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We start from the observation that the essentially 
singularfunction u(r) =exp(- (~r+a/r) }, with~, a>O, 
satisfies the differential equation 

-u"(r) + (a2/r4) - (2a/r8) - (2a~/r2) }u(r) 

=-~2u(r). (1) 

Thus u(r) can be interpreted as nf;(r), where 1/;(r) is 
the (unnormalized) wave function for the lowest s 
state in the potential 

U(r) = (a2/r4) - (2a/r8) - (2a~/r2), (2) 

consisting of repulsive r-4 and attractive r-8 and r-2 
terms. More generally, and more usefully, the function 

u(r)= exp(-[ftr+(a/r)"]} (3) 
satisfies 

-u r + -- - - -- u r "() {n
2
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n 2n~an} ( ) 
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=-~2u(r), (4) 

showing repulsive r-(2n+2) and attractive r-(n+2) and 
r-(n+1) terms.! For n = 5 the potential is 

U(r)=(A/r12)-(B/r7)-(C/r6), (5) 

with A, B, C>O, which is similar to functions often 
used in analysis of molecular data.2 

It seems clear, therefore, that a power-law repulsive 
core is conveniently discussed in terms of essentially 
singular wave functions, when the power is greater 
than 2. A potential function of the above kind can be 
expected to be more realistic than the often-used 
Morse potential, which is exponentially decreasing at 
the largest distances, in disagreement with expectations 
from the electrostatic van der Waals forces. 

H the repulsive core in the interatomic interaction 
is stronger than any power law, a generalization of the 
present wave functions can be used 

u(r) = exp{ - [ftr+j(r)]} (6) 
satisfies 

-u"+ {(f')2-f"+2~f'}u= _~2U. (7) 

Hj(r) =A exp(a/r) then 

-u"+ A exp(a/r) {[A exp(a/r) -1J(a2/r4) 

- (2a/r8) - (2~a/r2) }u= _~2U, (8) 

whose potential shows the very hard core 

U(r)~(A/a)2(a/r)4 exp(2a/r) (9) 
_0 

while retaining a power-law asymptotic behavior. 
Finally, a prescribed asymptotic power, say r-6, can 

be built in, to agree with van der Waals expectations. 

u(r) = exp( -~r-A exp{,[1+~r/b)4J}) (10) 

satisfies the radial wave equation corresponding to a 
potential with a hard core as in (8) and with an attrac­
tive asymptotic leading term proportional to r-6• 

One's first reaction to the situation described by (10) 
might be that it must require very complicated algebra 
to explore a fit to experimental data. Note, however, 
that we are in possession of forms for both the ground­
state wave function and the potential (obtained, as in 
previous cases, by differentiations of u). This is a big 
advantage. For instance, the equilibrium distance r. 
is to be interpreted as the value of r for which u is a 
maximum. The problem of generating excited state 
wave functions from the ground state appears to be a 
formidable one, on which we have no progress to report. 
Fits to vibrational data (and extraction of the magni­
tude of the leading asymptotic term) using these po­
tentials for the molecules N2 and 12 are reported by 
one of us (A.C.) in a thesis. 3 
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AQUANTUM mechanical analysis of molecular 
beam scattering has been presented l ; the results 

could be concisely represented within the semiclassical 
framework of Ford and Wheeler.2 In this note the semi­
classical equivalence relationship is further exploited 
and applied directly to the phase shift calculation. 

For a central potential of the form VCr) =fj(r/rJ) , 
the Jeffreys-Langer-WKB approximation for the phase 
shift becomes, in terms of the reduced parameters of I 

'YJ*(b*, K) = l eO

[1- V*(x)/K- (b*/x)2]tdx 
"'0 

-leO [1- (b* / x) 2]ldx, (1) 
b* 

where 'YJ*='YJ/A, b*=b/rJ=(I+!)/A, x=r/rJ, A=krJ, 
k=J.i.v/h, K=E/f, V*(x)=j(X)=V/f; f, rJ are po­
tential parameters. 
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Differentiating Eq. (1), 

d'Y/* 1'" db* = -b* J+b* b* dx/x2[1- (b*/x)2Ji=-b* J +11/2 , 

(2) 
where 

J=. [XOdx/x2[l_ V*(x)/K- (b*/X)2Ji. (3) 
Xo 

Comparison with the expression for the classical de­
flection function 8(b*, K) =7r- 2b* J yields directly 
the equivalence relation d'Y/* /db* = 8/2. Integration 
with the boundary condition 

lim'Y/*(K) =0 
b·-co 

yields 

'Y/*(b*, K) =![fob*8db*- fo"'8db*J=-![: 8db*. (4) 

