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A summation relation is given for U(N) Racah coefficients which has the form of an orthogonality 
relation. or a composition of recoupling transformations, except that the sum~ation over colu~n 
indices (for fixed row indices) is over multiplicity labels only. In the recoupling matnx for [f] X 
[f'] X [f3] ~ [f], U(N) irreducible representations [f') and [f3] are limited to be elementary, . 
[11...10 ... 0]=[1 k]. or totally symmetric [k], or of the form [k N -I]. Results are tabulated as functI~ns 
of the axial distances in [f] for [f']=[lN-I]. [IN-,), or [2N

-
1
]; [f3]=[1], [I'], or [2]; all cases which 

arise in the evaluation of squares of matrix elements of one- and two-body operators averaged over 
irreducible representations of U (N). 

1. INTRODUCTION 

In recent years the Wigner-Racah calculus for the 
unitary groups U(N) has been brought to a state of 
development comparable to that for the angular mo­
mentum calculus for SU(2). Biedenharn, Louck, and 
collaborators, 1-6. especially, have developed powerful 
methods which make it possible to calculate all Wigner 
and Racah coefficients for U(N). For the case of multi­
plicity free and extremal Wigner couplings, in particu­
lar, algebraic formulas for the Wigner coefficients can 
be read off directly from their diagrammatic pattern 
calculus. 4 In more general cases an additional algorithm 
is needed to extract algebraic or numerical values of 
the Wigner coefficients from their formalism. In the 
case of SU(3) 2,3 this has been translated into a computer 
program, 7,8 so that both Wigner and Racah coefficients 
for S U(3) are now available in complete generality. 
Biedenharn and Louck advocate the view that there is a 
canonical structure for the U(N) Wigner-Racah algebra. 
This eliminates all free choices in the resolution of the 
multiplicity problem for the general Wigner coupling, 
so that all U(N) Wigner and Racah coefficients are 
uniquely defined. For arbitrary N, explicit algebraic 
constructions for Wigner couplings involving the most 
general multiplicity structure have so far been limited 
to matrix elements of the Wigner operators transform­
ing as the U(N) irreducible representation [211 .. _10J 
= [21N

-
Z

] {equivalent to [10 ... 0-1] in SU(N)}. As a 
by-product of this calculation, Louck and Biedenharn1 
also give the U(N) Racah coefficients for the recoupling 
matrix for [jJ x [11. .. 10J x [10. 0 00] - [j] in elegantly 
compact form. Although Racah coefficients, being in­
dependent of subgroup labels, have a simpler algebraic 
structure than the Wigner coefficients, general expres­
sions for U(N) Racah coefficients have so far been 
limited to a few very special cases, usually cases in 
which the four Wigner couplings in the Racah recoupling 
transformation are all free of multiplicity such as when 
two or more of the irreducible representations are 
totally symmetric (Moshinsky and Chacon9 and 
Alisauskas, Jucys, and JucyslO). In the applications to 
physical problems Racah coefficients are often more 
useful than Wigner coefficients, and it is hoped that the 
work of Louck and Biedenharnl will be extended to more 
general cases. Since the algebraic construction for the 
most general U(N) Racah coefficients is complicated, 
it may be useful to search for new relations or sum 
rules for the U(N) Racah coefficients which have no 
analog for the simpler SU(2) Racah coefficients. 
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It is the purpose of this note to exhibit such a sum­
mation relation. It has the form of the well-known 
orthogonality relations for the U(N) Racah coefficients, 
or of a composition of recoupling transformations, ex­
cept that the summation over column indices (for fixed 
row index) is over multiplicity labels only, for fixed 
U(N) irreducible representation label within the column 
index. This relation is particularly Simple if the rep­
resentations [P] and [j3] in the recoupling matrix for 
[flJ x [f2J X [j3] - [fJ are either "elementary," 
[11. .. 10 ... O]=[P], or totally symmetric, [kO .•. 0] 
= [k], or of the form [kk . •• kO J = [kN

-
I J. In this case the 

sum is completely independent of the multipliCity struc­
ture and can hence be calculated by permutation group 
techniques. This sum arises naturallyll in applications 
to physical problems, since it is needed in the calcula­
tion of squares of matrix elements of operators aver­
aged over the states of irreducible representations of 
U(N), where these averages are needed in the study of 
spectroscopic problems using spectral distribution 
methods. ll,12 In Sec 0 2 the summation relation for U(N) 
Racah coefficients is related to the matrix element of a 
projection operator for the symmetric group. Section 3 
takes up the calculational tools needed to evaluate this 
matrix element, including a transformation to nonstan­
dard representations of Sno The details of the calcula­
tion are exhibited through some illustrative examples 
in Sec. 4. Finally, results are tabulated for all cases 
of the recoupling matrix for [f]x [j2]X [j3] - [f], where 
the U(N) irreducible representations [f2) are of the 
form [0'1] or [IN'2] or [2N ' 1], and [j3] is of the form 
[1] or [12] or [2], which are the U(N) irreducible repre­
sentations needed to construct all one- and two-body 
operators through the coupling [j2]X [f3]. 

