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Rayleigh—Taylor growth at decelerating interfaces
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The number of linear e-foldings of Rayleigh—Taylor instability growth is calculated for several
cases of interest to experiment design. The planar, Sedov—Taylor case produces maximum
Rayleigh—Taylor growth. ©2002 American Institute of PhysiddDOIl: 10.1063/1.1418434

The Rayleigh—TaylotRT) instability"?is important in a  assumed to start at velocity, and to decelerate for a tinie
number of research contexts. For the design or analysis afo thatD =vqt—3gt2. The system would stop in a time
experiments and observations, it is often useful to know the=v,/g, after traveling a distanc® =D o= %vé/g. If one
growth exponent of an interface, even when the growth iglesignates the actual distance traveled by the interface as a
strongly nonlinear. The growth exponent is defined here afraction, 7, of the stopping distance, o= 7D, then one
the number of linear e-foldings by which initial perturbations finds
at the interface would be amplified, if they remained in the
regime of linear amplification. Even though the interfaces in
actual experiments often develop very nonlinear structures, —
the growth exponent can still be useful, as a characterization G=2AKDX (11~ 7’)/\/_'
of the degree of nonlinearity. Here we are concerned with the
calculation of growth exponents, under simple assumptions,
at a decelerating interface. Decelerating interfaces are impoiFhis is the key result for this case. For a given distabce
tant in any impulsively driven system, including that the interface travels, the growth exponent is a fraction of
supernovaé,stellar eruptions, and laboratory studies of hy-the fully stopped growth exponent, given by (1

@

drodynamic turbulenc@. —\1—7)//5. The implication is that such an experiment,
Here we will represent the growth expone@t, as the  which typically would be limited by two-dimensional effects
integral of the growth ratey, over time, to some maximum value dd, should nearly stop the inter-

face in that distance in order to achieve the largest possible
growth exponent.

A second common case is that of Sedov-—Taylor
deceleratior;2in which the accumulation of mass causes the
The growth rate for the classical RT instability at the inter-deceleration. In the typical case, mass accumulation causes a
face isy= \JAkg, in whichA is the Atwood number is the  shock wave to decelerate as a power of time, so Ehgt)
acceleration, anll is the wave number of the perturbation on =D(t/to)?, whereDg is the position of the shockR, is the
the surface. The growth factor is often related to the distancdistance the shock has traveled at a reference tgmand
that an interface has moved. In the common circumstance afhere3=2/5, 1/2, and 2/3 for three-dimension&D), two-
constant acceleration from rest, or deceleration to rest, thdimensional2D), and one-dimension&lD) expansions, re-
result is very simple. When the interface accelerates to resipectively. An unstable interface through which such a shock
(or from res}, the distance traveled, is gt?, from which  wave has passed decelerates more quickly than the shock
one finds the usual result for the growth expone@t, wave does, but not dramatically so until it has slowed sub-
=2AkD. Thus, the growth exponent is determined by stantially. Eventually it comes to rest and recedes. To obtain
D/, where\ is the wavelength of the perturbation. results that are suitable for experimental scoping, we will

Decelerating interfaces are important, but often do notake D(t)=Dg(t). Exactly how good this approximation is
experience constant deceleration to rest. In both laboratonyill have to be determined by simulations for specific cases.
experiments and exploding stars, for example, the interfacBor one published experiment, it is excell@ror a planar
may be accelerated by a shock wave and then may deceleratase that we have simulated, it applies for about half the
as the shocked, moving plasma accumulates more and modéstance the interface travels.
mass. However, the interface may not decelerate to a stop on For each geometry, one can infer the acceleration from
the time scale of interest for the experiment or for the naturaD(t) and can evaluate E@l) to obtainG. In the 2D and 3D
system. Here we develop simple formulas that provide estieases, one must also allow for the decreasé ifnom its
mates for some useful cases involving a decelerating inteiinitial value, ko, which satisfieskq/k=D/Dg. In the 1D
face. For simplicity, we ignore any contribution from initial case, one find&= \2AkD, just as in the case of constant
growth due to the Richtmyer—Meshkov instabifity. deceleration to restThe decreased acceleration is compen-

First, we consider the case of an interface that experisated for by an increase of time as the interface slolvghe
ences a constant deceleration, but not to rest. The interface 2D and 3D cases, one finds

t
G=ft y(t")dt'. 1
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FIG. 1. The density profile from a system in which a dense layer of plasma Time (ns)

drives a shock wave into low-density foam. The source plasma is produced
by laser irradiation of an initial plastic layer, initially separated by a vacuumFIG. 2. The slowing of the interface between the source plasma and the

gap from the driven, low-density foam. driven plasma of Fig. 1 is shown. The curve shows the model described in
the text.
DO 1B
G=V2AkoDoX 0'35( 1= (F) ) p1 andd, may correspond to an actual density and thickness.
g In other cases, such as when a shock wave is driven through
— (2AkyD X 0.35 /E 1- @ 3) low-density matter by an incoming, stagnating plasma flow,
' D D ' as in a supernova remnafitthe situation is less well de-

