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Expansion Theorem for the Linearized Fokker-Planck Equation 
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The linearized Fokker-Planck kinetic equation for each component of a homogeneous, nondegenerate, 
fully ionized plasma is separated by means of a spherical harmonic expansion into an infinite set of 
singular integro-differential equations. Each equation is shown to generate a continuous set of eigen­
functions, for which asymptotic high-speed forms are found. By extending the theory of singular differ­
ential equations an expansion formula is developed, which is shown to be complete with respect to 
functions square integrable in velocity space. 

INTRODUCTION 

THE Fokker-Planck kinetic equation may be used 
to describe the temporal behavior of a homogene­

ous, nondegenerate, fully ionized plasma.1- 3 The 
Fokker-Planck equation has been derived by several 
authors (see e.g., the discussion in Robinson and 
Bernstein3), starting with various levels of sophisti­
cation in kinetic theory. Whatever the starting point, 
the results are essentially the same. 2•3 For our pur­
poses, it is convenient to write the Fokker-Planck 
equation in the form2,3 

Here Fa(v, t) d3v is the expected number of particles of 
kind a in the velocity space volume element d3v about 
vat time t, 

where r ab is a positive constant, g = v - v', and I is 
the unit dyadic. We denote by F; the function Flv', t). 

It is not difficult to show2 that aFalal = 0 if and 
only if Fa and Fb are the equilibrium, or Maxwell, 
distributions Fao , FbO ' In the vicinity of equilibrium 
we may write Fj = Fjo[l + h(v, I)]. Neglecting terms 
quadratic in h we then obtain from (1) the linear 
equation 

F af" = ~ ~ .fd3V'F' F (Of a _ ma Of~) • Q . 
aO ° £., ° bO aO ° ::l , ab t b V V mb uV 

(2) 

• Present address: The Battelle Development Corporation, 
Columbus, Ohio. 

1 M. Rosenbluth, W. M. MacDonald and D. L. Judd, Phys. Rev. 
107, I (1957). 

2 D. C. Montgomery and D. A. Tidman, Plasma Kinetic Theory 
(McGraw-Hill Book Company, Inc., New York, 1964), Chaps. 2 
and 3. 

3 B. B. Robinson and 1. B. Bernstein, Ann. Phys. (N.Y.) 18, 110 
(1962). 

We refer to the quantity Fjoh as the perturbation from 
equilibrium, 

Equation (2) as it stands is in fact a pair of coupled 
equations for fa and fb' Due to the quite small value 
of the electron-ion mass ratio, the equations however 
are only very weakly coupled. Thus, for example, the 
effect of the ion perturbation on the electron pertur­
bation is small when compared with the effect of the 
ions and electrons in the unperturbed equilibrium 
distributions. 

In the following we consider the equation for the 
ions. The treatment of the electron equation is quite 
similar, and the modifications necessary for this case 
are indicated later (Sec. V). In the approximation 
mi» me it can be shown3 that the ions act like a single 
component gas. In this case Eq. (2) becomes, for the 
IOns, 

F ofi = ~ .fdVF' F. (OJ; _ Of:) • Q ... (3) 
,0 at ov ,0 ,0 ov av' " 

Our purpose here is to develop an expansion 
theorem based on (3). We follow the standard method 
of assuming solutions to (3) of the form fey, I) = 
giv) exp (-At). This reduces (3) to the form 
L(v)g;.(v) = -Ag;.(V), where L is a three-dimensional 
integro-differential operator. In Sec. I we show that 
(3) requires Re A> 0 and 1m A = 0 as we would 
expect physically. In Sec. II, we introduce a spherical 
harmonic expansion which replaces the three-dimen­
sional equation by an infinite set of uncoupled equa­
tions, L1mg1m = -A1mg1m , where L1m(v) is a singular 
integro-differential operator. These are cast into a 
self-adjoint form in Sec. III by introducing a suitable 
algebraic transformation on the functions glm(V, AIm). 
With boundary conditions obtained by combining (3) 
with the conservation laws, we proceed to find the 
eigenvalue spectrum which is continuous and for 
I = 0, 1 consists of all A ~ 0 and for I ~ 2 consists 
of all A > O. 
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The expansion theorem is developed in Sec. IV. 
(Although the spectral resolution theorem implies the 
existence of an expansion theorem for self-adjoint 
operators, there remains the nontrivial task of con­
structing the expansion explicitly.) Since LIm is 
singular at v = 0 and v ~ 00, we temporarily replace 
the interval 0 ~ v < 00 by the interval 0 < VI ~ 
V ~ V2 < 00 and show that LIm generates a complete 
orthonormal set on this interval. To return to the 
original interval and thus obtain the desired expansion 
theorem, we use the above completeness property 
together with an extension of the theory of singular 
differential equations. This finally yields a set of 
functions {'¥lm(V, AIm)} that is complete with respect 
to functions square integrable in velocity space. Since 
the spectrum is continuous, the expansion has the 
form of a generalized Fourier integral. For v» 
(3kT/m;)! we have found asymptotic forms of the 
expansion functioris. 