2. THE SUMMATION RELATION 

For present purposes it will be convenient to use a 
notation for the U(N) Racah coefficient which is a 
straightforward generalization of that for the angular 
momentum calculus for SU(2) and give the Racah coeffi­
cient in unitary form, the U coefficient, which is given 
by the recoupling matrix 

U([f I ][f2][fJ[f3]; [j12Jp12 pl2, 3; [j23Jp23pl,23) 

= «([F] X [j2])[j12]p12 X [j3])[j]pI2 ,3 

X I ([f1] X ([j2] X [j3J)[f23]p23)[f]pl,23). (1) 

Here, the irreducible representation labels [fs] = [j~N] 
are given by the partition numbers f/N' i = 1, ... ,N, 
which specify the number of squares in the ith row of 
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the Young tableau describing the representation [r] of 
U(N). The multiplicity labels pSt are needed whenever 
the Wigner coupling of [Js] with [P] can yield a specific 
representation [Jst J with d-fold multiplicity, d> 1. 
Since the result of this investigation will involve a sum­
mation over multiplicity labels only, it is convenient to 
use a separate symbol for the multiplicity label and 
avoid the more elegant notation of references, 1-6 even 
though the Biedenharn-Louck canonical structure has 
been adopted for the U(N) Wigner-Racah algebra. Note 
that the column index for the unitary transformation 
matrix is specified by both the irreducible representa­
tion label [J23] and the multiplicity labels p23 and pI ,23; 

similarly for the row index. In the notation of Louck 
and Biedenharn, 1 the above U coefficient is the matrix 
element of the U(N) Racah invariant operator 

(2) 

connecting states of irreducible representation [jl] (on 
the right) to states [J] (on the left). Here, the labels 
rst include both the multiplicity labels pSt and the shift 
indices, t..1 = H:, which indicate how many of the 
squares of the Young tableau for [ft] have been added 
to the ith row of the tableau for [rJ to make the tableau 
for [fstJ. 

For recoupling transformations in which the rep­
resentations [F] and [f3] are restricted to be "ele­
mentary" [lk], totally symmetric [k], or of the form 
[kN-1

], only the multiplicity label pl,23 is needed. (The 
other Wigner couplings are free of multiplicity; when­
ever a multiplicity label p is unnecessary it will be 
omitted.) In this case the sum 

(3) 

can be evaluated by permutation group techniques. Note 
that with [f2'] = [J2], [f3'] = [f3], and a summation over 
both pl,23 and [f23], the above would have become mere­
ly one of the orthonormality relations for the U coeffi­
cients. The above sum over p only, however, is a sim­
pIe function of the irreducible representation labels 
[fl]'[j23], [f]; [F],[j3],[F'], [J3,]; [f12] and [flU]. It 
is this function which is to be evaluated in this 
investigation. 

To evaluate the sum of Eq. (3), it is convenient to 
introduce n-particle state vectors I [f]a ;rnrn_lrn_2' •. r) 
which are simultaneous base vectors for an irreducible 
representation of U(N) and of the standard Young­
Yamanouchi representation13 of Sn (with n=L,iftN)' 
where a stands for a complete set of subgroup labels 
for U(N) (the Gel 'fand labels ftj with i '" j = 1 , ... ,N -1, 
could be used, for examplel

-
6
), and where rnrn_1 ••• r1 is 

a standard Yamanouchi symbol. 13 It will further be 
useful to transform to a nonstandard representation of 
Sn,14.15 in which the group of k particles labeled n, 
n - 1, ... ,n - k + 1 have a definite permutation sym­
metry, e.g., [lk] or [k]. Such a state vector can then 
be expanded in terms of U(N) Wigner coefficients 
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where the U(N) Wigner coefficient, «(ti']a~'(tl]all (t]a)p, 
is the matrix element of the Wigner operator ( ), 
namely 

(5) 

in the notation of references. 1-6 Note that (tl] is assnmed 
to be of the form [Jk], [k], or [kN- 1], so that no multi­
plicity label p is needed in the Wigner coefficient of 
Eq. (4). Note also that the representation (t{'] is deter­
mined uniquely by the Yamanouchi symbols 
rn , ••• ,rn-k+l' (The tableau for (t{'] is obtained from the 
tableau for (t] by removing squares from rows 
r n' r "..1' •• , and r n-k+l') By repeating this process for a 
second group of k' particles, and expressing the product 
of k-particle and k' -particle representations [tJ and 
[ti] in terms of coupled U(N) representations [to] for the 
(k + k')-particle state, the n-particle state vector can be 
expanded as 

I [t]a; r(k, k' )[11 H/l J' •• > 

'" I [f]a; {rn ••. rn-k+lh/t I (rn-k• • ·r n-k-k'+I}[ /p r ".k-k'· . . r) 

=6 ~,61[t']a')I«(f{]x[{J)[{0]ao) 
a~'al " "ll/olao 

X ([{, 10" [{{]a ~ I (t{' la~')«(t{']a f'[{JeY 11 (tla) 

x (If{]a r[{l]a 1 I [(o]O'o) . (6) 

The sums over subgroup labels 0'1' af, af' for the pro­
duct of three U(N) Wigner coefficients can be expressed 
more simply in terms of U(N) Racah coefficients by 

x (lfn O'7[fl] all [J ]0') ([fna ~[f1]O' 11 (fo]eY 0> 

=6([!']a'[fo]ao I [J]a)p 
p 

(7) 

Since the Wigner coupling [J' J x [fo] is in general not 
free of multiplicity, both u(N) Wigner and Racah coef­
ficients are functions of the multiplicity label p, and the 
result involves a sum over this multiplicity label. 

To obtain the relation for the sum of Eq. (3), consider 
the matrix element of a projection operator, ylfol, 

([ fJa ;r' (k2, k~)[1 IIf'I' • ·1 ylfol I [fJa ;r(k1 ,kn [f HI' I' • 0 ) 

2 2 1 1 

with k2 + k~ = kl + k~, where ylfol is an operator, built 
from permutation operators for particles labeled 
n, n -1, ... , n - kl - ~ + 1, which projects the represen­
tation with Young tableau (fo] out of an arbitrary (k 1 

+ k:l-particle state. By USing Eqs. (6) and (7) for both 



2150 K.T. Hecht: Summation relation 

state vectors, the matrix element of :0/01 can be ex­
pressed as 

«(J]a;r'(k2,k~)[/2][/21 ... 1 y[/oll (J]a;r(kl,k~)[/l](/11"') 

=66«(J']a'(Jo]aol(J]a)p 
Q' Q o PP' 

x([f']a'[fo]aol [f]a)p' 

x U([!'](J:](J][fl]; [~'L_;[foLp) 

x U([!'](J;](J][f2]; (J;'L_; [foLp'), 

where we have used the property of the proj ection 
operator 

(8) 

