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We use a new hydrogenated amorphous silié@si:H) device structure, the gated-four-probe
a-Si:H thin-film transistor (TFT), to investigate the intrinsic channel characteristics of
inverted-staggered-Si:H TFTs without the influence of source/drain series resistances. The
experimental results have shown that, for the conventian@il:H TFT structure, the field-effect
mobility, threshold voltage, and field-effect channel conductance activation energy have a strong
dependence oma-Si:H thickness and TFT channel length. On the other hand, for the
gated-four-probe-Si:H TFT structure, these values aeSi:H thickness and TFT channel length
independent, clearly indicating that this newSi:H TFT structure can be effectively used to
measure the channel intrinsic propertiesae®i:H TFTs. © 1998 American Institute of Physics.
[S0003-695(198)04622-1

Among the existing hydrogenated amorphous siliconstaggereda-Si:H TFT to sense the voltage difference along
(a-Si:H) thin-film transistor(TFT) structures, thes-channel the conducting channel. By correlating this voltage differ-
inverted-staggered TFT structure is the most popular irence with the source/drain current induced by the applied
active-matrix liquid-crystal display$AMLCDs) and image gate bias, tha-Si:H TFT intrinsic channel characteristics for
sensorg. In this n-channel inverted-staggered TFT structure,electron conduction can be measured without the influence
the gate electrode is separated from the source and dradf source/drain series resistances. In a previous stwds,
electrodes by a gate insulat@morphous silicon nitridean  employed a two-dimensional device simulator to predict the
intrinsic a-Si:H, and a phosphorus-dopedh«) a-Si:H  electrical characteristics of the new GBPSi:H TFT struc-
layer. Under a positive above-threshold gate bias, an accuure. The simulation results indicated that the effect of series
mulation layer of electrons is induced to form a conductingresistances can be excluded in G&Si:H TFTs, and deter-
channel near the a-Si:H/amorphous silicon nitride mination of the intrinsic characteristics efSi:H TFTs is
(a-SiN,:H) interface. Because of such inverted-staggeregossible with this new structure.
structure, the electrical performanceas5i:H TFTs is deter- In this letter, we present experimental results for conven-
mined by two factors: the intrinsic channel characteristicstional inverted-staggered and GRERSi:H TFTs structures,
and parasitic series resistances. The characteristics of the iwhich were fabricated at the same time on glass substrates
trinsic channel are mainly determined by the electronic qual{Corning 7059F. A 1500 A thick chromium(Cr) layer was
ity of a-Si:H/a-SiN,:H interface,a-Si:H bulk, and back- first deposited by sputtering and patterned to form the gate
channel interface. On the other hand, the properties oglectrode. Following the gate electrode formation, a 3000 A
parasitic resistances are affected by the quality of contactgick a-SiN, :H gate insulator, intrinsia-Si:H channel layer
between source/drain metal and a-Si:H, intrinsica-Si:H  (having thicknesses of 1500 and 3000, And 500 A thick
andn+ a-Si:H film thickness, and gate-to-source/drain elec-n+ a-Si:H layer were deposited consecutively by plasma-
trode overlap. The existence of parasitic series resistances,hanced chemical vapor deposition. A 2000 A thick Cr
makes it difficult to accurately determieSi:H TFT intrin-  |ayer was then deposited by sputtering and patterned as
sic characteristics such as field-effect mobilitys) and  source/drain electrodes and, for GFP TFTs, two additional
threshold voltage \(1) for optimizeda-Si:H bulk material  narrow probes have been added. After the source/drain/probe
and a-Si:H/a-SiN, :H interface. To study the intrinsic per- patterning, a dry back-channel-etch process was used to re-
formance ofa-Si:H TFTs, the effects of source/drain series move then+ a-Si:H using the patterned source/drain elec-
resistances must be excluded. trodes as the mask. To insure complete removainef