I. PROPERTIES OF THE KINETIC EQUATION 

For convenience we drop the s'ubscript "i" from 
FOi and /;. Iff satisfies the conditions 

lim vf = 0, lim Fo of = 0, (4) 
v-+O v-+oo av 

it is possible to show that the linear kinetic equation 
(3) conserves number, momentum, and kinetic energy 
densities. 

Introducingf(v, t) = g;.(v) exp (-At) in (3), we find 

-AF g = ~ .Jd3V'F F' (Og .. _ Ogl) . Q. (5) 
0.. ov 0 0 OV OV' 

Multiplying (5) by gr, where * denotes complex 
conjugate, and then integrating over v we have, after 
integrating by parts, 

A J d3VFO Ig .. 12 = J d3
v o:! J dVFoF~(Oo~" - ~~~) . Q 

-Jd3V ~. g1JdVFoF~(Og .. - Ogl) . Q. (6) 
OV OV OV' 

The second term on the right in (6) vanishes provided 
g .. satisfies the second of conditions (4) and 

lim v!g;.(v) = O. 
v-+o (7) 

Assuming these conditions hold, we exchange v and 
Vi in (6), noting that Q(v, Vi) = Q(V', v). We add the 
result to (6), obtaining 

2A J d3VFO Ig .. 12 

=fJd3V dVFoF~(og1 _ Og~*) • Q. (Og .. _ Og~). 
OV ov' OV ov' 

(8) 

Since Q is a positive quadratic form, it follows that 
the right side of (8) is positive or zero. Hence Re A ;;;:: 0, 
and clearly 1m A = O. 

Employing standard methods4 we can find from 
(8) the most general form of g .. when A = 0; 

go(v) = a1v2 + a2 • v + a3' 

with aI' a2 , and a3 arbitrary constants. 

(9) 

ll. EXPANSION IN SPHERICAL HARMONICS 

From (5) we have 

-AFog .. = .E..-. (Fo og ... JdVF~Q) 
OV OV 

- ~. (F JdVF I ogl. Q). (5) 
OV 0 0 ov' 

To perform a parts integration on the second term, 
consider the quantity 

..£.. . (F~gl Q) = F~gl..£.. . Q 
ov' ov' 

+ F' og~ • Q + I oF~ . Q. (10) 
o ov' g .. ov' 

With Fo = NoCrx;/rr)f exp (-lXiV2), IX; = m;/2kT, we 
have OF~/OV' = -21X/ F~. Also Vi. Q = V· Q, so 
(10) gives 

J
dVE' ogl. Q =JdV..£... (F'glQ) 

o ov' ov' 0 

-Jd3
V'Fl g l ~. Q + 2 ~ .Jd3V'Fl gI Q (11) 

o .. ov' ov 0..' 

The first term on the right in (11) vanishes if g .. 
satisfies (4). Using the relations 

Q = r ii O~2~V' O~,· Q = -2rii :v(;) , 
and introducing a dimensionless time T and dimen­
sionless velocity c in (3), 

T( = Ti ) = 4rrN Orii(lX;/rr)!t, c = IXlv, 

the kinetic equation takes the form 

• Reference 2, p. 85. 

(12) 
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The time T is measured in units of the "Spitzer self­
collision time,"5 and C = Icl is in units of the rms 
thermal speed. 