([f~']a~'1 y[foll [f~]a~) =0[1 ](/'10[1 11/"1°",.",,, (9) 
00 00 00 

to eliminate sums over [fo']' From the orthonormality 
of the U(N) Wigner coefficients 

L «(J' ]o'(Jo]ao 1 (J]o)/(J']o '(Jo]oo' [f]o)p' = 0Pl>' (10) 
0:' 0:0 

we then obtain the desired summation relation 

Since the projection operator, y[/ol, serves only to 
proj ect the representation (Jo] out of an arbitrary (k l 

+ kO-particle state, its Sri subgroup character is com­
pletely immaterial. It could be constructed according 
to the Young-Yamanouchi-Rutherfordls prescription; 
but it is usually much simpler to give it in symmetric 
or antisymmetric form 13 for some conveniently labeled 
tableau (not necessarily a standard labeling), since any 
normalized linear combination of y\'ol'S with different 
Sn subgroup labels i will serve the purpose. 

3. CALCULATIONAL TOOLS 

The matrix element of :0/0 1 can be related to the basic 
matrix element of the transpositions Pm-I,m in the stand­
ard Young-Yamanouchi representation13 

«(J]; .. 'Ym = p, rm_l = q . .. 1 Pm-I,m 1 [f]; . . . rm = p, Y m-l = q . .. ) 

= 1/ 'Tpq ' 

«(J]; .. . r m = q, rm_l = p . .. 1 Pm-I,m' (J]; .. . rm = p, r m-l =q . •• ) 

=[1-1/-r;qP/2, (12) 

where 'Tpq is the "axial distance" between the squares 
labeled m and m -1 in the Young tableau, 

(13a) 

and ft") is the number of squares in row i of the m-par­
ticle tableau left, after particles labeled n, n -1, ... , 
m + 1 have been removed from the original n-particle 
tableau of shape (J]. If the symbol r m is preceded by 
a(p) symbols with the label P and the symbol r m- l is 
preceded by a(q) symbols with the label q, 

'Tpq = !p - fq - P + q - a(p) + a(q) (13b) 

where f; now designates the number of squares in the 
ith row of the n-particle tableau, (J] (Ji;: fiN)' Note that 
'Tqp = - 'Tpq ' and that 'Tpp = + 1, since a(q) = a(p) + 1 in this 
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case. Note also that 'Tpq can be expressed in terms of 
differences of "partial hooks, "1-6 PiN = fIN - i + N. 

The transformation to nonstandard representations of 
Sn is particularly simple if the k particles to be singled 
out belong to the totally symmetric or antisymmetric 
representations of Sn' In this case the transformation 
coefficients have been given by Rorie. 15 For the totally 
symmetric case in which the k particles labeled 
n - m -1, '" ,n- m - k have been singled out 

=6P[~ A (1 + _1 )11/2 
P k!I<J:l 'T" 'J 

I } 

x 'rn' •. rn_mal ~ .. . l\rn-m- k-l . •. ), (14) 

where the sum is over the k! permutations p which per­
mute the symbols aI' ... ,ak in both the state vector and 
the coefficient. Similarly, for the totally antisymmetric 
case 

=6P(-1)P+l [l.. A (1- _1 )] 1/2 
P k! I<i·l ~ 'T'I'} 

X 'rn" .rn_mal~·· ,akr..-m-k-l ... ) (15) 

with P = even (odd) for even (odd) permutations, p. 

It will also be useful to build state vectors antisym­
metric (or symmetric) in one group of k particles, la­
beled n - m -1, ... ,n - m - k,from vectors antisymme­
tric (or symmetric) in the k -1 particles 
n - m -2, ... ,n - m - k through antisymmetrizers A (or 
symmetrizers S), with 

1 
A (n - m - 1 , ... , n - m - k) = -k t 6 p( - 1)p 

• p 

where the sum runs over the k! permutations P of par­
ticles labeled n - m - 1 , ... ,n - m - k, and p = even (odd) 
for P=even (odd): 

A(n-m -1, ... ,n- m -k) 

X ,r" . •. rn_maJ~a3' .• aJ[lk-llr ..-",-k-l' •• r l ) 

= [! A (1 __ 1 )11/2 
k ;=2 'T'1'1 'J 

x 'rn' .• r "..m{al~' 0 • akh lklrr.-m-k-l' .. r l ). (16) 

The inverse transformation gives 

, .. • {al a2 • •• ak}[lkl' .. ) 

= t (_1)1+1 [!. A (1 __ 1 )] 1/2 
1=1 k i=l 'T, , 

i*1 i J 

X I .. 0 aj{a l • •• ai_lal +l ••. a"hlk-l j ••• ) (17) 

with analogous expressions for totally symmetric 
groups. Another useful relation involves the transposi­
tion operator which interchanges particles labeled 
n - m - 1 and n - m - k in a state vector antisymmetric 
in particles labeled n - m - 2, ••. n - m - k: 

P n-m-l,n-"..k I· .. al{~a3' •• akhlk-ll' •. ) 
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+~(-1)' T4

1
4 [J~2(1-7"a1a)(1- T4

1}4,)J
1
/

2 

1, J~' 1 J 

X I .. . {a1 •• • aH a l+1 , , ,akrl1k-1] a, .. . ). (lBa) 

In the special case a l = ll.z the above collapses to 

P n-m-1,n-m-k' .•• al{alaS' .. akhlk-l] ... ) 

= I· .. {alaS·· .aJIlk-l]al .· .). (lBb) 

