on the horizon. To handle these issues, we remove the singularity atr 52r by
going over to Kruskal coordinates. Recall~see Ref. 19! that Kruskal coordinatesu and v are
defined by

u55A
r

2r
21e~r /4r! coshS t

4r D for r .2r

A12
r

2r
e~r /4r! sinhS t

4r D for r ,2r

~42!

v55 A
r

2r
21e~r /4r! sinhS t

4r D for r .2r

A12
r

2r
e~r /4r! coshS t

4r D for t,2r

. ~43!

The horizonr 52r maps to the originu505v, and the singularityr 50 maps to the hyperbola
v22u251, v.0. In Kruskal coordinates, the metric~36! becomes

ds25 f 22~dv22du2!2r 2~dq21sin2 qdw2!,

wheref 225(32r3/r )e(r /2r). Takingv andu as time and space variables, respectively, and no
that the metric is regular at the origin, we can extend the Dirac operator smoothly acro
origin. A straightforward computation gives the Dirac operator in Kruskal coordinates as

G5g tS f i
]

]v
1

i

r
f ~]vr !2

i

2
]v f D1g r S f i

]

]v
1

i

r
~ f ~]ur !21!2

i

2
]uf D1 igq]q1 igw]w .

~44!

Observe that the Dirac operator is smooth across the event horizon. Moreover, the norma
integrals~40! and ~41! on the surfacet50 become

~CuF!5E
H

C̄GjFn jdm,

where

H5$u50,0<v<1%ø$v50,u.0%,

n is the normal toH pointing into the regionu.0, v.0, andGj are the Dirac matrices

Gv5 f g t, Gu5 f g r , Gq5gq, Gw5gw.
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We remark that for smooth solutions of the Dirac equation, one can use current conservat

¹C̄GjC50. ~45!

to continuously deform the hypersurfaceH keeping fixed the value of the normalization integr
For example, one can deformH to Ĥ as depicted in Fig. 4, thereby avoiding integrating across
horizon. On the other hand, one must exercise extreme care whenever a solution of the
equation is singular near the origin.

As shown in Ref. 30, the Dirac operator in Kruskal coordinates can be written as

G5UGoutU
215UGinU

21, ~46!

whereU is the time-dependent matrix,

U~ t !5coshS t

8r D11sinhS t

8r Dg tg r , ~47!

and the Dirac operatorsGout andGin in Kruskal coordinates are

Gout5
i

4rS
~ug t1vg r !

]

]v
1

i

4rS
~vg t1ug r !

]

]u
1S i

r
~S21!1

i

2
S8Dg r1 igq

]

]q
1 igw

]

]w
,

Gin5
i

4rS
~vg t1ug r !

]

]v
1

i

4rS
~ug t1vg r !

]

]u
2S i

r
S1

i

2
S8Dg t2

i

r
g r1 igq

]

]q
1 igw

]

]w
.

It follows that the Dirac operatorsGout andGin can be identified with the Dirac operatorG in the
region,

R5$u1v.0,v22u2,1%.

We next see how solutions of the Dirac equation inside and outside the horizon match
horizon,u505v. To do this, we first study the behavior of these solutions on the horizon. L
first considerstatic solutions of the Dirac equation, so

C~ t,r ,q,w!5e2 ivtC~r ,q,w!.

FIG. 4. Kruskal coordinates.
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We assume thatC is a solution of the Dirac equations (Gin2m)50 and (Gout2m)50, and that
C is smooth on both sides of the horizonr ,2r and r .2r. Using ~46! and ~47!, we have

C~u,v,q,w!5U~ t !e2 ivtC~r ,q,w!,

wherer andt are determined implicitly fromu andv in the usual way~see Ref. 19!. This implies
thatC is only defined inR, and solves there the Dirac equation (G2m)C50. Since we are only
considering black holes, we demand thatC vanishes in the half-planeu1v,0; thus we must
analyze solutionsC of the form

C~u,v,q,w!5H U~ t !e2 ivtC~r ,q,w! for u1v.0,uÞv

0 for u1v,0
.

Such a wave function might be singular along the linesu56v, in which caseC must satisfy the
Dirac equation in a generalized sense. An analysis carried out in Ref. 30 shows thatC must satisfy
the two matching conditions

lim
«→0

~g t1g r !u«u1/4C~ t,2r1«,q,w!50, ~48!

u«u1/4~C~ t,2r1«,q,w!2C~ t,2r2«,q,w!!5o~11u«u1/4C~ t,2r1«,q,w!! as «→0. ~49!