We previously reported a new structure—the gated-foura-Si:H in the channel region, an over-etch process was used
probe(GFP a-Si:H TFT—to accurately measure the intrin- to etch off approximately 200 A of intrinsia-Si:H layer
sic characteristics adi-Si:H TFTs? In the GFPa-Si:H TFT  within the channel.
structure, two additional narrow probes are placed between An HP4156A semiconductor parameter analyzer was
the source and drain electrodes of a conventional invertedised to measure the current-voltade V) characteristics at
different temperatures. For tha-Si:H TFT, the gradual
dpresent address: Motorola Inc., Tempe, Arizona. channel approximation equation in the linear regid,
PCorresponding author, electronic mail: kanicki@eecs.umich.edu =1pL/WVp= weeCi(Vgs— V1), was used foruge and Vy
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FIG. 1. Sheet conductance vs effective gate voltage characteristics for coFG. 2. Sheet conductance vs effective gate voltage characteristics for con-
ventionala-Si:H TFT and GFRa-Si:H TFT structures having two different  ventional a-Si:H TFT and GFPa-Si:H TFT structures having different
a-Si:H layer thicknessesW/L) for the conventionah-Si:H TFT and GFP  channel lengthsa-Si:H anda-SiN, :H films are both about 3000 A thick.
a-Si:H TFT are(56/16 and(100/20, respectivelyV; (1500 A)=5.8 V and

V7 (3000 A)=2.5V. Thickness of gate insulatom{SiN, :H) is fixed at . o .
3000 A. length TFT. Again, this is due to the effect of source/drain

series resistances, which becomes strongex-8i:H TFTs

extraction, wheres is the normalized channel conductance,W'th ;hlortﬁr chaln?el Ieﬁg(;ﬁ‘s.:ordGFPa-g:HbTFTs,dnq SGUF?
C,; is the geometrical capacitance of the gate insulatgris stantial channel length dependence Is observed inGhe

the applied gate bias, aMi andL are the channel width and .—V’GS characteri.sfcics. Figure 3 shows the evolution of the
length. For the GFR-Si:H TFT structure, the device char- field-effect mobilities and threshold voltages, extracted from

acteristics can be expressed & =IpL'/W(Vg—V,) Fig. 2, with chanr_lel lengths for bth conventiormlSi:H

— Cipee(Vis— V1), Where G’ is the effective normalized T'FTs apd 3GFFa-SuH TFTs. As predicted by the numerical
channel conductancs/, and Vg are the electrical potential S|mulat|o_n, no dependenge on channel length is observed for
for the two inner probesyiss=Vas— (Vg +Va)/2 is the ef- GFPa-Si:H TFTs. Fora-Si:H TFTs, a strong dependence on

fective gate bias, and’ = (Xg— X,) is the effective channel channel length is observed, where longer channel length de-

length. Since probes A and B only sense the electrical Iooten\(ices have higher extracted field-effect mobilities. This result

tial, V5 andVg represent the true channel electrical potentiaI.CIea_rly |Ilus_tr§tes that the GF&-Si:H _TFT st_ructure can ef-
Hence, by using the GFR-Si:H TFT structure, intrinsic fectively eliminate the effect of series resistances and pro-
field-effect mobility and intrinsic threshold voltage can bev'de_l_t::e ]Lntlrlljns:f: dewﬁe prolpertuzs. L

extracted from this equation without the influence of source/ e field-efiect channel conductance activation energy

drain series resistances. The field-effect channel conductanéEA) Sls..gsshouated t\;v ith rt]he poc;slgon of ths Ferm|| IevEH{I .
activation energy E,) at different gate voltages was ob- In a-Si:H that can be changed by gate biases. Its evolution

tained from the slope of the Arrhenius G)vs T~ * plot, as with Vggwas used to calculate the density of statea-ii:H

G~Gpexp(—Ea/KT), whereGy is a constantk is the Bolt- g_'f:fTS' Therefo};_e, Itis (X't'cil to knot\,/v the ixaa“ yalues at
zmann constant, arfd is the absolute temperature. ifferent gate biases. As shown above, the series resistance