The transformation to nonstandard representations of 
S is complicated in the case where the k-particle rep­
r~sentations of S are other than one-dimensional. For 
a group of (N-1)k particles of symmetry [kk ... kO] 
'" [kN - l ], however, it is sufficient to construct a single 
(N -l)k-particle state of symmetry [kN - 1], since the 
properties of SU(N) insure that the Wigner coupling [jJ 
x [kN-IJ is free of multiplicity. It will be convenient to 
choose this single state to transform according to the 
irreducible representation [~-1 J of Sn and to be in nor­
mal antisymmetric form in k distinct groups of (N -1) 
particles each. (We shall use the notation [kNot la. Note 
that this state is a complicated linear combination of 
the Young-Yamanouchi base vectors for [kN-l J. ) 

An eN -l)-particle state of symmetry [I N - l ] in which 
the N -1 Yamanouchi symbols include the numbers 1 
through N, with the exception of the specific number i, 
will be denoted by {i]IlN-l] : 

I ... {i}11N- l ] .• ')'" I·· .{12 .. . i-l,i+l" .. N}11N-1] .. ·> 
In this notation the state [kN -

l Ja can be expanded as 

I [f) ... {al a2 •• • (lk}CkN-1)a' .• ) 

=~P[k~ '<~=l (1 + T,la )] 1/2 
P t j 

x 1ft) .•• {aJI1N- l ]{aJI1N-1] ... {akh1N-1] .. . ), (19) 

where the sum is over the k! permutations P which per­
mute the symbols a,. The coefficients follow from Eq. 
(14) and from conjugation properties under SU(N). The 
state conjugate to [jJ transforms according to SU(N) 
irreducible representation [j*) with fi* = f1 - fN+l-/' If the 
state [j(P)J is obtained by removing N -1 squares from 
the tableau for (f1, one from each but the pth row, then 
the irreducible representation conjugate to [jG)J is 
specified by the tableau (f* (N + 1 - p) J which is obtained 
from (f* 1 by removing one square from row N + 1 - P of 
[f*1. Thus the function T.. in Eq. (19) is related to 
axial distances in [j) in th'eJfollowing way: 

T '" Tlf] - r. f *] 
III"} lI,a} - N+l-a,.N+l-a} 

= f:+l-a, - f:.l-aj + (N + 1 - aj ) - (N + 1 - a,) 

= Ul - fa ) - Ul - fa )+ a, - aJ = fa - flJ, + a, - a} 
, j J 

= T • (20) aJaj 

In particular, therefore, 

I [fJr n' •• rn- m {p(j} 12N - 1] rn- m- 2N+ l' •• r l ) a 

= [~(1 + :<JJ 1/2, [f]rn" .rn_m{12 ... P -l,p + 1, 
.• • NhlN-1]{12 .•. q -1, q + 1, ... N}11N-l] ••• ) 

+ a (1- T~)r/21 (f]rn , .. rn_m{12 .. • q - 1, q + 1, 
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(21) 

with 

T.~ =. f. - /p - q + P - a(q) + a(p) 

for p *' q, where a(q) and a(p) are the number of occur­
rences of the row numbers q and p in the Yamanouchi 
symbols rn , ••• rn_m while T •• '" + 1. 

In addition to the above results for nonstandard repre­
sentations of Sn' the only other calculational tool needed 
is the value of the simple sum 

6 ",til (1 __ 1 )=.m. 
m j.l J.1 Tajaj 

j~' 

(22) 

The proof follows (see Ref. 1): Let Ta a = (XI - xj ). Then 
x, are real numbers such that (x, - x}fJ 0, for U j and 
~m can be expressed as a contour integral in the com­
plex z plane 

L =- _1 fn (1- _l_)dZ' 
m 27ri /01 (z - Xj) 

where the contour encloses the m Simple poles 
xl>'" ,xm ' After expanding the product in the integrand, 
only the m terms of the form l/(z -XI) give a nonzero 
contribution to the contour integral. 

4. ILLUSTRATIVE EXAMPLES 

The methods used to evaluate the matrix elements of 
the projection operator ylfol of Eq. (11) will be illus­
trated with two examples, Consider first the Simplest 
(and trivial) case: [f1]=ft2]=[1]; (f{)=[t;)=[lN-1]; [10] 
= [21 N -

2
]. This is a trivial example since the value of 

the sum of Eq. (3) follows in this case from the ortho­
normality relation for the U coefficients and the values 
for the U coefficients with [jo) = (1 N] '" [0 ... 0 J, which are 
given by simple dimension factors, see Ref. 1 and Eq. 
(43) below. Nevertheless, the example illustrates the 
techniques to be used in more complicated cases. In 
this example it is most convenient to choose the pro­
jection operator ylfol in normal antisymmetric form 

[~lN-2] N ( 1 1) y =. An- ,,,.,n-N+ 

xt(l +Pn.n_1)A(n-l, ... ,n-N+l) 

with a normalization factor N to be determined. In this 
case 

(al{a2 aS ' •• aNJrlN-11' •• 1 yl21N-2) I a1{aaaS ' •• aNh IN-11' •. ) 

=. W{ 1 + (a1{a2aS' •• aN}IlN-11 ' 0 • 1 

XPn.n-11 a1{aaa3 ••• aNh1N-11' .. )} 

=W{l+_l t [_1 fi (1 __ 1 )~} , 
(N -1) 1=2 Tala, ~;~ \" TaiaJ ~ 

(23) 

where Eq. (17) has been used to uncouple the particle 
numbered n -1 from the antisymmetric group, together 
with the basic matrix element (12). By rewriting 
l/T = (1-1/T. ) -1, the sum in Eq. (23) becomes alai atal 

[ t if (1 -_1 ) _ t fi (1 __ 1 )] (24) 
"2~;: Tala} 1=2 i=2 Tala J ' 

By adding and subtracting nf'2(1- 1/Ta1aj ) to the first 



2152 K.T. Hecht: Summation relation 

term, both sums in (24) can be evaluated with the iden­
tity (22) to give 

so that 

(a l la 2 ••• aN}UN-IJ 1 y!21
N

-2
j! al{a2•• .aN}'lN-lj"') 