Note that since these only depend on the local behavior ofC near the horizon, they are als
applicable when we are in the case of a nonextreme RN background having event horizor
52r.

We now consider Dirac particles in a RN background. Since the gravitational and EM
ground fields are spherically symmetric and time independent, we can separate out the angu
time dependence of the wave functions via spherical harmonics and plane waves in the
manner and, as shown in Ref. 30, we obtain the following two component Dirac equatio
regions where thet-variable is timelike,

S
d

dr
F jkv

6 5F S 0 21

1 0 D ~v2ef!
1

S
6S 1 0

0 21D 2 j 11

2r
2S 0 1

1 0DmGF jkv
6 , ~50!

and in the regions wheret is spacelike,

S
d

dr
F jkv

6 5F S 0 21

1 0 D ~v2ef!
1

S
6 i S 0 1

1 0D 2 j 11

2r
1 i S 1 0

0 21DmGF jkv
6 . ~51!

In these equations,

S~r !5U12
2r

r
1

q2

r 2U1/2

, ~52!

j 5 1
2,

3
2,..., k52 j ,2 j 11,...,j , and the6 signs correspond as before to the two eigenvalues of

operatorg0P ~cf. Sec. II!. Here we have chosen for the Dirac wave functions the two ansat

C jkv
1 5e2 ivt

S21/2

r S x j 21/2
k F jkv1

1 ~r !

ix j 11/2
k F jkv2

1 ~r ! D , ~53!

C jkv
2 5e2 ivt

S21/2

r S x j 11/2
k F jkv1

2 ~r !

ix j 21/2
k F jkv2

2 ~r ! D , ~54!

with 2-spinorsF jkv
6 , andx j 61/2

k are defined by



zero
s

ility

ic

period

te. For

e

is

3960 J. Math. Phys., Vol. 41, No. 6, June 2000 Finster, Smoller, and Yau
x j 21/2
k 5Aj 1k

2 j
Yj 21/2

k21/2S 1
0D1Aj 2k

2 j
Yj 21/2

k11/2S 0
1D , ~55!

x j 11/2
k 5Aj 112k

2 j 12
Yj 11/2

k21/2S 1
0D2Aj 111k

2 j 12
Yj 11/2

k11/2S 0
1D , ~56!

whereYl
k are the usual spherical harmonics,l 50,1,2,...,k52 l ,...,l .

We shall show that the matching conditions~48!, ~49! do not yield normalizable, time-
periodic solutions of the Dirac equation. This will be done by showing that, for every non
solutions of Dirac’s equation, the normalization integral outside and away from the horizon

~CuC! t5E
R3\B2r 1

C̄g tCS21d3x, ~57!

is infinite for somet. Note that for a normalizable wave function, this integral is the probab
that the particle lies outside the ball of radiusr 1 , and thus cannot exceed 1. So if~57! is infinite,
the wave function cannot be normalized.

Now assume thatC is a T-periodic solution of Dirac’s equation. Expanding the period
function e2 iVtC(t,r ,q,w) in a Fourier series, and using the basis~51!, ~52! yields

C~ t,r ,q,w!5 (
n, j ,k,s

C jkv~n!
s ~ t,r ,q,w!, ~58!

wheres56, andv(n)5V12pn/T. Using the orthonormality of the spinorsx j 61/2
k , the integral

~55! becomes

~CuC! t5E
R3\B2r 1

(
n,n

(
j ,k,s

C jkv~n!
s g tC jkv~n8!

s
S21d3x.

In order to eliminate the oscillating time dependence of the integrand, we average over one
~0, T! to get

1

T E
0

T

~CuC! tdt5 (
n, j ,k,s

~C jkv~n!
s uC jkv~n!

s !.

For a normalizable wave function, this expression is finite, and hence all summands are fini
all s, j, k, n,

~C jkv~n!
s uC jkv~n!

s !,`. ~59!

We shall show that~59! cannot hold for nontrivial solutions of the Dirac equation; for this w
begin with

Lemma 5.2: The functionuF jkv
6 (r )u2 has finite boundary values on both horizons, and if it

zero on one horizon, then it is identically zero.
Proof: For simplicity, we omit the indicesj, k, andv. Choosed, 0,d,r 0 , and notice that the

t-direction is timelike on the intervals (d,r 0) and (r 1 ,`). In these regions, we can use~50! to
obtain

S
d

dr
uF6u2~r !5 K S

d

dr
F6,F6L 1 K F6,S

d

dr
F6L

56
2 j 11

r
~ uF1

6u22uF2
6u2!24m Re~~F1

6!* F2
6!,



,

nzero

n
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so that

2cuF6u2<S
d

dr
uF6u2<cuF6u2,

where c52m1(2 j 11)/d. Dividing by uF6u2 and integrating gives, ford,r ,r 8,r 0 , or r 1

,r ,r 8,

2cE
r

r 8
S21< loguF6u2ur

r 8<cE
r

r 8
S21. ~60!

