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Given the form of an anharmonic, modified Urey-Bradley molecular force field for AX. molecules, it is 
shown how to express the mean vibrational displacements of bond lengths from equilibrium lengths r. 
simply in terms of elementary quantities. The dominant terms isolated are due to Morse stretching 
anharmonicity, nonbonded interactions, and the centrifugal stretching of bonds encountered as the atoms 
swing over arced trajectories in bending vibrations. Illustrative calculations are presented for CH. and 
CD •. 

INTRODUCTION 

There is an increasing emphasis on the study of vi­
brationally excited molecules. For many years, par­
ticularly in the Soviet Union, 1 molecules issuing from 
high temperature nozzles have been studied by electron 
diffraction. More recently, molecules irradiated by 
infrared lasers have been investigated by a variety of 
techniques. 2 In the course of a structure study of sulfur 
hexafluoride3 we observed that the bond length increases 
markedly faster with temperature than would be expected 
according to the frequently invoked diatomic formula4 

r,.-re=(c.r) 

=3a«(c.r)2)/2. (1) 

After a little reflection it was found to be possible to 
account very well for the increase with existing infor­
mation by adopting a model anharmonic force field 
postulated two decades ago. 5,S It also turned out to be 
possible for certain AX" molecules to Simplify the treat­
ment of (c.r) considerably from the original perturba­
tion treatment5,S and to express the final results in an 
elementary form requiring only a modest amount of 
information as input. The approach is outlined in the 
following. 

THEORETICAL TREATMENT 

Molecules to which treatment applies 

Although the method of approach sketched below can 
be generalized to molecules of arbitrary complexity, 
our aim in the present paper is to derive simple, ex­
plicit formulas applicable to AXn molecules with all 
bonds equivalent and all bond angles determined by the 
symmetry of the pOint group. This restriction ex­
cludes n = 5 and 7, for example, though AX5 and AX7 
would be only somewhat more complicated. While AXs 
and molecules with higher coordination qualify, we 
shall treat only interactions between adjacent bonds and 
neglect more remote interactions. 

Model force field 

In principle, if the force field of a molecule were 
known in detail, it would be possible to carry out a 
rigorous treatment of vibrational effects as outlined by 
several authors. 5-9 In practice, cubic and higher order 
force constants are known reliably for only a handful of 

molecules. Therefore it is useful to express the force 
field in a form for which the necessary parameters are 
available in the literature, can be readily calculated by 
quantum chemical techniques, or can be guessed closely 
enough to give a reasonable result. Such a field is the 
anharmonic, modified Urey-Bradley field first proposed 
for water5 and methanes and later applied to a series of 
triatomic molecules10 and to ethane. 11 This field will 
hereafter be referred to as the KB field. Recent ab 
initio molecular orbital calculations have confirmed the 
essential correctness of the cubic constants predicted 
for methane 12,13 and ethane, 11 and spectroscopic stud­
ies10 have tested the validity in the case of the triatomic 
molecules. Systematic deficiencies have been charac­
terized10

-
13 but these do not have a serious influence on 

the results we seek herein. The KB field is simply the 
sum of a conventional Urey -Bradley field V UB expanded 
out to cubic terms, or 

+ L lH'r;(c.a,,} + tHr;(c.a IJ }2 + (i}H3r;(c.a,,)31 
1< J 

+ fu [F' qe(c.q Ii) + tF(C.q IJ}2 +(6~.) F 3(C.q IJ}3 + .. .] 
(2) 

where the symbols have their usual meaning5,S,14 and an 
additional potential function V A, described in Ref. 14, 
and included in order to make the quadratic field per­
fectly general. 15 Of the force constants over and above 
those in V UB, the most important one for hydrides has 
been found to be G, that portion of the stretch-stretch 
interaction not accounted for by the nonbonded constants 
F' and F. Accordingly, we write 

(3) 

It is assumed that cubic terms in V A will be smaller 
than those in VUB' An exception to this is briefly dis­
cussed in the last section. 

Values of force constants 

Linear force constants K', H', and F' are interrelated 
by the equilibrium conditions. Bending anharmonicity 
as expressed in constant Ha is small and neglected in the 
following. We shall also neglect H' and the related 
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"intramolecular tension" parameter found in a previous 
study6 to make trivial contributions to (6.r). Morse 
bond stretching anharmonicity is embodied in the Morse 
parameter a in Eq. (2). It is usually approximately 
2 A-I, and more accurate values for common bonds can 
be found in tabulations by Herschbach and Laurie. 16 The 
most poorly characterized force constants, and the most 
controversial, are the nonbonded constants F', F, and 
Fa. Nevertheless, results to date l1

•
la indicate that it is 

better to include them than exclude them. Moreover, 
there are several ways they can be estimated. First, 
a reasonable value for F can be estimated by a Urey­
Bradley analysis of vibrational frequencies or, better, 
from stretch-bend interaction constants (see Ref. 14) 
if they are available from a more complete analysis. 
In order of magnitude, it is expected that F"" -10F' 
"" - O. 1F3 if the nonbonded potential falls as Aq-n with n 
in the range of 9 to 12. Therefore, a measure of F 
serves as a measure of F' and Fa, also. A number of 
nonbonded potential functions, some better than others, 
have been constructed from empirical data. Deriva-

Uves of these functions yield F'q, F, and F3/q directly. 
Lastly, ab initio quantum calculations of nonbonded 
functions are becoming available. 