=6 [J2([j'][1N-l][/][1]j[/"] == [j(a)] j[21No2] p) p 1 __ _ 

- Ii. ~ {1 _ .!. ff (1- _1_)} (25) 
- 2 (N -1) N 1=2 TalaJ ' 

The normalization factor N is most readily determined 
by choosing the labels a l such that the Racah recoupling 
transformation collapses to a trivial one-dimensional 
unitary transformation. In the above example, with 
ll:! ==al == 1, a3a4 ... aN==23 ... N-1, and [j]=[21N-2], the 
representation [1'] is the scalar representation (f'] 
=[0 ... 0], so that the square of the single surviving 
U coefficient in the sum of Eq. (25) has the value unity. 
In this case, with fl_ = a l , 'T == + 1, and Eq. (25) is re-

~. ala2 
duced to 1 ==NN/2(N -0. With this value for N, arbi-
trary [j], and al a2 • •• aN = any permutation of 12 ... N, 
Eq. (25) yields 

6 p [J2([/][1 N-l][jJ[1] j(f(al) L_;[21 N-2L~ 

={1-.!.rr (1 __ 1 )}, 
Nl=2 Talaj 

(26) 

where [j(a)] is the representation with a tableau ob­
tained by removing one square from row a1 of the tab­
leau for [fl. Note that (f']=(f(12 ... N)] (removal of one 
square from each row of [/D, is equivalent to (f] in 
SU(N). 

As a second example consider the case (fl] = (f2] 
= [2], [ji] = [I;] = [2N- l ],[fo] = [21 N-2]. With particles 
numbered n - 2 through n - 2N + 1 already prepared with 
a permutation symmetry [2N-

1
]" in the state vectors, it 

will now be sufficient to choose a projection operator 
ylfoj of the form 

N A (n - N - 1, ... , n - 2N + 1)A (n - 1, ... , n - N)S (n, n - 2, 

n - N - 1)A(n - 1, ... , n - N)A(n - N - 1, .•. , n - 2N + 1) 

(27) 

corresponding to the labeled tableau of Fig. 1. The 
symmetrizer 

S=i(1 +Pn,n .. H(1 +P,.,n-N-l +Pn-2.n_N_IH(1 +Pn•n-2) 

(28) 

when sandwiched in between the antisymmetrizers of 
(27) can be written in the form 

(29) 

The antisymmetrizers, when acting on a state vector of 
symmetryl{a1aJ'2j{alaJ[2N-lj' .. ) [see Eq. (21)], give 

A(n-1, ... ,n-N)A(n-N-1, ... , n-2N+1) 

1 {a1aJ[2j{ii1 aJ[2N-l j' .. ) 

- !. (1 __ 1 ) [.!. (1 _ 1 } ~ (1 __ 1 )] 1/2 
- 2 T«la2 N (Ta1a2 + OJ i=3 Tala} 

X 1 a2{a1ll:!· •. aNh INI{a1a3 • •• aN}UN-lj' .. ) 
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_ ! (1 + ~) [.!. (1- 1 ) ~ (1- _1 )] l/2 
2 Ta1a2 N T "2"1 + 1 i=3 T a2"j 

X 1 a1{a1a2 • •• aNhlN j{a2a3 • .. aN}[lN-l j . .. ), (30) 

where Eq. (16) has been used, after l{a1aJI2j"') is ex­
panded through Eq. (14). It is thus sufficient to evaluate 
the symmetrizer S, of Eq. (29), between states of the 
type latialll:!' .. aNhINj {b1b2 .• . bN_JIIN-lj" .), where 

<a~{a~~ .•. a~hlNI{b~b~ ... b~_lhlN-ljl 

XS I a1{a1ll:!· .. aNhlNj{bl b2• .• bN_l}[IN-l,) 

={(.··I (1 +P".n-l)I·.·) 

+ i(. .. 1 (1 + Pn.rr-l)P rr- l ,n-NPn-N.n-N-lPn-l .n-N(1 

+ P"."-l) / .•. ). 

Now, uSing Eqs. (17) and (12), we have 

(1 + Pn,n-l) 1 al{alll:!· •. aN}IIN j' •• ) 

==2[~i~2(1- (Taa1_1»)]1/2Ialal{lilhlN-lI''') 
1 J 

+t(-1)I+l [2 (Talal~l) ff (1 __ 1_)11/2 
1=2 N (Ta a 1) J=2 T. a. ~ 

1 I i~1 1 J 

X l{alaih21{alhlN-lj' .. ) 

while, using Eq. (18), 

Pn-l ."-N(1 + Pn.7t"l) 1 aJalll:!··· aN}[ INj' •. ) 

(31) 

(32) 

==[~E (1+ (Ta.
1

_ 1))] 1/2 {l+E (1- Tala )} 
1 j 1 i 

Xl al{liJ[lN-l1al ... ) 

+ t(-l)l+l[.!. (1- 1 } 8 (1 + _1 )] 1/2 
1=2 N (To 0 - I)} }=2 Ta a 

1 1 }~I 1 j 

Xl al{iilhlN-ljal"') 

+ t (_1)1+1 [.!. n (1 __ 1 )~ 1/2 
1=2 N j=l Ta a 'J 

UI 11 

X lal{li1h IN-l j a1 • •• ) (33) 

where repeated use has been made of the identity (22) to 
simplify the coefficients of the three types of terms. 

n-2 n-N-1 n 

n-3 n-N-2 

n-4 n-N-3 FIG. 1. 