Equation (12), in three dimensions, may be replaced 
by a set of uncoupled equations in one dimension by 
introducing the spherical harmonic expansion 

00 I 

g).(c) =! ! glm(C, Alm)Y;"(O, c/». 
1=0 m=-l 

We find (see Appendix A) 

fd3c'e- C"g' Ic - c'1-1 = "" ~ ymR 
A 1;;'21 + 1 11m' 

(13) 

d c'e-c g' Ic - c'l = --- ymS f 3 " ! 47T 

A l.m412 -1 11m' 
(14) 

f d3e'e-c"lc - c'l = 47TT, (15) 

where 

with 

erf(e) == 27T-t foCdX exp (_X2
). 

The expressions for Rim and Slm were found by 
Rosenbluth et al., l using a different method, for the 
axially symmetric case m = O. 

Combining (12)-(15) we find 

=! -. e-c 
- (Yl glm)'--o ( • 0 m 02T) 

l.m OC OC ococ 

"" _2_ ~. (e-c' ~ (ymR )) 
- t;;' 21 + 1 oc OC I 1m 

2 0 (-c' 0
2 

m ) -1~412 _ 1 oc· ce . OCOC (Yl Slm) . (16) 

Since T(e) is isotropic we can write 

02T/ococ = ececT" + (I - ecec)c-1T', 

where primes now denote total differentiation with 
respect to e. Performing the indicated angular differ­
entiations in (16) and then employing the orthogonality 

5 L. Spitzer, Jr., Physics of Fully Ionized Gases (Interscience 
Publishers, Inc., New York, 1962), 2nd ed., pp. 132-136. 

property of the spherical harmonics, we obtain the 
"radial" equation 

-A = T" d
2
g

1m + [Tiff + (~- 2 ) T"] lmglm d 2 e 
e c 

dg lm 1(1 + 1) T' 
x -d - 3 glm 

e C 

- _2_ [R" + (~_ 2C)R' - 1(1 + 1) R ] 
21 + 1 1m e 1m e2 1m 

__ 2_ (CS Iff + (3 _ 2e2)S" 
412 _ 1 1m 1m 

_ 1(1 + 1) (S' _ S )) 
2 e 1m 1m' 

e 
(17) 

The index m is clearly superfluous and is deleted in 
the following. Performing the primed differentiations 
in (17) we find 

( 
! 1 )d2 

• 7T ~ ~ -AlgI = -erf(e) - -e- -
4e3 2e2 de2 

+ [(_1 + ~)e-c' _ (1. + ~)7T! erf (e)] dg l 

2e3 e e4 e2 4 de 

+ e - -'----'-[2 -c' t(l + 1) 

e3 

X <4
1
e e-

c
' + (1 - 2~2) :* erf(e) ]gl 

+ de'e c g (e') 4c
3
(1 + 1)(1 + 2)1C _ ,.(e')1+4 

(21 + 1)(21 + 3) 0 -;; I 

_ ~(1 + e2
1(l- 0) 

21 + 1 21 - 1 

(C " (e')1+2 
X Jo de'e- c 

-;; glee') 

_ 4e
3
1(l - 1) (00 dc' e-c" (~)1-3 (e') 

412 - 1 Jc e' gl 

_ ~(1 _ e\l + 1)(1 + 2)) 
21 + 1 21 + 3 

(00 ,.(e)l-l 
X Jc de'e- c ~ glee'). (18) 

For boundary conditions we use conditions (4), 
which were obtained from the conservation laws. 
Although (7) is stronger than the first of conditions 
(4), we see below that the solutions of (18) which 
satisfy (4) also satisfy (7). 