Calculation of mean displacement 

From Ehrenfest's theorem17 for the motion of wave 
packets it can be deduced that the space average poten­
tial energy derivative vanishes, 

(4) 

for stationary states or equilibrium distributions among 
stationary states, 18 where Z f is a Cartesian displace­
ment coordinate of any particle in the system. For the 
present problem we adopt the conventional notation with 
6.x f and 6.Yf representing the Cartesian displacement 
coordinates of atom i perpendicular to and 6.z I the dis­
placement along the bond axis as illustrated in Ref. 5. 
Then letting V = VUB + VAl designating the number of 
bonds in AXn adjacent to AXf as m, and carrying out 
the differentiation of Eq. (4), we find 

K'r. (ar,! az f ) + K(6.r, ar,!az f ) - maK( (6.r f )2 arf/ az f ) + mHr; (6.a ,j aa f ) az f ) + mF' q. (aqf) az , ) 

+ mF(6.qfJaqfj/azf) + m(F3/2q.) «(6.qfJ)2 aq/J/az f ) + mG(6.rjar,jazf) + ... = 0, (5) 

disregarding the minor H' and H3 terms. Making use of 
the zf dependence of r" rjo a f }, and qfj given explicit­
ly in Eqs. (14)-(19) of Ref. 5, and noting that (6.q> 
= 2s(6.r) - oxx where s == sin(a fJ/2) and oxx = 2sKAJ( 
-Kxx is the "shrinkage" of the nonbonded distance for 
which l9 

we obtain 

(K'r. + msF' q.) + (K + 2ms 2F + mG)( 6.r >v 

- (3aK/2) «(6.yj2 > - (mH/2re) «(r.6.a)2 > 

- ms(F'Kn: + Forr ) + (mFa!4r.) «(6.q)2) = 0 . 

Note that the term in the first parentheses vanishes 

(6) 

(7) 

by the condition for equilibrium of the minimum poten­
tial energy structure and that (K + 2ms 2F + mG) is the 
force constant /11 for the totally symmetric stretching 
mode of Ax". Equation (7) relates the mean A-X bond 
stretching (6.r)v to mean-square amplitudes of vibra­
tions arising, at low temperatures, from zero-point 
vibrations and increaSing, at high temperatures, with 
thermal excitation. Zeroth-order mean-square ampli­
tudes for the molecule vibrating in a quadratic force 
field can be calculated directly from normal coordinate 
theory. 19 It is shown in Ref. 18 that, at least for Morse 
stretching, the use of zeroth-order mean-square ampli­
tudes in place of the corrected mean-square amplitudes 
calculated for the anharmonic force field compensates 
quite well for the other error of truncating the potential 
energy function beyond cubic terms. 

To the (6.r)v arising from anharmonic vibration should 
be added the centrifugal stretch, 6.ro due to rotation. 
Solving Eq. (7) for (6.r)v and adding the rotational 
stretch, we arrive at 

(8) 

with the following simple physical components. Cen­
trifugal stretching is easily shown for Ax" to be 

(9) 

where E:~tE. is kT or 3kT/2 for linear or nonlinear mol­
ecules, respectively. Morse anharmonic stretching is 

(10) 

or just the diatomic expression of Eq. (1) mOdified by 
the factor (K//11 ) whose value is near unity. Stretching 
due to the enhancement of non bonded repulsions as 
atoms vibrate and become effectively larger is given by 

(11) 

Recall that Fa < O. Then, to put the remaining terms 
into perspective we add to H in Eq. (7) the quantity 
(- s2F' + c2F), where c = cos(a/2), in order to bring the 
Urey-Bradley bending force constant H up to the va­
lence bending force constant/",. We then subtract the 
same correction from the next term in Eq. (7) so that 
there is no net change in (6.r). The resulting contribu­
tions to (6.r) become, then, 

6. b = 6. bH + 6. bUB 

= m(H -s2F' + c2F) «(r.6.a)2)/2f11r. (12) 

and 

= ms(F' Kxx + FO xx )//l1 

- m( - s2F' + c2F) «(re6.a)2 }/2f11r. , (13) 

where the last term 6.", of minor importance, arises 
from various crossterms and nonlinearities in the trans-
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TABLE 1. Contributions to (&-). in 'A. for methane in its ground vibrational state according to 
the KB field. a See text for definitions. 