I · · • I · · • I • • • 
n-N n-2N+t 

n-t 
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Next, with the shorthand notation Ta' = (Ta a - 1) = 
) 

1al 1 i 
-T ,=-(T +1, 

alaI aia1 

1 = -{2N - (N -1)} 
N 

where the sums have again been evaluated with the 
identity (22). On the other hand, 

(34) 

(~{a1' .. aNh1N, • .• 1 (1 + Pn,n-) 1 a1{a1 • •• ll,v}I1N, .•• ) = 00 
(35) 

Finally, from (33), uSing (17) to uncouple the particle 
labeled n - N -1, we have 

(a1{a 1· .. aN}I1N,{b1· .. bN_JI1N-1, I (1 + Pn,n-1)Pn-1,,,..NPn-N ,,...N-1 

X Pn-1,n-N(1 + Pn,n-1) I a1{a1 • •. aN} [ 1N,{bl' •. bN-lh IN-I, 

1 ~lN-l ( 1) - un 1--
- N(N -1) ,=1 j.l Tb b. F(b,) 

j~' I J 

(36) 

with 

F(bl )= (T b

1
_ 1){N+2+E (1+ (Taa

1 
-1»)} 

a1 I I J 

+t_1 (1+ 1, )rr(l+-l) ,.2 Talb, (Taia1 -1) ~~ Tala, 

_ (N + 2) + 1 _ (1 _ 1 ) fi (1 __ 1_) 
- (Ta b -1) (Ta &/ -1) j.2 Ta bl ~ 

1 , 1 j (37) 

where F(b,) has again been Simplified by the use of the 
identity (22). Finally, the very last product in (37) must 
always be zero, since T. b = 2 if b, = a l (in this case b, 
is preceded by two a1 's ih'the state vector); and Ta b, 

= + 1 if bl = af for any j;:. 2 (b, is now preceded by ~me 
aj ), Hence 

F(b,) = {1 + (:' + :)1)} 
alb, 

and in this form the sum over l in (36) can be per­
formed to give 

= {(2N+l)-(N+2)Nf(l- ( I_I»)}' 
/_1 Ta1b , 

Combining (31), (34), and (38), we have 

(a1{a1· , . aN}I1N){b1 • •• bN_J[IN-1) I 
xS 1 a1{a1· •. aN}I1N,{b1· •. bN_J[lN-1,) 
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- - -- 1 - - n 1 - ..,.-----:-r 1 (N + 2) { 1 N-l ( I)} 
-6 (N-l) N'=l (Ta1&,-I)' 

(39) 

Two cases must be considered: First, if some bJ is 
equal to al , then this b j is preceded by two aI's, and 
T b = + 2 for this j, so that the product in Eq. (39) is 
z~~b. On the other hand, ifbl*au i=l, •.• ,N-l, then 
every bj is preceded by a single aj , and Talbj = (Tala/ 

+ 1). In the two cases, Eq. (39) gives 

(a{12 ... .N}[lNMh1N-1, ... 1 

XSI a{12 ... N}[lN,{iih IN-I, ... ) 

_!.(N+2) {1-.!. IT (1_1-)} 
- 6 (N-1) N 1=1 Tal 

Ita 

(40a) 

where a is any number from 1 to N, while, with a * b, 

(a{12 ... .N}[lN,{b}'!lN-l) ... 1 

xS 1 a{12 ... N}[lN,{b}I1N-1, ... ) 

1 (N+ 2) 
= '6 (N -1) . 

USing similar techniques, we have 

(b{12 • •• .N}IlN){5h IN-I) / S / a{12 ... .N}[IN,{iihlN-1, . .' .) 

(40b) 

= 6%;:~) [(1- ~) &1 (1-T~J ~-T~)J 1/2 
a I~"b 

(40c) 

Before the final result for the Racah summation rela­
tion can be written down, we need to evaluate the nor­
malization factor N of Eq. (27). By choosing [j] 
=[32 ... 21]' so that [j'J==[O .. . 0], the matrix element 
of yf 21N-2

, again has the value unity. Thu s 

([32N
-
21J ;{1Nh2,{NN}[2N - 1, / 

x y£21N-2, / [32N- 21] ;{1.N}[2){NNh~-11> 

= 1 =N !. (1 + ~) .! ~ _ 1 \ Nit (1 _ ~) 
2 TIN N V (TNl -1»)i.2 TNi 

X(1{12 .. • NhIN){N}[IN-1,1 

xS /1{12 ... Nh1N,{N}[lN-I,), (41) 

with T1N =N+1=-TN1 , TNi =-(N-i+1), fori;:.2, and 
the matrix element of S given by (N + 2)/ 6(N -1). Thus 

1-,y (N+ 2) (N+2) 
- 2 2N 6(&-1) 

Finally, with this value of N, combining Eqs. (30), 
(40a) , and (40c), the diagonal matrix element of 
yI2l

N
-
2

, leads to the summation relation 

(42) 

where [j"] = [j(ab)J is the representation with a table­
au obtained by removing one square each from row a 
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and b of the tableau for [f]. Note that in this particular 
example [J'] is again equivalent to [f] in SU(N), since 
[J'] is obtained from [J] by removing two squares from 
every row of the tableau for [f]. 

5. RESULTS 

The summation relation (11) arises naturally in ap­
plications to physical problems ll through the squares of 
matrix elements of operators, averaged over the states 
of an irreducible representation of SU(N). [ The reader 
is directed to Ref. 11 which shows in detail how the 
SU(N) Racah sum, Eq. (11), arises in averaging the 
square of an operator or the product of two operators 
over the states of an irreducible representation of SU(N). 
Reference 11 also gives a number of applications to nu­
clear spectroscopic problems using the methods of 
spectral distributions.] The operators of greatest in­
terest are one- and two-body operators for which the 
representations [J{] and [Jl] in the Racah recoupling 
matrix for [j']x [j_{]x [jl] - [j] are of the type un 
=[1N-lJ, [1 N-2}, or [2N-1 ]; [Jl]=[1}, [P], or [2]. Since 
[f{] is then a representation conjugate to a one- or two­
particle representation, it will be natural to denote it 
by [J{*}' with [1 N-2] = [1 2* J, for example. To eliminate 
trivial dimensional factors, it will also be useful to 
tabulate results in the form 