III. THE SPECTRUM 

If we introduce the transformation 

g/(e, AI) = e-l eC
'/

2tpl(e, AI), (19) 
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we obtain from (18) the formally self-adjoint equation 

~(p d"P!) + (Q! + A!)"P! + roo dc' K!(c, c')"P!(c') = 0, 
dc dc Jo 

(20) 
with 

7T! 1· 
P(c) = - erf(c) - - e-c 

, 
4c3 2c2 

Q (c) = (1_ !)7T! erf(c) + (2 _1.. _ !)e-c' 
! CO c 4 2 2c4 c2 

_1(1 + 1)["!'e-c" + (l_--L)7Tl
erf (c)], 

c3 4c 2c2 4 

K(c c') = _4_ e-!(c'+c .• )[(1 + 1)(1 + 2)(C3
) 

!, 21 + 1 21 + 3 C'3 

_ (C) _ 1(1 + 1) (CC'2)] [(CjC'Y](C s c'). 
c' 21 - 1 c'c2 (c'jcY (c' s c) 

Transforming (4) via (19), we have 

I· -c'/2 d"Pl 0 Ime - = , 
C"'oo dc 

lim "PI = O. 
C-+o 

(21) 

(22) 

We later show (Appendix B) that the problem (20)­
(22) is self-adjoint. 

The spectrum of (20) is that set of numbers {AI} 
such that (20) has nontrivial solutions which satisfy 
(21) and (22). In view of the self-adjoint property the 
Al are real. We have already seen that A! must be 
positive for I ~ 2, and positive or zero for / = 0, 1. 

We can find the spectrum of (20) by first considering 
the related problem 

(djdc)[P(dyddc)] + (Ql + AI)y! = 0 (23) 

with conditions on the functions Ylc) identical to 
(21) and (22). Clearly P, dPjdc, and Ql are bounded 
and continuous for all finite e except possibly near 
e = O. For e« 1 we have 

Pee) = 1 - i-e2 + O(c4
), 

QzCc) = V + O(e2
) - 1(1 + 1) (~ - ..!. + O(C2»). 

3c 15 
In general we can write 

Pee) = --L rCdx(e-x ' _ e-c") 

2c3 Jo 
and thus Pee) > 0 for all e < 00. It follows that for 
I :;i: 0, (23) has a regular singular point at e = O. 

For e small, (23) has the asymptotic solutions 

Yl(e) f"OoJ cHI, e- I (e« 1). (24) 

The first of these satisfies (22) for alii. It also satisfies 

the stronger condition obtained from (7), 

lim (e -4- O)e-!Yl(e) = O. 

The second solution satisfies neither condition. This 
is clear for I :;i: O. For I = 0, the second solution is 
a constant which cannot be zero since the solutions 
(24) are linearly independent. 

For e sufficiently large and for Al :;i: 0, (23) takes 
the asymptotic form 

d
2
Yl _ ~ dYI + 4AI~3 YI = 0 (c large, Al :;i: 0). 

de2 e de 7T~ 

We find (AI> 0) 

Yl(e) ~ Ale! cos (vle i - Yl), (25) 

with VI == 4AtJ57T1. 
Given I and AI' Eq. (23) has only one solution 

which satisfies the condition at e = O. This solution 
thus contains only one arbitrary constant and it follows 
that Al and YI in (25) are not independent. Whatever 
the relation between Al and Al is, (25) satisfies (21) 
for all positive YI. Hence the spectrum of (20) contains 
all positive AI. 

To determine the spectrum of the problem in 
Eqs. (20)-(22), we first note that the solutions of the 
problem in Eqs. (21)-(23) do not exist in Hilbert 
space; hence we must introduce a transformation 
in order to apply a Hilbert space theorem. We 
recognize the symmetric differential and integral 
operators in (20) as, respectively, closed and com­
pletely continuous operators. It is possible to introduce 
an algebraic transformation on (20) such that the 
respective closed and completely continuous pro­
perties are retained, while the solutions of the trans­
formed problem in Eqs (21)-(23) now do exist in 
Hilbert space. Since the transformation has destroyed 
the symmetry of the problem, we employ a recent 
extension6 of Weyl's perturbation theorem which 
applies to asymmetric linear operators. This extension 
states that6 the addition of a completely continuous 
operator to a closed operator does not change the 
limit points of the spectrum of the closed operator. 
With our knowledge of the spectral properties of 
Eqs. (21)-(23) and in view of the symmetry ofEq. (20), 
it now follows that the spectrum of each 1- component 
of the linearized Fokker-Planck equation contains all 
positive real AI'; we showed earlier that the spectrum 
is empty for Al < O. 