Ab 

Molecule A". A"b Eq. (12) Eq. (17) 

CH4 0.0151 0.0049 0.0028 0.0028 

CD4 0.0109 0.0034 5 0.0021 0.0021 

aReference 6. 

formations between nonbonded distances and internal 
coordinates. More substantial is Ab, a term most easi­
ly interpreted as a centrifugal stretching of bonds as the 
peripheral atoms X travel over their arced trajectories 
in bending vibrations (see Ref. 18). It is possible to 
simplify Ab with little loss in accuracy in the cases in­
vestigated to date. If coordinates are transformed from 
internal to rectilinear symmetry coordinates (see Ref. 
8 for notation and details), the bending term becomes, 
very nearly, 

Ab Ri - (2n1''il1r1 L: fill (S~> 
Iobelld 

where the bend-bend-stretch cubic constant is 
I 

fif! = LVr,T;' + frIT:l) , 
r 

(14) 

(15) 

in which only quadratic force constants occur, and in 
which SI is the totally symmetriC stretch coordinate. 
This term arises because of the nonlinear transforma­
tion 

Sk=Sk + t L:L: T:JS,SJ+'" (16) 
, J 

between curvilinear Sk and rectilinear Sk coordinates. 
Because of the simple form of the stretch-bend ele­
ments of the transformation tensor T, Eq. (14) reduces 
to 

(17) 

where fH(S~) represents twice the mean potential energy 
associated with the pure bend i. For a simple harmonic 
oscillator, with (T) = (V), twice the potential energy is 
the total energy of the oscillator, or (hll,/2) coth(hll,/ 
2kT) on the average, at temperature T. If we neglect 
coupling of modes and make the aforementioned identi­
fication, Eq. (17) becomes 

Ab '" (nfl1r ,,)"1 L (hll,/2) COth(hll,/2kT) 
'-bend 

= (E~:d)/nfl1re = 2(~:n~')/nfl1re . (18) 

Note the similarity between the form of the bending cen­
trifugal contribution of Eq. (18) and the rotational cen­
trifugal contribution of Eq. (9). Note, also, that Anb 

increases in proportion to the number of adjacent bonds. 
Accordingly, this term is much larger in SFs, say, than 
in triatomic molecules. 

Numerical illustrations of the various contributions 
to (Ar) are given in the next section. 

Eq. (18) ~ A,.b 

0.0027 0.0001 0.0005 

0.0020 0.0001 0.0005 

bAt 298 K. 

DISCUSSION 

In the foregoing we have presented an elementary pro­
cedure for calculating the anharmonic stretching in Ax" 
molecules. It is essentially equivalent to but enormous­
ly less laborious than the perturbation approach applied 
previously. For illustrative purposes we present in 
Table I numerical values for the contributions to the vi­
brational bond lengthening in CH4 and CD" among other 
things comparing values of Ab calculated from the three 
different equations offered above. For sake of ease of 
comparison, we adopt the potential constants for meth­
ane proposed in Ref. 6 and also adopt the perturbed 
rather than zeroth-order values of «Ar)2) and «Aq)2). 
All the necessary ingredients have been tabulated in 
Ref. 6. More modern estimates change little except for 
the nonbonded cubic constant F 3; this constant is almost 
halved in the quite successful MUB-2 field. 2o The net 
sums of terms for (Ar) in Table I for CH, and CD, are 
slightly larger than the net values obtained in the origi­
nal perturbation calculations, 6 principally because the 
first-order perturbation treatment renormalized the 
first-order wave function via a factor AO which has since 
been found to worsen results. When that factor is 
eliminated the perturbation results agree with the pres­
ent results to within a few ten thousandths of an angstrom 
unit. 

As a word of caution it should be mentioned that the 
good agreement between the Ab values of Eqs. (12), 
(17), and (18) shown in Table I may not always .be. found 
in other cases. One other case, carbon dioxide, was 
studied in detail and, since it has no other modes' cor­
responding to the symmetry of the bend, Eqs. (12), 
(17), and (18) are in agreement. On the other haRd, 
however, CO2 is a special case whose 1T-bond overlap 
is diminished, weakening the C=O bond, as the O=C=O 
angle is bent. This shows up as an additional bend­
bend-stretch cubic term 21 comparable to that of Eq. 
(15). Such a term has not been modeled into the KB 
field. This defiCiency leads to an underestimation of 
(Ar) for CO2 by about 10%. If known, however, such 
a term can be easily treated via an equation analogous 
to Eq. (14).8 

The greatest virtue of the present treatment is that it 
permits an easy estimate-and an excellent estimate if 
the actual force field is well modeled by the KB field 
with available parameters-of the effect of molecular 
excitation upon bond length. Alternatively, it permits 
an estimation of the correction from an experimental 
mean bond length, r l , to the equilibrium length, re' 
Complexities customarily associated with perturbed 
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normal coordinate treatments vanish in the transfor­
mations employed and only the standard results of nor­
mal coordinate calculations, such as those routinely 
furnished by R. L. Hilderbrandt's program MSA V, are 
needed. 22 Results have been found to account quantita­
tively for the structure of very hot sulfur hexafluoride, 
as described in the following paper. 3 
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