Figure 1 shows th&— Vs andG' — VL. characteristics has a significant effect on the overall source-to-drain conduc-
in the linear region obtaine(élsfor bomSi%STFT and GEP tion characteristics, especially for shorter channel length
a-Si:H TFT structures having-Si:H Iaye.rs 1500 and 3000 TF TS It is expected, therefore, that series resistances will
A thick. By fitting the experimental data to the above equa_lnflut_ance the determination (ﬁA._Valqu’ a.nd the extent of
tions, we obtained for GFR-Si:H TFTs the intrinsic field- that mfluence}f(ijepends on taeSi:H film thlckness and_ the
effect mobility of about 0.85 cAlV s. An effective gate bias, channel lengtit. Figure 4 shows the evolution d&, with

Ves— Vror Vis—Vq, was used in Fig. 1 to offset the effect

of back-interface defect states on the threshold voltslges L0 GFP TFT 8

2.5 and 6 V for TFTs with 3000 and 1500 &Si:H films, — le

respectively. As can be seen in Fig. 1, a thicke®i:H layer 0.8 .,.—o~0:©:°

(3000 A) causes a stronger reduction in the source-drain con- ) 0—0\‘0—50 o 4

ductance ofa-Si:H TFTs at higher gate voltages, indicating g 0.6r (' g o S

that a thickera-Si:H layer introduces a higher device series = — ;O;' 12 ;

resistance. However, for GF&Si:H TFTs, theG’' — (Vg ‘O’E 041 E/j/u l

—V7) characteristics are nominally independentaei:H = TFT 1°

film thickness, indicating that the effect of TFT series resis- 0.2 / 1o

tances has been excludedﬁ;n this structure, which is consis- d V=01V

tent with the simulated data. oob——m— 1y
The G—Vgg and G’ — Vg characteristics fora-Si:H 0 20 40 60 80 100

TFTs and GFR-Si:H TFTs having different channel lengths LorL'(um)

(L Qr L") are shown in Fig. 2-. Foa-Si:H TFTs in the linear FIG. 3. Evolution of the field-effect mobility and threshold voltage as a
region, a lower conductance is observed for a shorter channginction of channel length that were extracted from Fig. 2.



2876 Appl. Phys. Lett., Vol. 72, No. 22, 1 June 1998 Chiang et al.

os 4. On the other hand, for a GFRSIi:H TFT with different
0.6l E . G channel length$10, 30, and 9Qum), the E, value decreases
Torr m with increasing effective gate bias, which indicates tBat
oF 7 —— approaches the conduction band-edge as gate-bias increases.
S 04t B LY e In addition,E , values extracted for GFP TFTs do not depend
R 00 on channel lengtlisee inset of Fig. 4 This observation is
o ' O el " L (um) consistent with theoretical calculatidrsince the effect of
cseeoe® source/drain series resistances have been excluded in this
021 gég“““uuu‘“ ;2 structure. Hence, thé&, value obtained for GFRa-Si:H
Eﬁﬁaﬁﬁ}ﬁ&éééééé 96 TFTs represents the true intrindig, value that can be used
L'um)= 10, 30, 90 to characterize the quality @-Si:H TFT channelincluding
0 5 0 15 20 the a-Si:H/a-SiN, :H interface.

In this letter we have shown the experimental results for
GFP a-Si;H TFTs that confirm our previous numerical
FIG. 4. Evolution of the channel conductance activation energy as a funcSimulatior? indicating that GFRa-Si:H TFTs are immune to
tion of gate voltages for conventionatSi:H TFT and GFPa-Si:H TFT  the influence of source/drain series resistances. This work
structures. The channel length @iSi:H TFTs is 6um (@), 16 um (A), 36 clearly demonstrates that the GBFSi:H TFT structure is a
um (V¥), and 96um (4 ); channel length for GFP TFTs is 10m (OJ), 30 P S
4um (O, and 96um (+). Channel widths fon-Si:H TFT and GFP TFT are  VETY useful tool for.-optlmlzatlon' and control of t'he !ntr|n5|c
60 and 100um, respectively. Thickness @f-Si:H layer is 3000 AE, at  Performance of-Si:H TFTs during AMLCD fabrication.

Vs (or Vg9 =20V as a function of channel length is shown in the inset.
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