Reduced bias growth of pure-phase cubic boron nitride

Dmitri Litvinov and Roy Clarke
Harrison M. Randall Laboratory of Physics, University of Michigan, Ann Arbor, Michigan 48109-1120

(Received 8 May 1997; accepted for publication 4 August 1997

We report results on an improved growth process for cubic boron niiN) films. The films are
deposited on a dc-biased silicon substrate using ion-assisted sputtering. First, we grow a BN
template layer at a bias voltage which maximizes thecsmtent. After this template layer attains

a thickness of~500 A, corresponding to the coalescence of the mosaiclike grain structure, we find
that we can reduce the substrate bias to about 50% of its initial value while sustaining pure phase
c-BN growth. The reduction in nitrogen ion energy results in a dramatic increase in the growth rate
as well as significantly improved film quality. @997 American Institute of Physics.
[S0003-695(97)03540-1

All of the physical deposition techniques for cubic boronthe width of the peak can provide qualitative information
nitride (c-BN) thin film growth involve energetic ion irradia- about grain size and structural defect density.
tion of the surface to initiate and sustain the formation the  The c-BN thin film growth was initiated by setting the
sp-bonded cubic phaseWithout ion irradiation, the hex- substrate biaitrogen ion energyat a value that maximizes
agonal form of boron nitridgh-BN) is formed. Although  the cubic phase content as determined by FTIR. We found
seemingly unavoidable, energetic ion bombardment of thénhat a bias of—96 V produced the largest ¥pp? ratio
surface has some negative consequences. It reportedly cau$e09%) for the deposition conditions selected hémgrogen
the buildup of stre<s’ in the films and causes structural dam- cyrrent density ~1 mA/cn?, substrate temperature
age. Thus, eliminating ion irradiation or, at least, signifi-T~1000 °C, sputtering gun power500 W). The initial
cantly decreasing the ion energies required to form the cubighase of the growtlithe “template layer) was carried out
phase, is a feasible way to improve film qualfty. at this bias for 3 h. Subsequent to the growth of the template

In this work we describe a modification of the ion- |ayer, the bias voltage was reduced as described below, thus
assisted sputter deposition technique developed by Kidngpwering the energy of the nitrogen ions incident on the sur-
et al.” that permits growth of pure-phase cubic boron nitrideface of the growing film.
films at significantly reduced ion energies compared to those  This 3 h growth period corresponds approximately to a
required in the initial nucleation and coalescence stages Qfinimum critical thickness of the c-BN template layer below
the growth. This development results in a notable improvey, i there is no sustained formation of the cubic phase with
ment_ in _the structural quality of the films along with a sub- the reduced nitrogen ion energies as determined by RHEED
stantial increase of growth rates. @nd FTIR. The minimum thickness of the BN template layer

it Vr\]/_e hconductedut:\e/ grzwthbstud|ii n z custom-deS|gn$ oincides with the film thickness-500 A) at which coales-
ultrahigh vacuum( ) chamher with a base pressure o cence of the single crystal grains occurs to form a smooth

- 10 8 e :
1x 10" Torr.” Hot pressed boron nitride of 4N purity was o ¢, o layel’® Thus a growth time of-3 h is necessary to
used as a sputtering target and nitrogen ions were supplie

CFobtain a film of sufficient thickness to complete the nucle-
from an electron cyclotron resonan@CR) source. The sili- .
ation and coalescence process for the template layer. The

con (100 substrate, which was heated to over 1000 °C by . )
direct Joule heating, was biased with a negative dc voltage tgrowth of the BN template _Iayer_was followed 'm”??‘d'ate'y
y growth at the reduced bias with all other deposition con-

control the energy of nitrogen ions arriving at the film sur- "7 : . -
face. At this te?zperatureg the low baseg pressure of oufiitions kept fixed, unless otherwise specified. The FTIR ab-

vacuum chamber allowed thermal desorption of oxygen frorT§orpti0n spectrum of the template layer on a s'ilicon substrate
the substrate surface, eliminating the need for any specidf@S used as a background spectrum to obtain FTIR spectra
surface treatment prior to deposition. of the films subsequently grown with the reduced substrate