Starting with a purely classical calculation of the 
deflection function 8(b*, K), one obtains directly the 
semiclassical reduced phases 'Y/*(b*, K) and thus the 
phase shifts 'Y/l(k) and the quantum scattering cross 
sections. 

Three examples are now considered: (1) rigid sphere, 
(2) inverse power, and (3) L-J (12, 6) potentials. 

(1) Rigid-sphere potential. Classically, 8=2 cos-1b*, 
(O~b*~1), independent of K, from which Eq. (4) 
gives 

'Y/*(b*) =b* cos-1b*- (1-b*2)1_~+-.!:...+O(~)' (5) 
4A 8A2 A3 ' 

1 _ (1+!) [ (l+!)2Ji 7r 1 'Y/l= U+2) cos I A -A 1- A - 4+ 8A" (6) 

Calculations were made for A =30, 20, 10, and 5. 
For l<iA, Eq. (6) yielded 'Y/l differing by less than 
±0.02 rad from the exact values (over a range of 
phases from -30 to 0 rad), the error increasing with 
1/ A. Of course, the semiclassical treatment cannot 
yield phases for l> A . 

(2) Inverse power potential. For illustration, con­
sider V = - C(6) /r6• Classically, for small deflections, 
8=-157rC(6)/16Eb6=-157r/4Kb*6, from which Eq. 
(4) gives 

'Y/*(b*, K) = 37r/8Kb*5; 'Y/1=37rli2C(6)k4/64,uU+!)5. (7) 

This is identical with Massey and Mohr's3 result, the 
so-called "Jeffreys-Born" approximation. 

(3) L-J (12, 6) potential. Deflection angles are 
available in tabular form4 ; thus simple graphical inte­
gration CEq (4)J of 8(b*, K) may be employed. From 
I it is noted that for b*>2, 'Y/*':::::.-37r/8Kb*5 so that 
only over the region b*<2 is numerical integration 
necessary. As an example, using the tabulated4 8(b*, 4) 

values, 21 valw.es of 'Y/*(b*, 4) were calculated from 
Eq. (4), and found to differ from the exact values 
(cf. I) by less than ±O.0015, corresponding to ±0.03 
in 'Y/l (over a range of some 20 rads). 

Direct application (i.e., graphical integration) of 
the JL WKB formula was also found to give results of 
similar accuracy (±0.03 rad), as expected, since the 
two methods are entirely equivalent. However, in the 
great many cases for which classical deflection functions 
are already available either in analytical or tabular 
form, the use of Eq. (4) gives results of good accuracy 
with a very minimum of effort. 

It should be re-emphasized (see I) that the semi­
classical treatment is totally inapplicable in the 
"bounded region" for K <Ko (Ko is the critical value 
for classical orbiting) due to wave function penetration 
to the centrifugal barrier. In this region the full treat­
mentl involving integration of the radial wave equation 
is required. 

The author appreciates the valuable discussions and 
kind hospitality of Professor Sir Harrie Massey (Uni­
versity College London). 
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I T was recognized at a very early stage in the experi­
mental study of the equations of state of fluids that 

liquid isochores have a simple form. This view has been 
confirmed by recent experiments1•2 which showed that 
(a2p/aTZ)v is zero within the experimental error over 
moderate ranges of pressure and that (ap/aT)v is a 
function of volume only. On the basis of these observa­
tions we may write the relation 

(ap/aT)v= (R/V)!l(V) , (1) 

which, in its integrated form, gives an equation of state 
of the type 

PV/RT=!l(V)+[fz(V)/T]. (2) 

Recently, it has been shown that Eq. (2) can be applied 
to gases at high temperatures over a wide range of 