. fined. Here a clump of dense material accumulates and is
In these cases the decrease in wave number has a very Iar‘?e P

effect, assuring that the growth remains much smaller than |a ec?éiﬁ:?é dar;)d v;zsierﬁir?el?r\lll tgﬁ;[/itr?e :Lrggsbfohi\g\% Csaonmbee
does in the 1D, planar case. It is also worth noting that the ppro. y 9 /Ing m .

. . effective areal mass density;d,. This driving mass is de-
maximum growth exponent, for large expansions, can be

written G=0.35\/2Al, wherel is the mode number of the celerated in reaction to the rate of increase of momentum in
perturbation. the low-density matter, of initial density,. We can desig-

. . . . nate the postshock fluid velocity, in the low-density matter,
A third case of interest, we consider the deceleration of . . .
. . y v. We can also approximate the medium as a polytropic
layer of dense material that has impacted a second, lower- s Lon
. i . A gas with index y, so that the shock velocity if(y
density material. This type of situation may result when a : :
i : . “+1)/2}v. One then finds the deceleratian, from
flyer plate has impacted a very thick sample, when a flowing

plasma has been used to launch a shock into a sathple, y+1
after a blast wave is used to accelerate an interfatethis (p1do)g= 5 P2v- )

case, the deceleration decreases as the moving system accu-

mulates more mass. Here we offer a very simple model ofor deceleration from some initial velocityy, beginning at

such a system, show that it produces the approximate motigiine t=0, to velocityv, at later timet, one can integratg

observed in a simulation, and discuss the implications for thdo find
growth exponent. vo vo
We assume that. the matte_r that has provided the energy V= (y+1) pyoot  1+at’ )
to the system, but is now being decelerated, has an areal 1+ 5 o A
p1 Yo

mass density,d,, wherep, is an effective density and, is
an effective thickness. In simple cases, such as the behavior which we define the parameter, as indicated. Thus, one
of a massive flyer plate striking a very-low-density medium,expects the velocity in such a system to decrease approxi-

TABLE I. Summary of growth exponents.

Case Growth exponenG Definitions

Constant deceleration V2AkD

to rest

Constant deceleration V2AKDX (1—1=7)/I\7 7n=2Dglv3

for distanceD

Planar Sedov—Taylor V2AkD

Diverging Sedov—Taylor D D\ 18 B=2/5 for 3D,
\/ZAkoDXO.SS\/EO( 1- (3") ) B=1/2 for 2D

Massive flyer plate V2AKDX\D/(2vy/ @) v=vo/(1+ at)
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§ 3 can calculate the time when the accelerated mass equals the
£ —o—const g —o-3D /E'/tf driving mass, p;dy, which will mark the transition to
o8l ] Sedov—Taylor behavior. This will occur at about 70 ns.
it For a planar system described by E§), one can find
%’ 06 [ the growth rate and integrate Ed,) to obtain
)
[ D

h-d

G=J2AkD\/ 5——. 6
§ 04 (2vpla) ©
=]
@ ool This is typically much less thag2AkD. For the case just
° discussed/2AKD varies from 0.2 to 0.6.
- o v In conclusion, we have provided formulas that can be
e 0 0.2 0.4 06 0.8 1 used to estimate the growth exponent of an interface for
= parameter some common cases. Table | summarizes these results, and

FIG. 3. For four cases, this figure shows the growth exponent as a fractioE'g' 3 shows the, fraction 0f2AkD .that is reached in vari- .
of the standard resultyt= y2AKD. The abscissa i&) the fraction of the =~ OUS cases. Two important conclusions are supported by this
stopping distancey, for constant decelerationp) VD/(2v,/a) for the ~ comparison. First, growth is very much reduced in diverging
flyer plate, andc) the expansion ratid)o /D, for the two diverging cases. systems. Second, the experimental approach that will pro-
Thus, increasing distance moves the result to the left for the diverging SYSguce the greatest degree of nonlinear evolution is the planar

tems and to the right for the other two cases. For constant deceleration tg d Tavl t This h | . licati f .
rest and for the planar Sedov—Taylor case, the growth exponef#AD edov—Tlaylor Sysieém. 1his has clear implications for experi-

at all distances. ment design.
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