~Q U([f'][J{*][J][Jl); [J{'] ;[1] p) 
U([f'JU{*][f']U{]; U{'L_;[o _J 

x U([J'][Jr][J][J2]; [Ja'] ;[fp] p) 
U([f'][j~*][f']Ua1;[N'L_;[o] , 

(11') 

where the U coefficients in the denominator, with [Jp] 
=[0 ... O]=[OJ, equivalent to [1N] or [2N] in SU(N) are 
given by trivial dimensional factors. By evaluating 
these coefficients by the techniques outlined in Secs. 3 
and 4, the summation relation in the form of Eq. (11') 
also becomes as much as possible independent of spe­
cific phase conventions for the U(N) Wigner-Racah 
algebra. It will be useful to express the U coefficients 
with [Jp] = [0] as functions of the axial distances in [J]. 
The needed coefficients are 

U([f][1 N-1 ][J][1]; [j(a»); [0]) 

= (_l}d+l [.!. ~ (1-~ )~ 1/2, 
N I", Tal J 

U([J][1 N-2][J][P]; [f(ab)];[O]) 

= (_l)lI+b [ 2 f1 (1- ~)(1- ~)] 1/2 
N(N -1) I~a T 'fbi ' 

lOb al 

U([j][2N-l][f][2]; [f(aa)]; [0]) 

[ 
2 if ( 2 )] 1/2 

= N(N+1) I*a 1- Tal ' 

U([f][2J+ol][J][2]; [f(ab)]; [0]) 

= (_l}a+b [N(;+l) I~ (1-!-) (1- T:
I 
)] 1/2, 

l*b al 

(43) 

where [f(ab)J is 'again specified by a tableau obtained 
by removing one square each from row a and b of the 
tableau for [fJ, with a and b any of the numbers from 
1 to N. The possible irreducible representations [fp] 
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for one- and two-body operators, can be read off from 
the direct products [J{*Jx[jlJ=~[fpJ: 

1. [1N-l]x[1]=[OJ+[21N-2], 

2. [1 N-2] x [PJ = [0 J + [21 N-2J + [221 N-4], 

3. [2N- l ] x [2] = [0] + [21 N-2J + [42N-2), (44) 

4. [2N-1 ] X [12] = [21 N-2J + [322N-3] , 

5. [1 N-2] x [2J = [21 N-2] + [31 N-3J. 

Representations such as Lf] = [J(~a2a3 •.. aN_2)] or 
Lf] = [j(ai~~ • . '~-1)] can be reached from [f] by only 
a single operator y!fol. E. go, [jPJ = [31N-1] if [j{*][fl] 
= [1N-2][2], or [jp] = [42N-2] if [J{*J[JJ = [2N-1][2], for 
[/]= [f(aia2ago 0 oaN_2 )]o {[I] is the SU(N) representation 
described by the tableau obtained by removing three 
squares from row at and one each from rows a2 through 
a N-2 from the tableau for [f], where the al are any of 
the numbers from 1 through N; note that 
V(ara2aS' •• a N-2)] is equivalent to [f(ata~a~a~ • •• a~2a N-ta N) 
In SU(N).} For such representations the summation re­
lation (11) is trivial, since the Racah recoupling matrix 
becomes one-dimensional. The only nontrivial cases 
therefore involve irreducible representations: 

A. [j'] =[f(a~a2' .• a N-t)] 

={[f(ara~ ••• a~_taN)] in SU(N)} 

and 

B. [J']=[f] 

=([f(ata2' .. aN)] = [f(aia~ • •. a~)] in SU(N)}. 

Results for case A have been tabulated in Ref. 11. Re­
sults for case B (diagonal matrix elements) are collected 
in Table I. The summation relation, in the form (11') 
with [j{* ][jd = [j~* ][j2] for the five types of one- and ' 
two-body operators enumerated in Eq. (44) are tabulated 
as cases 1-9. With [fo] = [21 N-

2
], it is possible to have 

[f{*][fd"* [f{*][f2]' There are ten such possibilities for 
one:-: and two- body operators which are tabulated as 
cases 10-19 in Table 10 

T ABLE I. The sums 

I; U([jll/;*lI/H/d;[/f'][/o]p) x U([j][/f*][fll/zHf2'lI/o]p) 
p U( [JH/; * ][/lI/ll ; [I; ,][ 0]) U( [.t1 [If * HI] [jf]; [jf' II 0]) 

where 

[[I'H/2'] 

[j(a) ][/(a)] 

[[(a)][/(b) ] 

[jl']Lt2'] 

[/(ab )][/(ab)] 

[[(ac)][/(ab) ] 

[[(cd)][/(ab) ] 

[/1'][12'] 

{N (Tab~hl)I1a -I} 
-1 
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Table I (eantinued) 

[j(ab)][j(ab») 

[j(ae»)[j(ab») 

[j(ed) )[j(ab») 

[j(ab) ] [j(a b)] 

[j(aa) )[j(aa) I 

[j(bb)] 
[j(aa)1 or [jibe)] 

[j(aa) I [j(ab) I 

[j(ab )][j(ae) I 

[j(ab) )[j(ed) I 

[j(ab) Hj(ab)] 

[j(aa)J[j(aa) ] 

[j(bb) I 
[j(aa)J or [j(be)1 

[j(aa)][j(ab) I 

[j(ab)][j(ac)1 

[j(ab )][j(ed) I 

[fI'] L/2') 

[j(ab )][j(ab)] 

[j(ae) ][j(ab)] 

[j(ed)J[j(ab) ] 

[jt][f{'1 

[j(ab)J[j(ab)J 

[j(ac)J[j(ab)] 

[r(cd)][r(ab)] 

N 
(N-2) 

N(N+1)}(Toh-1)2 ~+ (Toh+ 1 )2 ~-..±} 
2(N+2,)lTab (Tab+ 1) fh Tab (Tab- 1) Da N 

2N(N+l){~ 1 I} 
(N + 2) ( Tab - 1) D. - N 

2(N+l) 
- (N+2) 