For I = 0 and 1 = 1 we found, respectively, two­
fold and three-fold degenerate zero eigenvalues, cor­
responding to a shift to an equilibrium different from 

• I. M. Glazman, Direct Methods of Qualitative Spectral Analysis 
of Singular Differential Operators (Daniel Davey & Co., New York, 
1966). 
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that originally postulated. For 1 ~ 2 the eigenvalues 
are positive and real and are (21 + I)-fold degenerate, 
corresponding to the 21 + I different spherical 
harmonics of order I. 

IV. THE EXPANSION THEOREM 

With the spectral properties of the kinetic equation 
in hand, we can now proceed to the development of an 
expansion theorem based on (20). Our method is 
essentially an extension of the theory of singular 
ordinary differential equations, based on a theory 
due to Weyl and Levinson,7 to include singular 
integro-differential equations with Hilbert-Schmidt 
kernels. 

Since the eigenfunctions of the kinetic equation 
are bounded and continuous on every finite interval, 
it is natural to pursue an expansion formula for 
functions u(c) square integrable on the interval 
~: 0 ~ c < 00. As with the earlier theory we first 
establish an expansion formula on a finite subinterval 
b of ~, b: a ~ c ~ b, 0 < a, b < 00, so that the 
singularities of the linear operator are external to b. 
The expansion formula we seek is then obtained by 
taking b ---+ ~ in a suitable manner. In the following 
we mean by Lt. the integro-differential operator in 
(20) and by L~ the operator obtained when the lower 
and upper limits of the integral in (20) are replaced 
by a and b, respectively. In the following, the index 1 
is retained only where it is necessary to avoid 
confusion. 

We have already seen that P, P', and Qz are con­
tinuous on b, and that Kz(c, c') is bounded and 
integrable on the square a ~ c ~ b, a ~ c' ~ b. 
Tamarkin8 has shown that, subject to these conditions, 
the solutions of LocP = - AcP which satisfy homo­
geneous boundary conditions at c = a and c = b 
form a complete orthogonal and normalizable set of 
eigenfunctions (han) on b, with an associated denumer­
able sequence of real eigenvalues (Aon). Assuming the 
hon to be normalized, the expansion formula on b is 
thus 

(26) 

where u(c) is any function square integrable on b. 
We now use the Weyl-Levinson theory to take 

b ---+~. Since the subsequent development of the 
expansion theorem is in every respect a duplication 
of the earlier theory, we display only the salient 
features. 

7 E. A. Coddington and N. Levinson, Theory of Ordinary 
Differential Equations (McGraw-Hili Book Company, Inc., New 
York, 1955), Chap. 9. 

8 J. D. Tamarkin, Trans. Am. Math. Soc. 29,755 (1927). 

Given A, the most general solution of LocP = - AcP 
is a linear combination of the two linearly independent 
solutions, say cP1' cP2' Thus, we can write 

h~n(c, Aon) = ron1cP1(c, Aon) + ron2cPic, Aon), (27) 

where r~n1 and rOn2 are complex constants. With (27), 
(26) becomes 

00 2 fb 
u(c) = ~o j,~/onjr:nkcPj a dcu(c)cP:· (28) 

Following Levinson7 we define an Hermitian, 
positive semidefinite matrix Po, called the spectral 
matrix, with elements Pojk which consist of step 
functions with jumps at the eigenvalues Aon given by 

POjk()"~n + 0) - P~jk(),~n - 0) = r~njr:nk' 
Let p{,(A + 0) = p~(A), and let Po(O) be the zero 
matrix. We use the spectral matrix to replace the 
infinite series in (28) by a Lebesgue-Stieltjes integral 

(29) 

where 

ilk = fdCU(C)cP:(C, A). 

As b ---+ ~ (that is, a ---+ 0, b ---+ 00), Po approaches a 
limit matrix Pt.. To find Pt., let), = ft + iw, w > 0, 
and let Xa = cP1 + mi)')cP2 be a solution of L~cP = -AcP 
satisfying the homogeneous boundary condition 

cos IXx(a) + sin IXP(a)x'(a) = 0, 

and similarly let Xb = cP1 + mb(A)cP2 be a solution of 
the same equation satisfying 

cos {3X(b) + sin {3P(b)X'(b) = O. 