Reflection high energy electron diffractiofRHEED) ~ Pias. _ .
was used as am situ characterization of the film’'s surface ~ We have grown a series of c-BN films on BN template
structure, noting that h-BN and c-BN have very distinctlayers at different substrate bias voltages, growth times, and
RHEED patterns. In addition we used Fourier transform in-growth temperatures. Figure 1 shows a series of FTIR ab-
frared spectroscopyFTIR) to provide information about sorption spectra of the boron nitride films grown at different
c-BN content"'°film stress'! and average grain siZéThe  bias voltages. All of these films were grown for 2.5 h on top
vibrational frequencies of the infrared-active phonon mode®f the BN template layer described above. It can be clearly
for the cubic and hexagonal phases of BN are well knowrseen that there are no h-BN peaks down to a bias$6 V
and tabulated® In particular, the h-BN phase has two modeswhile the magnitude of the c-BN peak increases substantially
at 770 cm?® (A,, mode and 1383 cm?! (E;, mode and  at reduced bias. Since the area underneath the FTIR peak
c-BN has a peak in its absorption spectrum~&t065 cmi*  represents the amount of absorbing material, it is clear that
corresponding to the TO phonon modélhe position of the  the bias reduction leads to dramatically higher growth rates
c-BN peak depends strongly on the stress in the'filvhile  of the cubic phasésee insét The reduction of bias voltage
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FIG. 3. RHEED patterns for c-BN films grown at different substrate bias
FIG. 1. FTIR absorption spectra for c-BN films grown at different substratevoltages.

bias voltages.

pattern of the film grown at the lower bias exhibits sharper
. . diffraction arcs and shorter and better resolved higher order
below approximately—50 V leads to the formation of pre- . . .
. diffraction features than the RHEED pattern for the higher
dominantly hexagonal-phase materiaiBN). . L . o
. . bias. These features indicate a higher degree of order within
Figure 2 presents the substrate bias dependence of the ™. . "
- : the film surface both in terms of long range positional order
c-BN TO phonon frequency in Fig. 1. After nucleation and /. : : . : .
. s i.e., large grainsas well as improved orientational ordering
coalescence is complete, shifting of the peak center towar .. mosaicity
]I‘(imelrs frequencies indicates a reduction of the strain in the To make sure that the changes in ¢-BN FTIR peak width
Figure 3 compares the RHEED patterns of a film grownand peak posmon are not domlnqted purely by the change n
at —96 V bias and a film grown at 66 V/ bias. The RHEED thg film th|ckness,. we grew two films of the same.thlckness
' (different growth times were used to match the thickness of
the filmg at the different substrate bias conditions. Figure 4
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FIG. 4. FTIR absorption spectra of two c-BN films of the same thickness
FIG. 2. c-BN TO-peak frequency vs substrate bias. The line is a guide to thgrown at different bias voltages. The peak-&66 V (—96 V) bias is cen-

eye. tered on 1074 cm* (1080 cmY) and has a width of 48 cnt (88 cmY).
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FIG. 5. FTIR absorption spectrum of a “thick” c-BN film grown at low

bias(—66 V) for 8.5 h.

We also grew a “thick” film at low biag—66 V) for 8.5
h (corresponding to a thickness ef2500 A) to check
whether or not the growth of the c-BN phase would revert
back to formation of the hexagonal phase with longer growth
times. The FTIR absorption spectrum for this filifeig. 5
shows no evidence of h-BN formation and is therefore pure-
phase c-BN.

Figure 6 compares FTIR absorption spectra for several
films grown at the same low bigs-56 V) but at different
temperatures. It is evident that the growth temperature has a
dramatic effect on the peak widtlisee inset higher growth
temperatures promote higher quality film growth, confirming
previously reported measuremefits.

In conclusion, we have investigated the reduced bias
growth of c-BN thin films on BN template layers corre-
sponding to the completion of the nucleation and coales-
cence phases of growth. We have shown that the nitrogen ion
energies necessary to initiate the formation of the cubic
phase of boron nitride on $L00) can be significantly de-
creased once a c-BN film of some minimum thickness is
formed. The minimum thickness of the template layer is as-
sociated with the coalescence of nucleated grains to form a

compares the FTIR absorption spectra for two films of thegqqh surface layer. No stable epitaxial c-BN growth is

same thickness grown at bias voltages-&b6 V and—96 V.

observed below this thickness. The films grown with the re-

The film grown with the lower substrate bias had less stres§,,.qq biaglower energies of nitrogen iop&ave less stress

and higher film quality(larger grain size and less structural

and fewer structural defects and the growth rate is also in-

defect$ as indicated by the c-BN peak position and peakcreased substantially.

width, respectively.
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