N(N + 1){( Toh + 1) ~ _ J.} 
(N+ 2) (Tab -1) D. N 

N(N + 1) ftT"h + 1) (1 + ~)~ _ ..±} 
2(N+2)1(Tab- 1) Too Da N 

2(N+l) 
- (N+2) 

N 
(N+2) 

~{1- (N+ I)(T"h+ I)} 
(N+2) D.(Tab-1) 

~ {1- (N+ 1) (Tah+ I)(Toc + I)} 
(N+2) 2 (Tab-1)T",na 

N 
(N+2) 

o 

N(N + l)i 1 [( 1 J ( 1) j --- 1-- 1-- Da+ 1+- ITb 
2ITaDb N Tab Tab 

_ (N+l) [(Toh+ 1 ) (1- 1 )J1I 2 ~ 
2 (Tab-I) Tfc ITa 

o 
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Table I (continued) 

[j(ab )][j(ab) I 

[j(ac) ][j(ab) I 

[jkd)J[j(ab) I 

[jf/J(jf') 

[j(ab )][j(a b) I 

[j(ac) Hj(ab)1 

[j(ed)][j(ab) I 

[jf'][.t2'1 

(f(a)J[j(ab) I 

[j(a) I (f(be) I 

(ff'J(jf'l 

[j(a) ][j(aa) I 

[j(a) I (f(ab) I 

(f(bb) I 
(f(a)] or [j(bC)1 

(fl'][.t2') 

(f(a)][j(ab) I 

(f(a)][j(bc) ) 

(f(a) I (f(ab) I 

(f(a)][j(be) I 

(ff'][.t2'] 

(f(ab)][j(ab») 

(f(a b)][j(a c) I 

(f(ab )[j(aa) I 

[j(ec) I 
[j(ab)1 or (f(ed)1 
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o 

N(N - 1) { 1 [( 1 ) ( 1 ) J} --- 1-- 1-- Da+ 1+- Db 
2DaDa N Tab Tab 

10. (ff*Hjl) = [IN-1)[11; [jf*Hj2) = [IN-2][121; 

(fol = [21N-21 

Nr---E..=.D 1/2{~ _~} 
[2(N - 2)J ITa N 

_[2(N-1)1 1/2 

(N-2)] 

11. (ff*Hjll= [IN-1J(11; (ff*][j21= [2N-1][21; 

(fol = [21 N-21 

12. (ff*][jll= [IN-1][11; [jf*)(f21 

= [2N- 1 ][121; (fol'" [21N-21 

_[N(N+ 1) (Tah +l)]t/2 ~ 
2 (Tab -1)J ITa 

o 
13. (ff*][jl1 = [IN-1 ][11; [j2*][j21 

= [I N-2](2); [fol = [21N- 21 

[
N(N-1) (Tah+1)JI/2 ~ 

2 (Tab-I) ITa 

o 
14. [jf*][jl) = [IN-2][121; [j2*][j21 

= [2N-1 ][2]; (fol = [21N-21 
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Table I (continued) 

[ff'][/2'1 15. [ff *][ft I = [IN- 2)[12]; [f2*)[/21 

= [2N- l )[12]; [fol = [21N- 2] 

[f(ab)][f(ab)1 .![NW+1)(N-1) (1- 1)J1/2 -.!... _-.!...} 
2 W - 2) ;r,; Db Da 

[f(ab)][/(ac)] _.![NW+1)W-1)~_ 1)T/2-.!... 
2 (N - 2) r.;; Da 

[/(ab )][/(cd) I 0 

[f1'][frl 16. [ff*)[/I] = [IN- 2)[12]; Lf2*H/2] 

= [IN- 2)[2]; [/0] = [21N-2] 

[f(ab )][/(ab)] -~[~(1-~ )r2~l--.!...} 2 (N - 2) rab Db Da 

[ ( 1 )T'2 1 [/(ab)] [f(ac)] 
W-1) N - -
-2- (N- 2) 1- ~ Da 

00 

[f(ab )][/(cd)] 0 

[ff'][/r] 17. [.fj*][/I] = [2N- l ][2]; [f{*H/2] =[2N- l )[12]; 

[fo] = [21N- 2] 

[f(ab )](f(ab) I W+l)~ N ~ 1)T2{<Tab +l) 1 
-2- (N+2) -~ ('Tab-I) D. 

(T.h-l) 1 } 
- (Tab+ 1) Db 

[f(aa)][/(ab) I ~ N (T +lW/21 
W+l) (N+2)~ D. 

[/(ac»)[/(flb)1 W+l)~~ (T.h+l~1/2(1+~)-.!... 
2 W+2) (Tab-I) Too na 
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Table I (continued) 

[f(cc)) [f(ab) I 
or [/(cd)] 

0 

[fI')[/2'] 18 . [ff*)[/I] = [2N- l )[2]; [/2*)[/21 

= [IN- 2][2]; [/0] = [21N-21 

[f(ab )][/(ab)] .! NW+1)W-1)(1_ 1 )T/tTah-1)-.!... 
2 W+2) ~ (Tab + 1) Db 

-~-.!...} (Tab -1)Da 

[j(aa)][/(ab) ] _[NW+l)W-1) (Toh+l)T/2-.!... 
W+2) (Tab-I) D. 

[f(ac )][/(ab)] _.!rW +l)W-l) (T.h+l)r /2 

2 W+2) (Tab-I) 

X 1+--( 1) l' 
Toe Da 

{j(cc)] fj(ab)] 
or [l!cd)] 

0 

[f1'][!2'1 19. [ff* )[/1] = [2N- l H12]; [/2*)[hl 

= [IN -2)[21; [fol = [21N- 21 

[f(ab )][/(ab)] -.![(N+l)(N-l) 11 /2{(1+ ~-.!... 
2 T Da 

+ (1- T~)~} 
[/(ac)][/(ab) I - .!~N+ I)W-1) ~(1- 1)J'2-.!... 

2 (Tab-I)?';; Da 

[f(cd)][/(ab) I 0 
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