In the regionr 0,r ,r 1 , ~51! gives similarly

S
d

dr
uF6u2~r !5 K S

d

dr
F6,F6L 1 K F6,S

d

dr
F6L 50,

since the square bracket in~51! is an anti-Hermitian matrix. ThusuF6u2 is constant in this region
so ~60! trivially holds for r 0,r ,r 8,r 1 . SinceS21 is integrable on the event horizons,~60!
shows thatuF6u2 has finite boundary values on each side of the horizon, and these are no
unless ifF6 vanishes identically on the corresponding region (d,r 0), (r 0 ,r 1), or (r 1 ,`).

We now use~53! and ~54! in the matching condition~49! to get for j 50,1,

F6~r j1«!2F6~r j2«!5o~11uF6~r j1«!u!, «→0.

SinceuF6(r )u2 has 2-sided limits asr j , we conclude that these limits must coincide atr j ; i.e.,

lim
0,«→0

uF6~r j1«!u25 lim
0,«→0

uF6~r j2«!u2.

Using ~60! again, we conclude that the wave function vanishes on the entire interval~d, `!, if it is
zero onr j . This completes the proof sinced was arbitrary. j

The final step is to use current conservation~cf. Ref. 27!,

¹ jC̄GjC50 ~61!

to study the decay ofF jkv(n)
s (r ) at infinity, and to prove Part~i! of Theorem 5.1.

Theorem 5.3„radial flux argument…: Either C jkv
s vanishes identically, or the normalizatio

condition (59) is violated.
Proof: For simplicity, we again omit the indicess, j, k, andv. Suppose thatCÓ0. For r 1

,r ,R and T.0, let V be the annulus outside the horizonr, given by V5(0,T)3(B2R\B2r).
Using ~59!, we find

05E
V
¹ j~C̄GjC!Augud4x

5E
0

T

dtr2S~r !E
S2

~C̄g rC!~ t,r !2E
0

T

dtR2S~R!E
S2

~C̄g rC!~ t,R!

2E
2r

2R

dss2S21~s!E
S2

~C̄g rC!~ t,r !u t50
t5T .
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Since the integrand is static, the last term vanishes, and we conclude that the radial
independent of the radius,

r 2S~r !E
S2

~C̄g rC!~r !5R2S~R!E
S2

~C̄g rC!~R!. ~62!

Using ~53! and ~54!, we have

r 2S~r !E
S2

~C̄g rC!~r !5E
S2

F* ~r !S 0 i

2 i 0DF~r !. ~63!

The matching condition~48!, expressed in terms ofF gives

lim
r 1,r→r 1

S 1 i

i 21DF50.

Using this, we have from~63!,

lim
r 1,r→r 1

r 2S~r !E
S2

~C̄g rC!~r !5 lim
r 1,r→r 1

E
S2

FF* S 1 i

2 i 1DF2uFu2G
5 lim

r 1,r→r 1

E
S2

FF* S 1 0

0 21D S 1 i

i 21DF2uFu2G
52 lim

r 1,r→r 1

E
S2

uFu2Þ0,

sinceF is finite and nonzero on the horizonr 1 .
Now we consider the radial flux for largeR. Since the flux is independent ofR, we have from

the last inequality

0, lim
R→`

UR2S~R!E
S2

~C̄g rC!~R!U5 lim
R→`

UR2S21~R!E
S2

~C̄g tC!~R!U,
because the metric is asymptotically Minkowskian. Thus the integrand of our normalization
gral

~CuC!`5E
2r 1

`

dRR2S21~R!E
S2

~C̄g tC!~R!

converges to a positive number, so that the normalization integral is infinite. j

We have thus proven Part~i! of Theorem 5.1. For Part~ii !, the case of an extreme RN
background field, we use a quite different method; cf. Ref. 30.

We remark that, using Chandrasekhar’s separation method, the results in this section
extended to the axisymmetric case. Namely, for a quite general class of axisymmetric blac
geometries, including the nonextreme Kerr–Newman solution, it is proven in Ref. 33 tha
Dirac equation admits no normalizable, time-periodic solutions.
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