Clearly ma = r~n2(a)/ron1(a) and similarly for mb. As 
a ---+ 0 and b ---+ 00, ma and mb approach limiting 
values in the complex m plane denoted, respectively, 
by mo(A) and mooOl). These limiting values are clearly 
determined by the behavior of cP1 and cP2 for small 
and large c, for A complex. 

For cP1 and cP2 to be linearly independent, it is 
necessary and sufficient that their Wronskian equal 
a nonzero constant, say one; 

(30) 

This last is satisfied if cP1 and cP2 satisfy the conditions 

cP1(S, A) = sin a, cP2(S, A) = cos a, 

P(s)cP~(s, ),) = -cos a, P(s)cP~(s,),) = sin a, 

where s is an interior point of band 0 ~ a < 7T. 

These conditions are also sufficient to ensure that 
cP1' cP2 are entire functions of A for each fixed c on b 
(this follows from Tamarkin8). 
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With these properties secured, we can find7 the 
limit values mo and moo and hence the limit matrix 
P <1, whose elements are given by 

PMiA) - PMi'TJ) = lim! lJ.lm M ik(", + iw) d"" 
"' .... +07T q 

where 

M (') - M (') _ ! mo + moo 
12 1\ - 21 1\ - 2 ' 

M 22(A) = momoo 
mo - moo 

mo - moo 

(31) 

To find the Mik we need asymptotic forms of CP1 
and CP2 for large and small c. These are given by (24) 
and (25), as may be verified by direct substitution. 
Taking CP1' CP2 to be asymptotic, respectively, to c-l, 
CH1 for c small, we apply the homogeneous boundary 
condition to Xa and then take a ---+ 0 to find 

(l =;r!: 0), 

mo = -cot oc (l = 0). (32) 

Thus for I ::;I: 0 only M22 can have a nonzero imaginary 
part and, consequently, only CP2 contributes to the 
expansion formula (29). When I = 0 both solutions 
are regular at c = 0 and the limit matrix is not deter­
mined until we specify oc. The boundary condition 
(22) dictates the choice oc = O. 

For c large we take 

CP2 ,-...J Alc! cos (VlCi - Yl) (VI = 4Ar/57Tt, Al > 0) 

and find CP1 by integrating (30); 

-I. ,-...J _ 8c! sin [Vl(C! - c~)] 
'1'1- t i' 

57T Alvl cos (VlCO - Yl) 

where Co is a constant of integration. Applying the 
homogeneous boundary condition to Xb == CP1 + 
mb(A)CP2 and then taking b ---+ 00 with 1m A > 0 we find 

8i exp [i(vlc! - Yl)] 
moo = t 2 i . (33) 

57T Alvl cos (vICO - Yl) 

Combining (31)-(33) we have finally 

2 dA 
dp(Al) == dP<122(Al) = i t (AI > 0). (34) 

7T A~(;"l);"l 

Since the spectrum is empty for Al < 0, peAl) is con­
stant on this range. The expansion formula (29) 
becomes 

with 

The expansion converges in the mean for all functions 
u(c) square integrable on (0, 00). If the spectral func­
tion P is not continuous at A, = 0, this point will 
contribute to the integral in (35). 

We return to the description of perturbations from 
equilibrium. If exp (-c2)f(c, 0) is square integrable 
in velocity space, then from (19) and (35) we have 

(36) 

with 

and 

'F'1"'(C, AI) = c-1e-C'/2'P,(c, Al)Y;"(O, cp). 

The functions 'PI correspond to CP2 in (35) and are the 
solutions of (20) satisfying (22). 

We have defined the density, mean velocity, and 
kinetic temperature of the ion gas as being propor­
tional respectively to the first three moments of the 
equilibrium distribution Fo. If P is continuous at 
A, = 0 this point does not contribute to the expansion 
formula (36) and the eigenfunctions (9) for A, = 0 are 
not contained in the expansion. By virtue of the 
conservation laws, the functions (9) are then orthogonal 
to (36). Thus (36) is complete only if P has a jump at 
A, = 0 for I = 0, 1. It follows that the exclusion of 
(9) from (36) yields an expansion which is complete 
with respect to all square integrable perturbations 
conserving No, (v), and kT. 

V. THE; ELECTRON KINETIC EQUATION 

We have developed an expansion theorem based on 
the uncoupled kinetic equation (3) for the ions. The 
extension to the electron kinetic equation is straight­
forward and requires only a little algebra. 

As indicated earlier, we decouple the electron 
kinetic equation from the ion equation by dropping 
the term (me/mi)of//ov' in (2). This amounts to 
neglecting the effect of the ion perturbation on the 
electron perturbation, but retains the effects of 
encounters with ions in the thermal distribution. 

The uncoupled equation conserves electron number 
density provided (4) holds, but does not conserve 
momentum or kinetic energy in the electron gas. This 
is as it should be, since a substantial portion of the 
electron momentum, and a small amount of the 
energy, is lost to the ions. 
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Applying the methods of Sec. I we find as before 
Re A ~ 0, 1m A = 0, and forA = ° we find go = const, 
corresponding to (9). The remainder of the develop­
ment proceeds as before. A spherical harmonic 
expansion yields a set of singular integro-differential 
equations, and the transformation (19) brings these 
into self-adjoint form. As before, the expansion 
formula has the form of a Riemann-Stieltjes, or 
generalized Fourier, integral. 

If, for example, the ions are protons, then we can 
take r ee = r e;' If we use exe in place of exi in the defi­
nition of T and e, then the electron equations may be 
obtained from the ion equations by replacing T(e) in 
(15) by T(e) + ex!T(ex-!e), where ex == exelex; = melmi • 

VI. DISCUSSION 

We have used boundary conditions obtained by 
requiring the solutions of the kinetic equation to be 
consistent with the conservation laws. The Hilbert 
space then 'em~rged as a natural function space for 
the framework of the mathematical development. 
The question persists (see, e.g., the discussion in 
Uhlenbeck and Ford9) as to whether square integra­
bility should be a requirement on the distribution 
functions from the beginning. In the light ofthe present 
work, this condition does not appear to be necessary, 
and for our purposes, it would not have been sufficient. 
To see this we note the condition f d3v lFofl 2 < 00 

leads to 

(37) 

which is weaker than the corresponding condition (4). 
Since both solutions of (20) satisfy (37) for I = 0, it 
would be possible to have an expansion theorem for 
solutions of the kinetic equation which are square 
integrable but do not satisfy the conservation laws. 

ACKNOWLEDGMENTS 

The author is indebted to Professor R. K. Osborn, 
Professor C. L. Dolph, and Professor F. C. Shure for 
many helpful discussions during the course of this 
work, which represents part of a Ph.D. dissertation 
submitted to the university of Michigan (1966). 

This research was supported in part by the United 
States Atomic Energy Commission and by the Ad­
vanced Research Projects Agency, Project Defender, 
ARPA Order No. 675, was monitored by the United 
States Army Research Office (Durham) under Con­
tract DA-3l-l24-ARO-D-403. 

9 G. E. Uhlenbeck and G. W. Ford, Lectures in Statistical 
Mechanics (American Mathematical Society, Providence, Rhode 
Island, 1963), p. 88. 

APPENDIX A. INTEGRALS 

Let 0 be the angle between e and e', From the 
generating function relation for Legendre polynomials, 
we have 

Ie - e'I-1 = (e2 + e,2 - 2ee' cos 0)-! 

= e-1! (£)lptCcos 0) (e':::;; c), (Al) 
1=0 e 

and similarly for e :::;; e'. Writing 

g;.(e) = L glm Y ;" 

and employing the addition theorem for Legendre 
polynomials, we obtain Eq. (13). 

To find Eq. (14) we use the relation 

(1 + x 2 
- 2xy)! = f dxx(1 + x 2 

- 2xy)-! 

- y f dx(1 + x 2 
- 2xy)-!. (A2) 

Combining (AI) and (A2) we have 

Ie - e'l = (e2 + e,2 - 2ee' cos 0)! 

= e-1 L - cos 0 PI(COS 0) 
00 (e'/e)I+2 (e'/e)!+l ) 

1=0 1+2 1 + 1 

(e' :::;; c), (A3) 

and similarly for e :::;; e'. From the pure recurrence 
relation for Legendre polynomials, we have 

I 
cos 0Pz{cos 0) = -- PI_tCcos 0) 

21 + 1 

+ ~ PHicos 0). (A4) 
21 + 1 

Combining (A3) and (A4) and then using the addition 
theorem as before we find Eq. (14). 

Finally, Eq. (15) is obtained from Eq. (14) with 
glm = blObmo with bik the Kronecker delta. 

APPENDIX B. THE SELF-ADJOINT PROPERTY 

Let Ld be either (i) the differential operator in Eq. 
(20) or (ii) the integro-differential operator in Eq. (20) 
defined as in Sec. IV on the closed interval 15: 
a :::;; e :::;; b, ° < a, b < 00. Let LA be similarly defined 
on (0, 00). Then in either case (i) or case (ii) there 
exists a complete orthonormal set of functions {hdn } 

on 15, generated by Ld4> = - 1.4> with homogeneous 
boundary conditions at a and b.7

•
S 

Let f and g be any nonzero functions square inte­
grable on (0, (0), and consider the inhomogeneous 
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problems 

with the same homogeneous boundary conditions at 
a and b as in the above homogeneous problem. Let 
1m A ¢ 0 so that A will not belong to the spectrum 
of the set {hon}. Then the problems (BI) have nontrivial 
solutions8 

u(c) =Joo ± rfoic, A)Uk(A) dpoik(A) , 
-00 i./,=1 A - A 

with 

Uk = ff(C)rfo:(C, A) dc, vk = f g(c)rfo:(c, A) dc. (B2) 

Now, let 

with Uk and vk as in (B2). Multiplying u
ll 

by g* and v! 

JOURNAL OF MATHEMATICAL PHYSICS 

by f and then integrating over 0 we have 

lb g*(c)uic) dc 

= f:/l jilUk(~ d~o~k(A) fg*(c)rfolC, A) dc 

= fll itlUk(A)V~A~ d;clikO.) , (B3) 

and similarly 

(j(c)v:(c) dc =fll ± V:(A)u;(A) dpoikO.). (B4) 
Ja -ld.k=1 A - A 

Since (24) and (25) are asymptotic solutions for both 
the differential and the integro-differential equations, 
the limit matrix Pais the same in either case. Taking 
0---+ A in (B3) and (B4) we have PMk ---+ Pa22 and thus 

g*(c)uic) dc = U2
V

2 Pa22 = !(c)v:(c) dc. 100 Jil --* d 100 

o -Il A - A 0 

(B5) 
After taking fl-'" CXl and employing (Bl), (B5) becomes 

loo (Lav)*u dc = loo (Lau)v* dc, 

which is the desired result. 
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The Dirac equation is expressed entirely in terms of geometrical quantities by providing a geometrical 
interpretation for the ( -I)t which appears explicitly in the Dirac equation. In the modification of the 
Dirac electron theory which ensues, the (-I)t appears as the generator of rotations in the spaceIike 
plane orthogonal to the plane containing the electron current and spin vectors. This amounts to a 
further "relativistic" constraint on the spinor theory and so may be expected to have physical conse­
quences. It does not, however, conflict with well-substantiated features of the Dirac theory. 

INTRODUCTION 

I N 1928, Dirac proposed a relativistically invariant 
first-order wave equation for the electron. 1 Dirac's 

theory has led to a complex of physical explanations 
and predictions at once so surprising and convincing 
that it has gained general acceptance among physicists 
today. The previously perplexing P?enomena of 

.. Present address: Physics Department, Arizona State University, 
Tempe, Arizona. 

1 P. A. M. Dirac, Proc. Roy. Soc. (London) 117, 610 (1928). 

electron spin was not only accounted for, but fine 
details of the hydrogen spectra and an accurate value 
of the electron magnetic moment were calculated 
without arbitrary assumptions. Moreover, after some 
theoretical trauma, it was realized that Dirac's 
equation entails the existence of a positively charged 
electron-at just about the same time that such a 
particle was discovered experimentally. We do well 
to understand precisely what features of the Dirac 
equation entail these remarkable results. 


